
* ISSN 1350-8539

M500 195



The M500 Society and Officers

The M500 Society is a mathematical society for students, staff and friends
of the Open University. By publishing M500 and ‘MOUTHS’, and by organiz-
ing residential weekends, the Society aims to promote a better understanding of
mathematics, its applications and its teaching.

The magazine M500 is published by the M500 Society six times a year. It
provides a forum for its readers’ mathematical interests. Neither the editors nor
the Open University necessarily agree with the contents.

MOUTHS is ‘Mathematics Open University Telephone Help Scheme’, a directory
of M500 members who are willing to provide mathematical assistance to other
members.

The September Weekend is a residential Friday to Sunday event held each
September for revision and exam preparation. Details available from March on-
wards. Send SAE to Jeremy Humphries, below.

The Winter Weekend is a residential Friday to Sunday event held each January
for mathematical recreation. Send SAE for details to Norma Rosier, below.

Editor – Tony Forbes

Editorial Board – Eddie Kent

Editorial Board – Jeremy Humphries

Advice to authors. We welcome contributions to M500 on virtually anything
related to mathematics and at any level from trivia to serious research. Please
send material for publication to Tony Forbes, above. We prefer an informal style
and we usually edit articles for clarity and mathematical presentation. If you use
a computer, please also send the file on a PC diskette or via e-mail.



M500 195 Page 1

Solution 191.8 – Infinite exponentiation

I want to know the value of y = xx
xx···

when x = 1.1. Writing
it as y = xy I get log y = y log x; so log x = (log y)/y. Putting
x = 1.1, appears to give two solutions: y = 1.111782011... and
y = 38.22873285.... They can’t both be right. Explain.

Basil Thompson

Euler proved that the function y = xx
xx···

, where the height of the tower of
exponents tends to ∞, has a limit if

e−e < x < e1/e, 0.065988 . . . < x < 1.444667 . . . .

See the entry for 1.444667861 . . . in David Wells, The Penguin Dictionary
of Curious and Interesting Numbers.

So it is not surprising that when x = 1.1, y will converge (to

1.111782011 . . . ). But y = xx
xx···

can only be written as y = xy if x
is within the Euler limits, with the implied limits for y, 1/e < y < e,
i.e. 0.367879 . . . < y < 2.718281 . . . .

By taking logs we get log x = (log y)/y, from which a curve for x against
y can be plotted. By differentiating, it can be shown that the maximum of
x is at y = e and x = e1/e. As y →∞, x→ 1.

The line x = 1.1 cuts the graph in two points, y = 1.111782011... within
the Euler limits, and y = 38.22873285... outside the limits. There is no
mystery, but is it possible to find the two solutions other than by numerical
methods?
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On the cellular automaton of Ulam and Warburton
David Singmaster
Introduction

Mike Warburton’s ‘One-edge connections’ [3] is an example of a cellular
automaton or a cell growth pattern. It seems to have been first considered
by Stanislaw Ulam in one of the original papers in the field [2].

We consider the square lattice as an infinite chessboard of cells, with
each cell having as neighbours the four cells which share an edge with it.
In generation 0, the cell at (0, 0) is transformed. In each succeeding gen-
eration, the cells which share one edge with already transformed cells are
transformed. One can think of the situation as an infinite array of cells and
the transformation being that they are infected, and perhaps die. Or we can
think of the plane as a nutrient surface and the cells are becoming alive and
propagating. The latter interpretation is more common and agrees with the
idea of generation as used in Conway’s Life, etc.

We first simplify by noting that the pattern has the symmetry of the
square and so we need only look at one quadrant. It is convenient to take
the fourth quadrant. Figure 1 shows part of the fourth quadrant with
cells labelled with the generation in which they are born. Up through the
sixth generation, the pattern coincides with the pattern of odd binomial
coefficients, and would continue to do so if we required that life had to
spread outward. After seeing Warburton’s note, I did some analysis of the
latter pattern and sent it to Tony Forbes since it is a well-known pattern,
related to the Tower of Hanoi, the fractal known as Sierpiński’s Gasket and
pathological curves—see [1]. However, my friend Chris Base recently asked
about a pattern which had arisen in a school investigation, and this was the
Ulam-Warburton pattern. She pointed out that in the 7th generation there
is an inward growth, and this gets more important in higher generations.
So here I do the analysis for the Ulam-Warburton pattern and determine
the number of cells born in each generation.

The number in each generation

Let A(i) be the number of cells born in generation i. Table 1 (page 7) lists
the values of A(i), up through i = 63.

Looking at Figure 1, we see that the growth from 2n to 2n+1 − 1 can
be viewed as three triangles, as shown in Figure 2. Triangles A and C
are identical to triangle A advanced by 2n. To see what is going on in
triangle D , we need to subdivide as in Figure 3. Because the growth from
point P = (0, 2n) is into virgin territory up until generation 2n+1 − 1, the
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growth is symmetric with respect to the horizontal through P . So triangle
D1 is the reflection of triangle C2 . However, these triangles share the
common horizontal through P . So the number of cells of a given generation
in the interior of D1 is one less than the number counted in C2 . Also by
symmetry, C2 is the reflection of C1 , with a slight counting problem at
the point P . Putting together all the triangles, we see that

A(2n + i) = 2A(i) + 2[A(i)/2− 1] = 3A(i)− 2, i = 1, ..., 2n − 1. (1)

When i = 0, we have A(2n) = 2, except A(0) = 1.

Since A(i) is always even (except at i = 0), let us set B(i) = A(i)/2,
B(0) = 1. Then we have

B(2n + i) = 3B(i)− 1, except B(2n) = 1. (2)
Looking at

B(11) = 3B(3)− 1 = 3(3B(1)− 1)− 1 = 9− 3− 1,

B(12) = 3B(4)− 1 = 3− 1,

B(13) = 3B(5)− 1 = 3(3B(1)− 1)− 1 = 9− 3− 1,

B(14) = 3B(6)− 1 = 3(3B(2)− 1)− 1 = 9− 3− 1,

B(15) = 3B(7)− 1 = 3(3B(3)− 1)− 1

= 3(3(3B(1)− 1)− 1)− 1 = 27− 9− 3− 1,

we see that the expressions depend just on the number, d, of ones in the
binary representation of i, being 3d−1 − 3d−2 − · · · − 1. The tail of this is
just (3d−1 − 1)/2, so we have a total of B(i) = (3d−1 + 1)/2. Doubling this
gives us

A(i) = 3d−1 + 1, (3)

in agreement with the values in Table 1. This holds even when d = 1, i.e.
i = 2n, but A(0) = 1 is still exceptional.

I cannot yet see any simple way to describe the cells born in the ith
generation, nor how to determine for a given cell whether it is ever born nor
in which generation. I have a rather complicated method for the latter ques-
tions, but I will postpone this until the end of this note. Such descriptions
depend on the binary representation in some way.

