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Designing table mats

Bryan Orman

This article will examine the design of a table mat consisting of concentric
rings of circular discs. In particular, the table mat will have four rings and
the discs in each ring will just touch their neighbouring discs. An additional
requirement concerns the central disc. Its radius will be as close as possible
to the radius of the discs in the outermost ring.

We consider two possible arrangements for such table mats and these are
shown below. Note that these do not represent the solution to the problem
in that the discs in the outer ring are much larger than the central disc. For
each arrangement we will determine the number of discs in each of the four
rings in order to meet the requirement concerning the radii of the innermost
and outermost discs.

The diagrams on the next page show the specific arrangements for four
rings although in the analysis we will consider n rings, for completeness.
The centre Ck of the disc Dk, k = 0, 1, . . . , n, lies on the radial line LC ,
and the tangent line LA touches the disc at Ak. The radius of the disc Dk

is rk, k = 0, 1, . . . , n, and it subtends an angle 2α at the centre O of the
arrangement.
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From the triangle OA1C1, and also noting that OC1 = r0 + r1, we have

sinα =
r1

r0 + r1
, so that r1 =

r0 sinα

1− sinα
. From the basic quadrilateral

AkAk+1Ck+1Ck we have

sinα =
rk+1 − rk
rk+1 + rk

;

so that

rk+1 =
1 + sinα

1− sinα
rk, k = 1, 2, . . . , n.

Finally, rk+1 = Fk+1(α)r0, with

Fk+1(α) = sinα
(1 + sinα)k

(1− sinα)k+1
.

For our table mat we require r4 = r0; that is F4(α) = 1. If we write
t = (1 + sinα)/(1− sinα), then this requirement reduces to t3(t− 1)/2 = 1,
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or t4− t3 = 2. The Newton–Raphson method gives the solution t = 1.5437.
As sinα = (t− 1)/(t+ 1) = 0.2137, we have α = 0.2154 = 12.34◦.

Now, for an actual arrangement, the angle αN corresponding to N discs
is 180◦/N and so an angle of 12.00◦ corresponds to 15 discs. How close is
the radius of an outer disc to r0?

r4 = F4(α15) r0 = 0.9309 r0.

This discrepancy will not be too evident in an actual table mat.

Will N = 14 be any better?

r4 = F4(α14) r0 = 1.1127 r0.

So there is little to choose between these two cases; one is 7 per cent under,
the other is 11 per cent over. Note that all intermediate calculations have
been performed to six decimal place accuracy and the recorded values given
to four decimal places (and angles in degrees to four figures).

We now examine the second arrangement of the discs.
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Here the centres of the discs alternate between the lines LA and LC , as do
the points of contact of the discs with these lines.

There now appear to be two basic quadrilaterals, corresponding to k
even and k odd, but they produce the same relationship between rk+1 and
rk. Consider the cyclic quadrilateral CkAk+1Ck+1Ak with k even.

O A1

Ak

Ak+1

C1

Ck

Ck+1

Α r1

rk

rk+1

Again we have the triangle OA1C1 giving

r1 =
1 + sinα

1− sinα
r0.

Now OCk = rk cosecα and OAk+1 = rk+1 cotα, and since CkCk+1 = rk +
rk+1,

CkAk+1 =
√

(rk + rk+1)2 − r2k+1 =
√
r2k + 2rkrk+1.

Using OAk+1 = OCk + CkAk+1, we get

rk+1 cotα = rk cosecα+
√
r2k + 2rkrk+1.

This is a quadratic equation in rk+1, namely

r2k+1 − 2rkrk+1(secα+ tan2 α) + r2k = 0,

and the solution we require is the larger one since rk+1 > rk, so that

rk+1 =

(
secα+ tan2 α+

√
(secα+ tan2)2 − 1

)
rk.

Finally, rk+1 = Gk+1(α)r0, with

Gk+1(α) =
sinα

1− sinα

(
secα+ tan2 α+

√
(secα+ tan2)2 − 1

)k
.
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Again we require r4 = r0, that is G4(α) = 1.

There is little point in solving this by the Newton–Raphson method
since αN has to be equal to 180◦/N , as was noted with the first arrangement.
It is far easier to examine the two cases N = 14 and N = 13 since the
packing of the discs in this arrangement will be tighter and so the angle will
be marginally larger, thereby reducing the number of discs in each ring.

If N = 14, then

α14 =
180◦

14
= 12.86◦ and G4(α14) = 0.9276.

If N = 13, then

α13 =
180◦

13
= 13.85◦ and G4(α13) = 1.1182.

As with the first arrangement, there is little to choose between these two
cases; one is 7 per cent under and the other 12 per cent over.

Problem 266.1 – Highly irregular graphs
A graph is highly irregular if it is simple (no loops, no multiple edges),
connected (all in one piece), and for every vertex v, the neighbours of v
have distinct degrees. An example is the 4-vertex path: •−−−•−−−•−−−•. It
is easy to see that simple connected graphs of 1 and 2 vertices have the
property but the triangle and the 3-vertex path don’t.

Show that you cannot have a highly irregular graph of 5 or 7 vertices.
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Solution 262.4 – Rational integral
Suppose that a and b are positive integers and that r > 1 is a
rational number. Show that∫ 1

0

(rb(1− x1/a) + x1/a)1/b dx

is rational.

Tommy Moorhouse
We will use the binomial expansion, repeated here for convenience:

(1 + z)β = 1 + βz +
β(β − 1)

2!
z2 + · · ·+ β(β − 1) · · · (β − k)

(k + 1)!
zk+1 + · · · .

We rewrite the integral as

I(a, b) = r

∫ 1

0

(
1−

(
1− 1

rb

)
x1/a

)1/b

dx

and substitute y = (1− 1/rb)ax (which we shorten to y = Lx) to get

I(a, b) =
r

L

∫ L

0

(1− y1/a)1/bdy.

Integration term by term gives

L− L1+1/a

b(1 + 1/a)
+ · · ·+ (−1)k+1 (1− b)(1− 2b) · · · (1− kb)L1+(k+1)/a

(k + 1)! bk+1 (1 + (k + 1)/a)
+ · · · .

The infinite sum is, after some cancellation

rF (a,−1/b; a+ 1;L1/a),

that is, r times the hypergeometric function of its arguments. This can be
transformed (see Eqn 5.3.9 of [AS]), again after some cancellation of terms
in r, to

Γ(a+ 1)Γ(1 + 1/b)

Γ(1)Γ(a+ 1 + 1/b)

r

L

+
Γ(a+ 1)Γ(−1− 1/b)

Γ(a)Γ(−1/b)

1

rb − 1
F

(
1, 1− a; 2 +

1

b
;
−1

rb − 1

)
,
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where we have used F (α, 0;β; z) = 1. The hypergeometric function with a
negative integer as its first or second argument reduces to a polynomial in
its last argument. The details can be found in [AS, Eqn 15.4.1] and [WW,
Chapter XIV]. The only potentially awkward terms are those like

Γ(−1− 1/b)

Γ(−1/b)

but these cancel down to rational numbers when the property Γ(1 + x) =
xΓ(x) is used repeatedly. This means that the integral I(a, b) is a rational
function of r when a and b are positive integers.

References

[WW] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis
4th ed., Cambridge 1927 (reprinted 1992).

[AS] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Func-
tions, Dover 1972.

Solution 256.2 – Three rational numbers
Numbers p+ 2q, pq2 and 2pq+ q2 are rational. Must p and q be
rational?

Tony Forbes
I can’t remember where it originally came from, but this problem has been
bothering me on and off for some time. Then one day I became enlightened.

Write r = p + 2q, s = 2pq + q2 and solve for p and q by substituting
p = r − 2q in the expression for s to give a quadratic in q,

s = 2(r − 2q)q + q2, or 3q2 − 2rq + s = 0.

There are two solutions:

q =
1

3

(
r + e

√
r2 − 3s

)
, p =

1

3

(
r − 2e

√
r2 − 3s

)
, e = ± 1.