The number in the first 2n generations

Now let Cn =
∑2n−1
i=0 A(i) be the total number born in generations

0, 1, . . . , 2n − 1. We have C0 = 1, C1 = 3, C2 = 9, C3 = 29, C4 = 101,
C5 = 373, C6 = 1429, . . . . Either by counting as done to find equation (1),
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or by adding up equation (1) from 2n + 1 to 2n+1 − 1, and using A(0) = 1,
A(2n) = 2, we find

Cn = 4Cn−1 − (2n − 1), for n > 0. (4)

This is not a common type of recurrence because of the non-
homogeneous terms 2n − 1. After some fiddling based on the idea that
the solution should include terms like the non-homogeneous part, I realized
I could eliminate this part by considering Cn = Dn + a2n + b. This yields
Dn+1 +a2n+1 +b = 4Dn+4a2n+4b−2n+1 +1. Setting b = −1/3 makes the
constant part cancel out, and setting a = 1 makes the 2n+1 part cancel out.
We are then left with Dn+1 = 4Dn, whose solution is obviously Dn = α4n.
Hence Cn = α4n + 2n − 1/3. Using C1 = 3, we find α = 1/3, so

Cn = (4n − 1)/3 + 2n. (5)

The total number of cells in levels 0 through 2n−1 is 1+2+3+· · ·+2n =
2n(2n+1)/2 = t(2n), the 2nth triangular number. Hence the density of live
cells up through 2n− 1 is Cn/t(2

n) = 2/3− 1/(3 · 2n−1) + 2/(2n + 1), which
is asymptotic to 2/3.

To relate to Mike Warburton’s expression, we let E0 be the number in
his pattern for levels 0 through 2n − 1. We have E0 = 1, E1 = 5, E2 = 21,
E3 = 85, E4 = 341, . . . . Note that Warburton includes the level 2n, which
adds four to En. Since the whole figure is four quadrants, with some overlap
along the axes, we find En = 4Cn− 3− 4(2n− 1), and using equation (5),
we have

En = (4n+1 − 1)/3. (6)

Adding 4 and slightly rearranging gives En + 4 = 4 · 4n/3 + 11/3, which is
Warburton’s expression.

Surprisingly, neither A(i) nor B(i) appears in Sloane’s On-Line En-
cyclopedia of Integer Sequences (www.research.att.com/cgi-binlaccess.cgi/as/
njas/sequences/eismum.cgi) and En appears as in equation (6) but only in
quite different contexts.

Concluding remarks

Let me now describe my somewhat complicated process of determining
whether and when a given cell becomes alive. Basically we use the re-
cursive observations about Figures 2 and 3 to reduce the coordinates. Let a
cell have coordinates (i, j), where j is taken positive in the downward direc-
tion. Let G(i, j) be the generation number in which cell (i, j) is born. Since
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Figure 1 is symmetric with respect to its diagonal, i.e. G(i, j) = G(j, i), we
can assume i < j and we need only look at the lower part of Figure 1.

The growth from generation 2n to generation 2n+1 − 1 all lies in the
triangles B, C, D of Figure 2, i.e. where 2n ≤ i+ j ≤ 2n+1 − 1.

If j ≥ 2n, we are in triangle C and we have

G(i, j) = 2n +G(i, j − 2n). (7)

But if i ≤ j < 2n, then we are interior to triangle D1 and reflection
in the horizontal through P gives G(i, j) = G(i, 2n+1 − j). Use of (7) then
gives us

G(i, j) = 2n +G(i, 2n − j). (8)

Rotating triangle D1 into triangle C1 gives us G(i, j) = G(2n − j, 2n + i)
and use of (7) gives

G(i, j) = 2n +G(2n − j, i), (9)

which is a symmetric form of (8). However, when i = j = 2n−1, both
transformations bring us back to the same point we started with. If i =
j = 0, we are at the end of our process, but if i = j > 0, our point is never
born. Other general rules such as G(0, j) = j and G(i, 2n − 1− i) = 2n − 1
help shorten any calculation. One can describe these rules in terms of the
binary expansions of i and j, but the dichotomy of the rules and the use of
2s complement in (8) or (9) make it quite unclear what the overall result of
the process will be.

As a final remark, observe that the pattern of unborn cells is the same
fractal as the pattern of born cells, but rotated by 45◦ and shrunk by a
factor of

√
2.
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Figure 1: G(i, j), 0 ≤ i ≤ j ≤ 63, part (i): j ≤ 31

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31

02 03 07 06 07 11 10 11 15 14 15 19 18 19 23 22 23 27 26 27 31 30 31 35

03 07 07 15 11 15 15 23 19 23 23 31 27 31 31 39

04 05 06 07 15 14 13 12 13 14 15 23 22 21 20 21 22 23 31 30 29 28 29 30 31 39 38 37

05 07 15 15 13 15 31 23 21 23 31 31 29 31 47 39

06 07 15 14 15 15 14 15 31 30 31 23 22 23 31 30 31 31 30 31 47 46 47 39

07 11 13 15 15 31 29 27 23 27 29 31 31 47 45 43

08 09 10 11 12 13 14 15 31 30 29 28 27 26 25 24 25 26 27 28 29 30 31 47 46 45 44 43 42 41

09 11 13 15 31 31 29 27 25 27 29 31 63 47 45 43

10 11 15 14 15 31 30 31 31 30 31 27 26 27 31 30 31 63 62 63 47 46 47 43

11 15 15 31 29 31 31 31 27 31 31 63 61 63 47 47

12 13 14 15 31 30 29 28 29 30 31 31 30 29 28 29 30 31 63 62 61 60 61 62 63 47 46 45

13 15 23 31 27 31 31 31 29 31 63 63 59 63 55 47

14 15 23 22 23 27 26 27 31 30 31 31 30 31 63 62 63 59 58 59 55 54 55 47

15 19 21 23 25 27 29 31 31 63 61 59 57 55 53 51

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

17 19 21 23 25 27 29 31 63 63 61 59 57 55 53 51

18 19 23 22 23 27 26 27 31 30 31 63 62 63 63 62 63 59 58 59 55 54 55 51

19 23 23 31 27 31 31 63 61 63 63 63 59 63 55 55

20 21 22 23 31 30 29 28 29 30 31 63 62 61 60 61 62 63 63 62 61 60 61 62 63 55 54 53

21 23 31 31 29 31 63 63 59 63 63 63 61 63 63 55

22 23 31 30 31 31 30 31 63 62 63 59 58 59 63 62 63 63 62 63 63 62 63 55

23 27 29 31 31 63 61 59 57 59 61 63 63 63 61 59

24 25 26 27 28 29 30 31 63 62 61 60 59 58 57 56 57 58 59 60 61 62 63 63 62 61 60 59 58 57

25 27 29 31 47 63 61 59 55 59 61 63 63 63 61 59

26 27 31 30 31 47 46 47 63 62 63 55 54 55 63 62 63 63 62 63 63 62 63 59

27 31 31 47 45 47 63 55 53 55 63 63 61 63 63 63

28 29 30 31 47 46 45 44 45 46 47 55 54 53 52 53 54 55 63 62 61 60 61 62 63 63 62 61