Compute the other number:

t = pq2 =
rs

3
− 2 r3

27
− 2e

27
(r2 − 3s)

√
r2 − 3s.

Since r, s and t are rational
√
r2 − 3s must be rational. Therefore p and q

are rational.
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A functional equation
Tommy Moorhouse
It is well known that certain functions satisfy equations that relate their
values at different points. A famous example, which gives insight into the
behaviour of the function, is the functional equation for the zeta function.
Here we will consider a simple family of functional equations and explore
whether such equations can be solved in terms of elementary functions.

Consider the equation

u(2x) = f(x)u(x),

where we require u(x) and f(x) to be continuous, and we take u(0) = A.
(Functions u that are not defined at 0 can also be studied, but we will not
pursue this here.) We are interested to know whether we can find solutions
for any continuous function f . Clearly in the present case (substituting
x = 0 into the equation) we have f(0) = 1. Iterating, we find

u(x) = Af(x/2)f(x/4) · · · f(x/2n) · · · .

Given any continuous function f with f(0) = 1 we can formally construct
this solution. We denote u in the case A = 1 by Φ[f ], introducing the idea
that Φ is an operator acting on ordinary functions to produce (at least in
some cases) other ordinary functions.

The solution, a function defined by an infinite product, may have inter-
esting properties. You could prove that Φ[fg] = Φ[f ]Φ[g] where f and g are
well behaved in a sense you may wish to explore. It would be interesting to
know whether a closed form exists for Φ[f ] for a given f . As an example
take f(x) = ex. Then we can construct Φ[exp] to find u. You may be able
to deduce the solution by inspection in any case. For now we note (and you
may want to prove this) that Φ[exp] = exp .

A solution looking for a problem Sometimes quite abstract ideas can
be put to use in concrete applications. Here we will consider the following
problem using an idea based on the above.

Problem Prove that
∞∑
k=1

k

2k+1
= 1.

Solution An eigenfunction of the operator Φ is a function f such that
Φ[f ] = f. (We consider here only the case of eigenvalue equal to 1. Can you
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see why?) From above we have Φ[exp] = exp. Now apply Φ again to get

Φ[Φ[exp]] = Φ[exp] = exp .

We can expand these expressions employing a slight notational compromise:

Φ[exp](x) = ex/2ex/4 · · · ex/2
n

· · · ,
ex = Φ[Φ[exp]](x)

= Φ[ex/2]Φ[ex/4] · · ·
= (ex/4ex/8 · · · )(ex/8ex/16 · · · )(ex/16 · · · ) · · ·
= ex/4(ex/8)2(ex/16)3 · · ·

and the result follows. This can clearly be extended to give more complex
sums.

More functions Our second example is the equation

u(2x) = cos(x)u(x).

The solution is proportional to Φ[cos](x). The graph of Φ[cos](x) is sym-
metric about the origin and looks rather like that of the Bessel function
J0(x). The zeros of Φ[cos](x) occur at x = π, x = 2π, x = 2kπ and so on;
and at x = 3π, x = 3 · 2π, x = 3 · 2kπ and so on. These (I think) are simple
zeros.

It is possible to show that

M∏
k=1

cos
( x

2k

)
=

1

2M−1

2M−1∑
n=1

cos

(
(2n− 1)x

2M

)
,

and clearly Φ[cos](x) is, in some sense, the limit of this sum as M → ∞.
It may also be possible to write Φ[cos](x) as an infinite product, but this is
left to the interested reader to investigate.

Conclusion The operator Φ acts on certain functions to produce other
well-defined functions. The reader may feel inspired to explore further.

Problem 266.2 – Snooker without friction
Is it sensible to play snooker on a frictionless table? Assuming it is, devise
a strategy for winning a frame in a finite amount of time.
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Solution 263.4 – Arctan integral
Show that ∫ 1

0

arctan(x2 − x+ 1) dx = log 2.

Richard H. Gould
First integrate by parts, visualising the integrand as 1× arctan(x2−x+ 1).
This gives

I =
[
x arctan(x2 − x+ 1)

]1
0
−
∫ 1

0

x(2x− 1)

1 + (x2 − x+ 1)2
dx

=
π

4
−
∫ 1

0

x(2x− 1)

x4 − 2x3 + 3x2 − 2x+ 2
dx (1)

=
π

4
−
∫ 1

0

x(2x− 1)

(x2 − 2x+ 2)(x2 + 1)
dx

=
π

4
−
∫ 1

0

x

x2 − 2x+ 2
dx+

∫ 1

0

x

x2 + 1
dx (2)

=
π

4
− 1

2

∫ 1

0

2x− 2 + 2

x2 − 2x+ 2
dx+

1

2

∫ 1

0

2x

x2 + 1
dx (3)

=
π

4
− 1

2

∫ 1

0

2x− 2

x2 − 2x+ 2
dx−

∫ 1

0

dx

1 + (x− 1)2
+

1

2

∫ 1

0

2x

x2 + 1
dx (4)

=
π

4
− 1

2

[
log(x2 − 2x+ 2)

]1
0
−
[

arctan(x− 1)
]1
0

+
1

2

[
log(x2 + 1)

]1
0

=
π

4
+

1

2
log 2− π

4
+

1

2
log 2

= log 2,

as required.

Note that in step (1) it was realized that the denominator of the inte-
grand was always positive so could have no real roots. Hence the expression
was the product of quadratic terms. Separating alternate terms then made
the factorization obvious. Finding the partial fractions at step (2) required
the solution of four simultaneous linear equations, which was easily done
using Gaussian elimination, and steps (3) and (4) were just a bit of ‘condi-
tioning’ to avoid making explicit substitutions.

A typical 1960s Further Maths A level question!
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John Davidson
Let

arctan
(
x2 − x+ 1

)
= y(x) (1)

⇒ x2 − x+ 1 = tan y

⇒ (2x− 1)
dx

dy
= sec2 y = 1 +

(
x2 − x+ 1

)2
=
(
x2 + 1

) (
x2 − 2x+ 2

)
⇒ dy

dx
=

2x− 1

(x2 + 1) (x2 − 2x+ 2)
=

1

(x2 − 2x+ 2)
− 1

(x2 + 1)

⇒ y =

∫ (
1

(x− 1)
2

+ 1
− 1

(x2 + 1)

)
dx. (2)

From (2), and recalling that

∫
du

(u− b)2 + a2
=

1

a
arctan

(
u− b
a

)
,

y = arctan (x− 1)− arctanx+ C, (3)

where C is an integration constant. Further, from equation (1),

lim
x→∞

y(x) = lim
x→∞

arctan
(
x2 − x+ 1

)
=

π

2
.

It follows from equation (3) that C = π/2; so in (3)∫ 1

0

y dx =

1∫
0

(
arctan (x− 1)− arctanx+

π

2

)
dx. (4)

Consider
∫ 1

0
arctan (x− 1)dx. Under the change of variable u = x − 1 and

recalling the standard integral
∫

arctanu du = u arctanu − 1
2 log

(
1 + u2

)
,

it follows that∫ 1

0

arctan (x− 1)dx =

∫ 0

−1
arctanu du = − π

4
+

1

2
log 2. (5)

Also,∫ 1

0

arctanx dx =

[
x arctanx− 1

2
log
(
1 + x2

)]1
0

=
π

4
− 1

2
log 2. (6)

Substituting equations (5) and (6) in equation (4):∫ 1

0

y dx = − π

4
+

1

2
log 2−

(
π

4
− 1

2
log 2

)
+
π

2
= log 2. Q.E.D.
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Solution 260.3 – Three dice
In the game Crown and Anchor players bet on numbers 1 – 6
(usually represented by ace, king, queen, jack, crown and an-
chor) and three dice are thrown. If a player has bet x on n, and
n appears i times amongst the three dice, he loses x if i = 0 and
wins ix if i > 0. For an alternative game, we alter the rules.
Now players bet on numbers 1 – 5 and, as before, three dice are
thrown. But if a 6 shows, everyone loses. Otherwise, a success-
ful player wins double the amount, 2ix instead of ix. Analyse
the game and hopefully deduce that it is much less unfair.