29 31 39 47 43 47 47 55 51 55 55 63 59 63 63 63

30 31 39 38 39 43 42 43 47 46 47 51 50 51 55 54 55 59 58 59 63 62 63 63

31 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

34 35 39 38 39 43 42 43 47 46 47 51 50 51 55 54 55 59 58 59 63 62 63

35 39 39 47 43 47 47 55 51 55 55 63 59 63 63

36 37 38 39 47 46 45 44 45 46 47 55 54 53 52 53 54 55 63 62 61 60 61 62 63

37 39 47 47 45 47 63 55 53 55 63 63 61 63

38 39 47 46 47 47 46 47 63 62 63 55 54 55 63 62 63 63 62 63

39 43 45 47 47 63 61 59 55 59 61 63 63

40 41 42 43 44 45 46 47 63 62 61 60 59 58 57 56 57 58 59 60 61 62 63

41 43 45 47 63 63 61 59 57 59 61 63

42 43 47 46 47 63 62 63 63 62 63 59 58 59 63 62 63

43 47 47 63 61 63 63 63 59 63 63

44 45 46 47 63 62 61 60 61 62 63 63 62 61 60 61 62 63

45 47 55 63 59 63 63 63 61 63

46 47 55 54 55 59 58 59 63 62 63 63 62 63

47 51 53 55 57 59 61 63 63

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

49 51 53 55 57 59 61 63

50 51 55 54 55 59 58 59 63 62 63

51 55 55 63 59 63 63

52 53 54 55 63 62 61 60 61 62 63

53 55 63 63 61 63

54 55 63 62 63 63 62 63

55 59 61 63 63

56 57 58 59 60 61 62 63

57 59 61 63

58 59 63 62 63

59 63 63

60 61 62 63

61 63

62 63

63 �
�
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Figure 1: G(i, j), 0 ≤ i ≤ j ≤ 63, part (ii): j ≥ 32

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

34 35 39 38 39 43 42 43 47 46 47 51 50 51 55 54 55 59 58 59 63 62 63

35 39 39 47 43 47 47 55 51 55 55 63 59 63 63

36 37 38 39 47 46 45 44 45 46 47 55 54 53 52 53 54 55 63 62 61 60 61 62 63

37 39 47 47 45 47 63 55 53 55 63 63 61 63

38 39 47 46 47 47 46 47 63 62 63 55 54 55 63 62 63 63 62 63

39 43 45 47 47 63 61 59 55 59 61 63 63

40 41 42 43 44 45 46 47 63 62 61 60 59 58 57 56 57 58 59 60 61 62 63

41 43 45 47 63 63 61 59 57 59 61 63

42 43 47 46 47 63 62 63 63 62 63 59 58 59 63 62 63

43 47 47 63 61 63 63 63 59 63 63

44 45 46 47 63 62 61 60 61 62 63 63 62 61 60 61 62 63

45 47 55 63 59 63 63 63 61 63

46 47 55 54 55 59 58 59 63 62 63 63 62 63

47 51 53 55 57 59 61 63 63

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

49 51 53 55 57 59 61 63

50 51 55 54 55 59 58 59 63 62 63

51 55 55 63 59 63 63

52 53 54 55 63 62 61 60 61 62 63

53 55 63 63 61 63

54 55 63 62 63 63 62 63

55 59 61 63 63

56 57 58 59 60 61 62 63

57 59 61 63

58 59 63 62 63

59 63 63

60 61 62 63

61 63

62 63

63
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Figure 3

B1

B2

C1

C2

D1

D1

P

Table 1

i A(i) i A(i) i A(i) i A(i)

0 1 16 2 32 2 48 4
1 2 17 4 33 4 49 10
2 2 18 4 34 4 50 10
3 4 19 10 35 10 51 28
4 2 20 4 36 4 52 10
5 4 21 10 37 10 53 28
6 4 22 10 38 10 54 28
7 10 23 28 39 28 55 82
8 2 24 4 40 4 56 10
9 4 25 10 41 10 57 28

10 4 26 10 42 10 58 28
11 10 27 28 43 28 59 82
12 4 28 10 44 10 60 28
13 10 29 28 45 28 61 82
14 10 30 28 46 28 62 82
15 28 31 82 47 82 63 244
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LCM
Dick Boardman
I learned about the LCM when I learned about adding fractions but we were
never told an algorithm to calculate it nor its relation to other functions.
This fills some of the gap.

If {a, b, c} have no common factor, the LCM is simply the product abc.

If {a, b, c} have a highest common factor f so that a = fA, b = fB
and c = fC, then the LCM is fABC. In general, for N numbers, let
f = HCF(a1, a2, . . . , aN ) then the LCM is a1a2 . . . aN/f

N−1

Crucially the LCM of N numbers is at most the product of N numbers.
Hence your statement in M500 191 (page 10) that LCM(a, b, c) ≤ ((a +
b + c)/3)3 is always true (not just for sufficiently large n) and is a special
case of the well-known theorem which states that the geometric mean of N
numbers is not greater than the arithmetic mean.

Solution 192.5 – 16 Polygons
Make a 16-faced polyhedron out of two regular pentagons, eight
squares and six equilateral triangles.

Chris Pile
Well, isn’t that a picture
of the polyhedron on the
front cover of 192? I
made one very easily in
a few minutes—just had
to bend it a little! The
arrangement of the poly-
gons is similar to part
of the Archimedean solid,
the (small) rhombicosido-
decahedron, right. Unfor-
tunately, the dihedral an-
gle between pentagon and
square is 148◦17′, not 150◦

as would be required by effectively gluing together triangular wedges on to
a pentagonal prism.

If the decagonal polar caps of the rhombicosidodecahedron are glued
together, the pentagonal faces are 1.054 edge units apart.
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Robin Marks
The answer to the question is ‘yes’. Start with a pentagonal prism and three
triangular prisms. Together these polyhedra have two pentagonal faces, 14
square faces and six triangular faces.

1. Take any two polyhedra. Choose a square face on each. Align the
polyhedra so that one square lies flat against the other and the square
centres are lined up. Rotate until all the the edges are aligned (four possible
ways). Join the two objects where they touch.

2. Repeat step 1 until there is only one polyhedron.

This procedure leaves one polyhedron with two pentagonal, eight square
and six triangular faces. I can find 64 examples. However, most of these
polyhedra, like the one shown on the left, below, have two of the compo-
nent polygons joined together at an angle of 180 degrees. Consequently the
resulting shape cannot be regarded as a 16-hedron. If we disallow such ob-
jects, we are left with just nine different 16-sided polyhedra, as illustrated on
the front cover of this magazine. On the other hand if we allow such objects
there are 64 polyhedra altogether. In such an object we must consider each
set of polygons-joined-together-at-an-angle-of-180-degrees to be combined
into a single (irregular) polygon. Such an object is thus a polyhedron with
less than 16 sides.

And, yes, I did notice the diagram on the front cover of M500 192 (be-
low, right). The triangle marked by the three black dots is not equilateral:
by my calculations it has side lengths 1, 1 and

√
3 sinπ/5 ≈ 1.01807.