Mike Lewis
This problem concerns the dice game Crown and Anchor which is notori-
ously biased in favour of the house. A similar game is played in the USA
and is known as Chuck-a-Luck. The game is played with three dice which
in Chuck-a-Luck are conventional spot dice. Chuck-a-Luck is analysed in
Scarne on Dice [*].

The late John Scarne was an expert in gambling fraud and a consultant
to various casinos, testified before various Federal Commissions, gave lec-
tures to US Army recruits on Dice and Card Cheats, and was a consultant
on the film The Sting.

The book Scarne on Cards is readily available in Britain but my copy
of Scarne on Dice is not and my copy had to be ordered from the USA
via Amazon. It appeared on my Further Reading list at the end of my
Lecture Notes on Probability for an MSc course at the Defence Academy,
Shrivenham. Scarne on Dice was distributed to US Army recruits to warn
them of how they could be cheated.

I will use Scarne’s method of analysis of the game; although it lacks
some formality it is valid. It should be noted that he was not writing a text
book on probability and the intended readership was not maths students
but members of the public.

The Basic Game

The game is played with three spot dice and a layout marked with the
numbers 1 to 6. Players place their bets on the layout and the payout is as
follows.

• Player’s number appears on 1 die: even money.

• Player’s number appears on 2 dice: 2 to 1.

• Player’s number appears on 3 dice: 3 to 1.

In all cases the original stake is returned together with the winnings accord-
ing to the table above. Assume that £1 is placed on each of the numbers.
Three results can occur.

• Three different numbers: bank pays out £3 and takes in £3, bank
gain = £0.
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• A pair, for example, two 3s and a 4: bank pays out £2 on the pair
and £1 on the singleton but takes in a total of £4 from the 1, 2, 5 &
6, bank gain = £1.

• Three of a kind: bank pays out £3 and takes in £5, bank gain = £2.

The total number of combinations that can be thrown is 216. Assume
that in 216 trials all 216 combinations occur once (equivalent to averaging
over an infinite number of trials) and that £1 is placed on each of the
numbers. The total staked over the 216 trials is £1296. The number of
specific combinations in this series of trials will be:

• three different numbers: 120 combinations, bank gain = £0;

• a pair: 90 combinations, bank gain = £90;

• three of a kind: 6 combinations, bank gain = £12.

Bank profit = £102. Percentage profit = bank advantage = 102/1296 =
7.87%.

Tony Forbes Modified Game

The payouts are modified as follows.

• Player’s number appears on 1 die: 2 to 1.

• Player’s number appears on 2 dice: 4 to 1.

• Player’s number appears on 3 dice: 6 to 1.

• 6 is thrown: all lose.

The number of combinations containing a 6 are as follows.

• On 1 die: 75.

• On 2 dice: 15.

• On 3 dice: 1.

Four results can occur.

• Three different numbers: bank pays out £6 and takes in £2, bank
loss = £4.
• A pair, for example, two 3s and a 4: bank pays out £4 on the pair

and £2 on the singleton but takes in a total of £3 from the 1, 2 & 5
bank loss = £3.
• Three of a kind: bank pays out £6 and takes in £4, bank loss = £2.

• The throw contains one or more 6s: bank gain = £5.

The number of specific winning combinations in this series of trials will now
be as follows.

• Three different numbers: 60 combinations, bank loss = £240.

• A pair: 60 combinations, bank loss = £180.

• Three of a kind: 5 combinations, bank loss = £10.

Total bank loss = £430.

The bank gain due to a 6 being thrown is £5 and in the series of trials
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the gain would be 91×£5 = £455. The total profit would be £35 giving the
bank an advantage of 2.31%. This is comparable with European Roulette,
where the advantage is 2.70%.

Grand Hazard

Grand Hazard is an extended version of Chuck-a-Luck played in American
casinos. In addition to the bets and pay-offs described for Chuck-a-Luck
the following bets can be made.

The following bets on the total thrown pay as follows but lose if a triplet
is thrown.

Bet Probability Payout Bank advantage

Total > 10 0.4861 £2 2.78%
Total < 11 0.4861 £2 2.78%

Total is odd 0.4861 £2 2.78%
Total is even 0.4861 £2 2.78%

The remaining bets are as follows.

Bet Probability Payout Bank advantage

4 or 17 0.0139 £60 16.67%
5 or 16 0.0278 £30 16.67%
6 or 15 0.0463 £18 16.67%
7 or 14 0.0694 £12 16.67%
8 or 13 0.0972 £8 22.22%
9 or 12 0.1157 £6 30.56%
10 or 11 0.1250 £6 25.00%

Specific Triplet 0.0046 £180 16.67%
Any Triplet 0.0278 £30 16.67%

The overall advantage to the bank is not less than that for Chuck-a-Luck but
the bank profit will depend on betting patterns. Behaviourist psychology
suggests that many näıve gamblers will bet on the high pay out combina-
tions. To quote Scarne, ‘Play it smart and remember that the higher the
percentage against you, the smaller is your chance of coming out ahead of
the game. The banker is bound to get your money in the long run, but if
you stick to low percentage bets, he’ll have to work longer for it.’

Reference

[*] J. Scarne, Scarne on Dice, 8th revised edition, Wilshire Book Company,
North Hollywood, California, 1974.
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Solution 245.10 – Every other day
Find a simple function F , say, that maps a date to either 0 or
1 such that F (today) = 1 − F (yesterday). This is not just an
academic exercise. Such a function will be very useful in those
situations where the label on the packet says, ‘Take 1 tablet
every 2 days’.

Tony Forbes
We assume you know today’s date but you just cannot remember whether
or not you took a pill yesterday. We may also assume you know the day of
the week. However, unless I have overlooked something obvious, I cannot
immediately see how that helps. Anyway, the function we seek has the form
F (d,m, y) = something mod 2, where d, m and y represent the day, month
and year. After some experimentation I came up with this formula:

f(d,m) = d+ bcos(1.8m+ 1.3)c mod 2.

It assumes there are no leap years, and also that a year has an even number
of days. So it will go wrong probably on 1st January and certainly on the
day after 29th February. A simple fudge is sufficient to address these two
problems properly.

Write c(y) =

⌊
y + 99

100

⌋
, the century to which year y belongs, and define

F (d,m, y) = d+ bcos(1.8m+ 1.3)c

+ barctan(m− 1)c
(⌊

cos2
πy

4

⌋
+
⌊
cos2

πy

100

⌋
+
⌊
cos2

πy

400

⌋)
+
y(y − 1)(y − 3)(y − 6)

8

+
c(y)(c(y)− 1)(c(y)− 3)(c(y)− 6)

8
mod 2.

Thus F (1, 1, 1801) = 0, F (2, 1, 1801) = 1 and the (0, 1) pattern contin-
ues throughout the range of validity of the Gregorian calendar. The third
term obviously takes care of dates from March to December in a leap year.
The last two terms account for the cumulative effect of 365-day years.
Modulo 2 these adjustments go in eight-year and eight-century cycles of
(0, 0, 1, 0, 1, 1, 0, 1).

Q: How can I avoid making mathematical errors?

A: Avoid doing mathematics.
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Solution 264.3 – Determinant
An n × n matrix has a in each entry on the diagonal and b
everywhere else. What is its determinant? For example, when
a = 6 and b = 5 we get

det


6 5 5 5 5 5
5 6 5 5 5 5
5 5 6 5 5 5
5 5 5 6 5 5
5 5 5 5 6 5
5 5 5 5 5 6

 = 31.