ADF — This was in fact the shape that inspired the problem. I ac-
cidentally made it whilst playing with one of my toys, a construction set
comprising finite numbers of plastic regular 3-, 4- and 5-gons which clip
together in an ingenious manner. There was sufficient tolerance to allow
the two odd triangles to be replaced by equilateral ones.



Page 10 M500 195

Solution 190.1 – 50 pence
Starting on his sixth birthday, a child is given 50 pence every
day but always in a different combination of coins. The money
stops when this is no longer achievable. How old is the child
when that happens?

Ralph Hancock

I cheated foully and
wrote a Basic program,
right, which seems to be
watertight. It told me
that there are 451 ways
of combining the coins.
So if the child was 6 at
the start, his/her age at
the end will be 7 years
and 86 days (assuming
that the first year is not
a leap year).

r = 0

FOR f = 0 TO 1

FOR e = 0 TO 2

FOR d = 0 TO 5

FOR c = 0 TO 10

FOR b = 0 TO 25

FOR a = 0 TO 50

IF a+2*b+5*c+10*d+20*e+50*f = 50 THEN

r = r + 1

PRINT r; a; b; c; d; e; f

END IF

NEXT: NEXT: NEXT: NEXT: NEXT: NEXT

ADF writes — An alternative to such foul play but involving even more
computation is to evaluate the Taylor series expansion:

1

(1− x)(1− x2)(1− x5)(1− x10)(1− x20)(1− x50)

= 1 + x+ 2x2 + 2x3 + 3x4 + 4x5 + 5x6 + 6x7 + 7x8 + 8x9

+ 11x10 + 12x11 + 15x12 + 16x13 + 19x14 + 22x15 + 25x16

+ 28x17 + 31x18 + 34x19 + 41x20 + 44x21 + 51x22 + 54x23

+ 61x24 + 68x25 + 75x26 + 82x27 + 89x28 + 96x29 + 109x30

+ 116x31 + 129x32 + 136x33 + 149x34 + 162x35 + 175x36

+ 188x37 + 201x38 + 214x39 + 236x40 + 249x41 + 271x42

+ 284x43 + 306x44 + 328x45 + 350x46 + 372x47

+ 394x48 + 416x49 + 451x50 + . . . .

The coefficient of xn then gives the number of ways of expressing n as a sum
of integers taken from the set {1, 2, 5, 10, 20, 50}. So the answer we want is
the coefficient of x50. Lo and behold! It is the same, 451.
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Solution 191.5 – Another magic square
Paul Terry
Here is the solution to Claudia Gioia’s magic square.

47 58 69 80 1 12 23 34 45

57 68 79 9 11 22 33 44 46

67 78 8 10 21 32 43 54 56

77 7 18 20 31 42 53 55 66

6 17 19 30 41 52 63 65 76

16 27 29 40 51 62 64 75 5

26 28 39 50 61 72 74 4 15

36 38 49 60 71 73 3 14 25

37 48 59 70 81 2 13 24 35

Using the usual formula, n(n2 + 1)/2, with n = 9, the rows, columns and
diagonals all sum to 369. Notice the relationship of the entries in the middle
column and in the diagonal from bottom left to top right.

Solution 190.2 – Six celebrities
How many celebrities would I need to know for there to be a
greater than 50 per cent chance of knowing six celebrities with
my birthday?

Sheldon Attridge
We use the binomial theorem. Let p = 1/365 and

P (n) =

5∑
k=0

(
n

k

)
pk(1− p)n−k.

Here, the k term is the probability that exactly k people out of n share my
birthday. Hence the probability of 6 or more of them sharing my birthday is
1−P (n). So we want to determine the smallest n for which 1−P (n) > 1/2.
We now have to use a method of trial and error to obtain n = 2070.
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Maximum Brocard angle
In the original problem we asked for a proof that not all of the
angles PAB, PBC and PCA can exceed 30◦. When the angles
are equal, P is known as a Brocard point, and the angle is called
the Brocard angle. So the Brocard angle can never exceed 30◦.

A

B C

P

Rob Evans
With respect to Solution 189.8, printed in M500 191, I would like to make
the following comments.

1. One should not assume without justification that where D12 =
{(x, y) ∈ (0, π)2 : x + y < π} the function w12 : D12 → R+ defined by
w12(x, y) = arccot(cotx+ cot y − cot(x+ y)) has a global maximum.

2. The most that one can infer about the graph of w12 from the sym-
metry between x and y in the above expression for w12(x, y) is that it has
mirror symmetry with respect to the plane x = y.

3. The most that one can infer about the graph of w12 from the fact that
the function w1 : (0, π/2)→ R+ defined by w1(x) = arccot(2 cotx− cot 2x)
has a zero derivative (only) when x = π/3 is that in the plane x = y
it is stationary in the direction parallel to the plane x = y (only) when
(x, y) = (π/3, π/3).

As an approach to showing that a maximum Brocard angle exists, and
finding its value, I propose the following.

Start with the function that gives the Brocard angle of a triangle in
terms of its three interior angles, i.e. where

D = {(x, y, z) ∈ (0, π)3 : x+ y + z = π}.
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Let the function w : D → R+ be defined by

w(x, y, z) = arccot (cotx+ cot y + cot z).

Since each of the two Brocard points of a triangle lies inside the open
triangular region defined by that triangle, for each (x, y, z) ∈ D we have
that

w(x, y, z) < x, y, z. (1)

From the definition of w, we have that

w
(π

3
,
π

3
,
π

3

)
=

π

6
. (2)

From simple considerations of arithmetic, for each (x, y, z) ∈ D such that
each of x, y, z is greater than π/6, we have that

x, y, z <
2π

3
. (3)

Consequently, from (1), (2) and (3) together with simple considerations
of logic, we have that w attains a global maximum at (x, y, z) = (x0, y0, z0)
if and only if w∗ attains a global maximum at (x, y, z) = (x0, y0, z0), where
the function w∗ : D∗ → R+ is defined by w∗(x, y, z) = w(x, y, z) and D∗ =
{(x, y, z) ∈ D : (x, y, z) ∈ (0, π/3)3}.

From elementary differential calculus we have that

cot′ x = − 1

sin2 x
, 0 < x < π. (4)

From the graph of the sine function, we have that

0 < sinx < sin
π

3
, 0 < x <

π

3
,

sinx > sin
π

3
> 0,

π

3
< x <

2π

3
.

(5)

Consequently, from (4) and (5) together with simple considerations of arith-
metic, we have that

cot′ x < cot′
π

3
, 0 < x <

π

3
,

cot′ x > cot′
π

3
,

π

3
< x <

2π

3
.

(6)
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Hence from (6) together with the Fundamental Theorem of Calculus,
for each (π/3 + ∆1, π/3 + ∆2, π/3 + ∆3) ∈ D∗ we have that∑
i∈N3

cot
(π

3
+ ∆i

)

= 3 cot
π

3
+

∑
i∈N+

3

∫ π
3 +∆i

π
3

(cot′ x)dx

+

∑
i∈N−

3

∫ π
3

π
3 +∆i

(cot′ x)dx


≤ 3 cot

π

3
+

∑
i∈N+

3

∫ π
3 +∆i

π
3

(
cot′

π

3

)
dx

+

∑
i∈N−

3

∫ π
3

π
3 +∆i

(
cot′

π

3

)
dx


= 3 cot

π

3
+
(

cot′
π

3

) ∑
i∈N3

∆i

= 3 cot
π

3
,

where N3 = {1, 2, 3} and, in turn, N±3 = {i ∈ N3 : ±∆i > 0}. Note that
equality is attained if and only if N+

3 ∪N
−
3 = ∅, i.e. (∆1,∆2,∆3) = (0, 0, 0).

However, arccot is a decreasing function on R. Consequently, for each
(π/3 + ∆1, π/3 + ∆2, π/3 + ∆3) ∈ D∗ we have that

arccot

(∑
i∈N3

cot
(π

3
+ ∆i

))
≤ arccot

(
3 cot

π

3

)
,

which implies that

w∗
(π

3
+ ∆1,

π

3
+ ∆2,

π

3
+ ∆3

)
≤ w∗

(π
3
,
π

3
,
π

3

)
=

π

6
.

Hence, from the argument put forward above, for each (π/3+∆1, π/3+
∆2, π/3 + ∆3) ∈ D we have that

w
(π

3
+ ∆1,

π

3
+ ∆2,

π

3
+ ∆3

)
≤ w

(π
3
,
π

3
,
π

3

)
=

π

6
.

Equality is attained if and only if (∆1,∆2,∆3) = (0, 0, 0).
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Solution 192.6 – 500 factors
What is the smallest number that has exactly 500 factors?

David Turtle
Any natural number x has a unique prime factorization

x =

N∏
a=1

pna
a ,

where the pa are distinct primes and each na ∈ N. A natural number y
divides x if and only if

y =

N∏
a=1

pma
a ,

where each 0 ≤ ma ≤ na, the cofactor being

x/y =

N∏
a=1

pna−ma
a .

As a consequence of the uniqueness of prime factorization each distinct
sequence {ma} determines a different factor of x; so x has a total of

N∏
a=1

(na + 1)

factors. This means that the least x having exactly K factors will be

x =

N∏
a=1

pqa−1
a ,

where pa is the ath prime and K =
∏N
a=1 qa is some factorization (not

necessarily prime) of K. Clearly the qa should be in descending order of
magnitude so that the smallest primes are raised to the highest powers and
vice versa.

For manyK the prime factorization ofK gives the recipe for the smallest
x, but not all. For example, when K = 32 = 2 · 2 · 2 · 2 · 2 we get x =
2 · 3 · 5 · 7 · 11 = 2310 but using K = 4 · 4 · 2 we get x = 23 · 33 · 5 = 1080.
If we consider a pair of the factors of K, say qa, qb, then we may be able
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to reduce the value of x by replacing the two terms p
(qa−1)
a p

(qb−1)
b with the

single term p
(qaqb−1)
a . The value of x will decrease if and only if

p(qaqb−1)
a pb < p(qa−1)

a p
(qb−1)
b pm,

where pm is the largest prime in the factorization of x. Dividing both sides

by p
(qa−1)
a we get

(pqaa )(qb−1) < p
(qb−1)
b (pm/pb)

and taking (qb − 1)th roots we get

pqaa < pb(pm/pb)
1/(qb−1).

Is it possible that combining more than two factors of K would reduce
x when none of the pairs of the factors involved meet this criterion? If this
were so then, if there are f factors, pb, ..., pz, we would have

p(qaqb ... qz−1)
a pb ... pz < p(qa−1)

a p
(qb−1)
b ... p(qz−1)

z pm ... pm−f+1.

So
(pqaa )(qb ... qz−1)pb ... pz < p

(qb−1)
b ... p(qz−1)

z pm ... pm−f+1;

but also
pqaa ≥ pn(pm/pn)1/(qn−1)

for all n ∈ {b, ..., z}. So

(pqaa )(qb ... qz−1)pb...pz < (pqaa )(qb−1)(pb/pm)

... (pqaa )(qz−1)(pz/pm)pm ... pm−f+1;

i.e.
(pqaa )(qb ... qz−1) < (pqaa )(qb−1) ... (pqaa )(qz−1)pm ... pm−f+1/p

f
m,

and taking the log to base pqaa of both sides we get

(qb ... qz − 1) < (qb − 1) + ... + (qz − 1) + logpqaa (pm ... pm−f+1/p
f
m);

that is,

(qb ... qz)− (qb + ... + qz) < 1− f + logpqaa (pm ... pm−f+1/p
f
m),

which is impossible since all the qn are integers greater than 1 and
logpqaa (pm...pm−f+1/p

f
m) < 1. This means that testing pairs of factors for

pqaa < pb(pm/pb)
1/(qb−1)



M500 195 Page 17

is sufficient to detect whether any reduction in the value of x is possible. In
the case K = 500 we have K = 22 · 53 giving x = 24 · 34 · 54 · 7 · 11 which
clearly cannot be reduced by using a non-prime factorization of K (since,
for example, 25 > 11 and all other pairs are even worse). So the smallest
natural number with exactly 500 factors is 62370000.

The checking of individual pairs of factors also provides an algorithm
for finding x for any K, but unfortunately it is quite inefficient in cases
when K has many small prime factors and few large ones, since the order
of combining factors does affect the final result. For example in the case
of K = 32 above if we went from 2 · 3 · 5 · 7 · 11 to 23 · 3 · 5 · 7 we would
find no further reductions, but going first to 2 · 33 · 5 · 7 we can then go on
to 23 · 33 · 5. In fact the single reduction to 23 · 3 · 5 · 7 yields the smallest
x = 840. This means that the algorithm needs to search the whole tree of
possible factor-pair combinations to be sure of finding the smallest x. Of
course it is still more efficient than a brute force search through all possible
factorizations of K, which is in turn more efficient than searching through
possible values of x.

One heuristic that often seems to work for choosing the best values of
a, b to combine first is to find the smallest pqaa and combine it with the
largest pb. Is there a number of factors (a value of K) for which this does
not work? if so, what is the smallest such K?

Tony Forbes writes — We also had responses from Barbara Lee,
Claudia Gioia and Adrian Cox, all of whom used elementary reasoning
to obtain the same answer.

Interestingly, and somewhat perversely, if you increase the number of
factors from 500 to 504, you get a considerably smaller answer, namely
14414400 = 26 · 32 · 52 · 7 · 11 · 13, which, as you can see, has precisely
7·3·3·2·2·2 = 504 divisors. Furthermore, 14414400 has the special property
that it has more factors than any smaller number. Srinivasa Ramanujan
describes a number with this property as highly composite and he states
that he does not know of any method for determining consecutive highly
composite numbers except by trial.

In a lengthy paper (‘Highly Composite Numbers’, Proc. London Math.
Soc. Series 2 XIV (1915), 347–409), Ramanujan provides a table of all such
numbers up to 6746328388800 = 26 · 34 · 52 · 72 · 11 · 13 · 17 · 19 · 23 (10080
factors). We would be very interested to see how much further modern
computer power can extend his results.
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Four Colours Suffice by Robin Wilson
Eddie Kent
Four colours suffice to fill in any map so that neighbouring countries are
always coloured differently. Neighbouring countries are those that share a
section of border; for countries that meet at a point there is no number of
colours that would suffice.

Although the problem as stated was thought of by someone colouring
a map, in fact cartographers have no interest in solving it. The number of
colours used is one of the less interesting things about a map. However, from
the beginning, or nearly so, it was seen to be an intriguing mathematical
problem. Of course it should not hold anyone long. Since it is obvious that
if four colours are actually needed to colour a map then one of the countries
involved must be completely enclosed by three others, it clearly requires
just a little tidying up to prove the theorem.

Robin Wilson has long been fascinated by this problem; I remember his
lectures on the subject even before it finally yielded to Appel and Haken in
1977. He is thus eminently suited to write this book. He easily demolishes
the above argument in the early pages, and then goes on to describe, clearly
and in great detail, every other argument that was made along the way,
giving credit where due to anyone whose work helped the theorem, or indeed
mathematics, forward. Kempe, for instance very nearly succeeded, and it
was only later discovered that all he had proved was that five colours suffice.

But you probably know all this. What you don’t know, unless you’ve
read it, is how good this book is. Clearly it is complete. How could it not
be after Robin’s years of devotion to the subject? But it is also readable,
memorable, and funny. One tiny example concerns Percy ‘Pussy’ Heywood,
the man who wrecked Kempe’s argument. A colleague mentioned to him
that his watch was two hours fast. Pussy denied this, claiming that it was
in fact ten hours slow.

This book came out more than a year ago (in fact it is now in paperback)
and I have only just got around to writing about it because, apart from sheer
laziness of course, I have given it to a few people to read and tell me what
they thought. One of them surprised me by saying “It hooked me from the
beginning. It is technical but still gives you an idea, if not an understanding,
of how and why the proof worked, and even of why earlier ones didn’t. I
had to go on and finish it” And that from a man who watches birds for a
living and is not entirely certain what a mathematic is.

You of course have a very clear idea about mathematics, so you might
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like to know that there is more than one way to read this book. As Henry
said, it is technical, in that every piece of mathematics is expounded with
full rigour. Thus you can read it as a mathematician, in which case you will
need a pencil and paper. Otherwise, if you just want the general drift, and
a reasonable idea of which way things are going, you can read it in bed (my
preferred method). This is perfectly reasonable since no statement is left
unjustified, even if sometimes you have to wait a little for the punch line.
And the pictures help—they are excellent.

The final chapter gets a bit philosophical. What is a proof? How do we
know if it is? There is a scattering of quotations from people on both sides
of the debate about whether a computer can produce a proof, especially if,
as here, there is no way of checking the working. And was Hardy right when
he said there is no permanent place in the world for ugly mathematics? On
one thing just about everybody who has seen this proof is agreed: it is
not elegant. However, people have been hacking away at it since its first
publication, and have succeeded in at least reducing its size. It might yet
one day grow up to be a swan.

The book is completed by a set of notes and references including a
remarkable bibliography, a glossary, a list of significant dates and an efficient
index. Riches indeed.

Freddy’s third function
Colin Davies
In 1950, we had a very pedantic maths teacher called Freddy. At that
stage we had learned how to integrate straightforward polynomials and trig
functions, but not the techniques of integration by parts or by substitution.
So Freddy started his lesson by saying:

There are three types of function. Some can be integrated and
some cannot. An example of the first type is x6 − 5x4 + 6.
That can be integrated, and you can integrate it. An example
of the second type is ex cosx. That can be integrated, but you
cannot integrate it because you are not sufficiently accomplished
mathematicians.

I can’t remember just what Freddy wrote on the board as an example
of the third type of function; I think it involved tanx2, but whatever it was,
Freddy said about it:

That cannot be integrated. Nobody could integrate that. (He
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meant by analytical methods to get a primitive function; Freddy
never told us about numerical methods of integration.)

We then went on to learn about integrating the second type of function;
the third type was never mentioned again. However, I have always wondered
just what Freddy meant when he said that nobody could integrate it. Which
of these did he mean?

1. Nobody can integrate Freddy’s third function because nobody is a
sufficiently accomplished mathematician.

2. Nobody has ever found a function which, when differentiated gives
Freddy’s third function.

3. There is a non-existence theorem about the integral of that function.

Or is there another possibility that I have not thought of?

At the time I wondered: If the reason was number 1, how did Freddy
know how accomplished some other mathematician might be? And anyway,
new mathematics was being discovered every day all over the world. How
did Freddy know that somebody in Montevideo had not worked out how to
integrate his third function the previous day?

I have since decided that the answer is most likely to be number 2, but
that is unsatisfactory because it does not prove that the function cannot be
integrated.

Is there a non-existence theorem for some integrals? Can anybody com-
ment?

Freddy’s classroom was upstairs, and when his piece of chalk got too
short to use, Freddy would first remind us that the path taken by an object
in free fall above the earth would be an ellipse, rather than a parabola,
because the earth was spherical. Then he would ceremoniously cross to
the open window and hurl the piece of chalk out. His object of was to
land it on the ledge over a doorway on the next building, but it usually
landed on the gravel between the buildings. Freddy would then tell us that
it had improved the drainage. I myself never saw Freddy actually land a
piece of chalk on the ledge, so I don’t know what he told the class when
that happened. There were a dozen or so pieces lying on the ledge, so
presumably he succeeded occasionally. However, I was privileged to see him
hit a telephone wire outside. On that occasion, Freddy announced that he
had hit the catenary. He immediately abandoned his prepared lesson and
introduced us to hyperbolic functions instead. Meanwhile, the piece of chalk
had presumably gone on to improve the drainage.
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And now for a little light relief ...
Sheldon Attridge
Most of us would like a bit of recognition for our hard efforts from time to
time. After all, who doesn’t like to be appreciated? Well, I have come up
with a foolproof method for dealing with the problem of ambition based on
the ‘Completeness Axiom’ from which the ‘greatest lower bound principle’
in M203 can be found:

Consider the scenario: You have been considered to be the greatest
mathematician of all time.

And why?

We start with the hypothesis that ‘you are considered to be the greatest
mathematician of all time’, if n people consider this to be true, where n is
an integer greater than zero.

Now, by the greatest lower bound property of such a subset of integers,
this set has a least member, namely 1. It doesn’t matter that it is you
yourself that has considered yourself the ‘greatest of all time’, because 1 is
a member of the set. I mean, how large does n have to be anyway? Splendid.

And now we come on to the cunning bit. As we know, Descartes, of
Cartesian geometry fame, said once, ‘I think I am a turnip, therefore I am
a turnip.’

Of course, the modern form of this can be found in most off-the-shelf
pop psychology books: ‘You are not what you think you are; but, what you
think, you are.’ (How profound.)

So the next stage is to stand in front of the mirror and say to oneself,
‘I am considered the greatest mathematician of all time.’ ‘I am considered
the greatest mathematician of all time.’ ... And so on, by a process of
induction.

Based on the correct reasoning of the first part of our proof, the truth of
this statement won’t be able to resist slipping into your unconscious; and,
before you can say, ‘Gauss stole all his results from ancient cuneiform texts
written by aliens’, your head will no longer get through standard doorways,
and crowds of adulating Royal Society profs and dons will be waiting outside
your home, begging for an autograph.

... And all because of the Completeness Axiom used for the integers.

Question. What’s yellow and is equivalent to the Axiom of Choice?

Answer. Zorn’s lemon.
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Crossnumber
Tony Forbes

Across

3.
(√

(12 across)− 2
)2

5. 4
(√

(8 down)− 1
)2

6.
(√

(11 across)− 5
)2

7. (9 down)2/3

11.
(√

(6 across) + 5
)2

12.
(√

(3 across) + 2
)2

13.
√

(3 down)

Down

1.
(√

(2 down)− 2
)2

1 2 3 4

5

6

7 8 9 10

11

12

13

2. 3 (9 down) 8.
(√

(5 across)/2 + 1
)2

3. (13 across)2 9.
√

3 (7 across)

4.
√

(10 down)
√

(2 down) 10. (4 down)2/(2 down)

Problem 195.1 – Two queens

Two queens are placed on different squares of an n × n chessboard. What
is the probability they ‘attack’ each other?

Problem 195.2 – Six tans

If θ = π/13, prove that

tan θ tan 2θ tan 3θ tan 4θ tan 5θ tan 6θ =
√

13.
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What’s next?
ADF
What’s next in the following sequences?

(i) twins, triplets, quadruplets, quintuplets, sextuplets, septuplets,
octuplets, nonuplets, decuplets, ?, dodecuplets, ?, ?, ?, ?, ?, ?, ...

(ii) Sir, I seek a rhyme excelling
In mystic force and magic spelling.
Celestial spheres elucidate,
But my own feelings can’t relate
...

I am really serious about the second one. If you can determine the rest
of that useful poem, please send it in! In case you haven’t spotted it, the
lengths of the words are 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6, and therefore
in the continuation they must be 2 6 4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9
3 9 9 3 7 5 1 0 5 8 2 0 9 7 .... No, I don’t know of any zero-letter words.

Problem 195.3 – Doublings
Tony Forbes
A positive integer N has the property that the number of digits in 2iN is
given by the sequence

(2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6)

for i = 0, 1, . . . , 11. What is N?

A general problem: Investigate the possibility of identifying a number
by its number of digits and the number of digits in its doublings. Given
n, let Df (n) denote the sequence (d0, d1, . . . , df ), where di is the number
of digits in 2in. How big must f be such that n is uniquely identified by
Df (n)?

From a modicum of experimentation it seems that often f must be
quite large. For instance, I found that for n = 967 you need to go as far as
f = 2538. Thus D2538(n) differs from D2538(967) for all other n, but there
exists an m 6= 967 such that D2537(m) = D2537(967). However, I claim
that the short sequence given above, which is D11(N), contains sufficient
information for you to determine N unambiguously. For a start, N can’t
be 10 because D11(10) = (2, 2, 2, . . . ).
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Letters to the Editor

Platonic solids
Re: Problem 192.3 [Can the regular polyhedra fit one inside the next when
arranged in order of increasing volume?]. I think that each solid can be
fitted inside the next (if the solids are hollow!) but they are not ‘stackable’
in the same way as the Russian dolls. A tetrahedron can be covered by an
octahedron with one triangular face removed—they have the same altitude.
The octahedron can be dropped into a cube with one face removed, as the
diameter of the octahedron is the same as a face diagonal of the cube. The
cube will obviously not pass through one face of the icosahedron—I think
one pentagonal cap must be removed. Similarly, the icosahedron will not
pass through one face of the dodecahedron although there is ample room
inside.

Chris Pile

ADF writes — Will somebody put me out of my misery regarding the
cube and the icosahedron! All I can say is that after spending a long time
doodling with Mathematica I cannot see how to avoid bits of the cube
protruding through the surface. And if it can’t be done, it does not seem
obvious how to orient the cube to minimize the volume of the protrusions.
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M500 191

The problems in 191 all require real mathematics beyond my grasp. But
Tony’s remark that setting something in 11 point instead of 10 point pro-
duces a 21 per cent increase in paper costs isn’t quite right. There is also a
fitting problem of words per line (even when hyphenation is used—breaks
can only be in certain places) and lines per page which means that the figure
will always be a bit over 21 per cent. And that’s when the same font is used.
The new version has a different font, with considerably wider letter spacing
and line spacing than the Times New Roman used in earlier versions. It
is worth noting that Stanley Morison designed Times to be as compact as
possible, so that as many words as possible could be got on to a newspaper
page. I don’t think any other fonts have been designed with this criterion,
at least not as a principal one—except Matthew Carter’s Bell Centennial,
a narrow sans serif font designed specially for telephone directories.

Colin Davies’s ‘eleven plus two = twelve plus one’ question is very bor-
ingly answerable by citing ‘seventy-one plus seven = seventy-seven plus one’
and many similar. But I can’t think of an example involving real respelling
of single words in any language. Jeremy Humphries’s ‘add one w to stall’
question gives ‘stonewall’—anyone who does crosswords would get that right
away. But these are not problems.

Best wishes,

Ralph Hancock

Fruit cakes
ADF

While doing your Christmas shopping imagine that you have to obey every
single notice, price label, advertisement, inducement, special offer, what-
ever, that you come across during your wanderings around the supermarket.
For example, you see a sign which reads ‘Fruit cakes. Now only £3. Save 30p’.
Interpret the ‘Save 30p’ part as an order to be obeyed. So you must spend
£3.00 on a fruit cake. But the notice is still there, so you buy another fruit
cake, and another, ..., until you clean the shelf out. Then you move on to
the next offer: ‘Toilet paper £4.50. Buy 2 get 1 free’. And so on.

Now you have got the idea, we ask: Approximately how much would
you spend?

I did try it once at a largish Sainsbury’s but I ran out of time and had
to stop after spending about £20,000.00.
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Parades and resolvable Steiner systems
Tony Forbes

If you went to this year’s M500 Revision Weekend, you may have witnessed
Professor Donald Preece, dressed in the 18th century uniform of an officer
in the Ruritanian Army, delivering a lecture on combinatorial designs whilst
playing the piano and on several occasions breaking into song. I think that’s
an accurate description of the Saturday guest lecture; if you weren’t there,
you will just have to use your imagination.

Here I would like to follow up on some of the material of Donald’s talk.

You remember that song about 76 Trombones in the Big Parade. (Yes,
I’m afraid we were forced to sing it during the lecture.) One imagines that
every year for a period of 925 years the 76 trombonists march in the annual
‘big parade’ as a neat rectangular array of 19 rows of four. Donald wishes
to answer the question: Is it possible to arrange the parades such that each
triple of trombonists appears together in the same row exactly once? Let’s
be clear about this. Suppose Edwina, Wendy and Felicity are three typical
trombonists. Then the rule implies that there is precisely one parade during
the 925 years when Edwina, Wendy and Felicity will march in the same row.

Before we go on we need a couple of definitions.

First definition. Suppose we have a set, V , of v things and suppose t
and k are integers with 1 ≤ t ≤ k ≤ v. A Steiner system, S(t, k, v), is a set
of k-tuples of elements of V , called blocks, such that each t-tuple of elements
of V is contained in precisely one block.

This is a lot to hold in the mind all at once, so let’s look at a few
examples. When t = 1 the situation is trivial and uninteresting. Thus
{{0, 1, 2}, {3, 4, 5}} is an S(1, 3, 6); it is a set of triples and each single
element occurs in exactly one triple. It is clear that in general an S(1, k, v)
exists if and only if v/k is an integer.
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When t = 2, things are much
more exciting. An S(2, 3, v), is
usually called a Steiner triple sys-
tem, or an STS(v). The sys-
tem is a set of triples, and each
pair of elements occurs in exactly
one triple. In 1853 Jakob Steiner
(the person whose name is asso-
ciated with these systems) conjec-
tured that there exists an STS(v) for
every v ≡ 1 or 3 (mod 6). The con-
dition on v turns out to be necessary,
as a simple calculation shows, and
with a little patience you can ver-
ify that {012} is an STS(3), {012,
034, 135, 236, 146, 245, 056} is an
STS(7) and {012, 345, 678, 036, 147,
258, 057, 138, 246, 048, 156, 237}
is an STS(9). Furthermore, if you
look at the front cover of this year’s
Special Issue of M500 you will see a
picture of an STS(13) (reproduced
on the right), where an element is
represented by a blob and a triple
by an unbroken line consisting of a
circular arc and a straight segment.

The systems with v = 3, 7 and
9, are unique (up to isomorphism)
but there are two distinct STS(13)s.
If you want to construct the other
one, take the Special Issue picture,
remove the four triples that look as
if they don’t belong and add four
new triples to give the thing a nice
13-fold symmetry.

STSH7L

STSH9L

STSH13L

Thus we have proved Steiner’s conjecture for all valid v < 15. How-
ever, the conjecture had already been completely proved in 1847 by The
Rev. Thomas P. Kirkman. Presumably at that time he was unaware of
Steiner’s 1853 deliberations.
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In general, an S(t, k, v) can exist only if(
v − i
t− i

)/(k − i
t− i

)
is an integer for i = 0, 1, . . . , t. (1)

For if you take an S(t, k, v) and remove an element, v0, say, as well as all
the blocks which contain v0, you will end up with a set of (k − 1)-tuples
which form an S(t− 1, k − 1, v − 1).

As t gets larger, the condition (1) becomes more and more restrictive.
When t = 5 only a handful of systems are known, and it is currently a
major unsolved problem of combinatorial design theory to find an S(t, k, v)
system with t ≥ 6 (and v > k).

Second definition. A Steiner system, S(t, k, v), is said to be resolvable if
the blocks can be partitioned into subsets of v/k blocks such that in every
subset each of the v elements occurs once. The additional condition that
must be satisfied is

v ≡ 0 (mod k). (2)

Of the examples given above, the STS(3) and the STS(9) are resolvable but
the STS(7) and STS(13)s are not. The STS(9) has the partitioning

{{012, 345, 678}, {036, 147, 258}, {057, 138, 246}, {048, 156, 237}}.

It appears that the mathematical community has tried to make amends
for the rather unfair naming of Steiner triple systems after someone other
than Kirkman, their true discoverer. A resolvable S(2, 3, v), is known as a
Kirkman triple system, or a KTS(v), and the classic example occurs in a
problem set by Kirkman in the 1850 edition of The Lady’s and Gentleman’s
Diary:

Fifteen young ladies in a school walk out three abreast for seven
days in succession: it is required to arrange them daily such that
no two shall walk twice abreast.

From a careful reading of the puzzle, it becomes evident that the solution
calls for a KTS(15); in other words a resolvable STS(15). Notice that 15
works because both (1) and (2) are satisfied for t = 2, k = 3 and v = 15. I
could give you an actual system but I don’t have a KTS(15) to hand and
anyway I’m sure you will have more fun discovering one for yourself.

Now at last we can get back to the 76 trombonists marching in a 19× 4
array once a year for 925 years. The numbers do add up: there are 925·19 =
17575 rows altogether and each row contains four triples. Hence there are
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70300 triples in all, and that is equal to
(

76
3

)
. Therefore it is possible for

each triple to occur exactly once.

To put it in combinatorial language, we are asking if there exists a
resolvable S(3, 4, 76). In this case the answer is ‘yes’, and indeed there is
nothing special about the number 76. It is known there exists a resolvable
S(3, 4, v) system whenever v ≡ 4 or 8 (mod 12) except possibly for v ∈ {220,
236, 292, 364, 460, 596, 676, 724, 1076, 1100, 1252, 1316, 1820, 2236, 2308,
2324, 2380, 2540, 2740, 2812, 3620, 3820, 6356} (C. Colbourn & J. Dinitz,
The CRC Handbook of Combinatorial Designs).

Observe that resolvability is an important consideration for our 76 trom-
bones, and it is fortunate that both (1) and (2) hold for t = 3, k = 4, v = 76.
If we tried to arrange the marches using an unresolvable S(3, 4, 76), some
of the trombonists would have to occupy two places at once!

That deals with the trombones. The problem is solved. But, as Donald
pointed out, the song goes on to say that the big parade also features 110
cornets. Presumably they march in 22 rows of 5, and, as before, we want
to arrange their parades—this time over the next 981 years—such that no
three cornettists shall march twice abreast.

Again, the numbers work:
(

110
3

)
= 215820 = 981 · 22 ·

(
5
3

)
and the job

can be done with a resolvable S(3, 5, 110). Furthermore, you can check that
both conditions (1) and (2) hold for t = 3, k = 5 and v = 110. Hence there
is no obvious reason why an S(3, 5, 110) should not exist. However, as far
as we (Donald and I) are aware, no such system is known.

According to the Colbourn & Dinitz book, S(3, 5, v)s are rare. The
only known non-trivial ones having v ≤ 200 are for v ∈ {17, 26, 65, 101} but
apart from 65 these systems are of no use for scheduling marching bands
because the resolvability condition (2) fails. And until I go and look it up
I don’t know whether the S(3, 5, 65) is resolvable.

So here are a few things for you to do over the Christmas / New Year
holiday period:

(i) Arrange the walks for the fifteen young ladies.

(ii) Knock a v or two off the list of possible exceptions for S(3, 4, v).

(iii) Find an S(3, 5, 110). Any S(3, 5, 110) will do for a start but if you
can construct a resolvable one, so much the better.

(iv) Given t and k, are there infinitely many v for which (1) holds?

(v) And if you really want to make a name for yourself: Find a non-
trivial S(6, k, v).
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