Dave Wild
The value of a determinant remains unchanged if a multiple of one row
is added to another row, or a multiple of one column is added to another
column. If we subtract the last row from each of the other rows then most
of the elements in the matrix become zero. If we then add each of the other
columns in turn to the last column, then the only non-zero elements left
occur on the diagonal and in the last row. These transformations are shown
below where c = a− b.

det



a b b . . . b b b
b a b . . . b b b
b b a . . . b b b
. . . . . . . . . . . . . . . . . . . . .
b b b . . . a b b
b b b . . . b a b
b b b . . . b b a


= det



c 0 0 . . . 0 0 −c
0 c 0 . . . 0 0 −c
0 0 c . . . 0 0 −c
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . c 0 −c
0 0 0 . . . 0 c −c
b b b . . . b b a



= det



c 0 0 . . . 0 0 0
0 c 0 . . . 0 0 0
0 0 c . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . c 0 0
0 0 0 . . . 0 c 0
b b b . . . b b a+ (n− 1)b


.

So the determinant equals (a − b)n + nb(a − b)n−1. The example given in
the question has n = a = 6 and b = 5; so the determinant is 1 + 6 · 5 = 31,
as stated.
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Solution 210.1 – Determinant
Compute∣∣∣∣∣∣∣∣

4 a+ b+ c+ d a2 + b2 + c2 + d2 a3 + b3 + c3 + d3

a+ b+ c+ d a2 + b2 + c2 + d2 a3 + b3 + c3 + d3 a4 + b4 + c4 + d4

a2 + b2 + c2 + d2 a3 + b3 + c3 + d3 a4 + b4 + c4 + d4 a5 + b5 + c5 + d5

a3 + b3 + c3 + d3 a4 + b4 + c4 + d4 a5 + b5 + c5 + d5 a6 + b6 + c6 + d6

∣∣∣∣∣∣∣∣ .
Dave Wild
This is an alternative solution to the one given in M500 251. The given
matrix can be written as AAT, where

A =

∣∣∣∣∣∣∣∣
1 1 1 1
a b c d
a2 b2 c2 d2

a3 b3 c3 d3

∣∣∣∣∣∣∣∣ .
Then detA is the Vandermonde determinant and equals (a− b)(a− c)(a−
d)(b−c)(b−d)(c−d). Therefore the determinant of the given matrix equals
det(AAT) = det(A) det(AT) = det(A)2.

The supplementary problem suggested by Tony Forbes [show that∣∣∣∣∣∣
at + bt + ct at+1 + bt+1 + ct+1 at+2 + bt+2 + ct+2

at+1 + bt+1 + ct+1 at+2 + bt+2 + ct+2 at+3 + bt+3 + ct+3

at+2 + bt+2 + ct+2 at+3 + bt+3 + ct+3 at+4 + bt+4 + ct+4

∣∣∣∣∣∣
= (abc)t(a− b)2(a− c)2(b− c)2]

may be tackled in the same manner by setting

A =

∣∣∣∣∣∣
at/2 bt/2 ct/2

a1+t/2 b1+t/2 c1+t/2

a2+t/2 b2+t/2 c2+t/2

∣∣∣∣∣∣ .

Problem 266.3 – Equilateral triangle
There is an equilateral triangle. Point P is at distance a from one vertex
and b from another vertex. What is the largest possible distance P can be
from the third vertex?

Thanks to Dick Boardman for suggesting this problem and for referring
me (TF) to ‘Nick’s mathematical Puzzles’ (http://www.qbyte.org/puzzles/),
number 139, which is essentially the special case a = 3, b = 4.
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Problem 266.4 – Determinants
Tony Forbes
Let ak be the coefficient of xk in the Taylor expansion of (1 + x)

√
1 + 4x:

(x+ 1)
√

1 + 4x =

∞∑
k=0

akx
k

= 1 + 3x+ 2x3 − 6x4 + 18x5 − 56x6 + 180x7 − 594x8 + . . . .

Show that if n is a multiple of 3 and m = bn/2c, then

det


a3+2m−n a4+2m−n . . . am+1

a4+2m−n a5+2m−n . . . am+2

. . . . . . . . . . . .
am+1 am+2 . . . an−1

 = 0.

Observe that the matrix is symmetric with n −m − 1 rows and columns,
the top-left entry is a2 for odd n, a3 for even n, and you get row r+ 1 from
row r simply by adding 1 to the subscripts. For example, when n = 3 the
expression reduces to det[a2] = a2 = 0 whereas for n = 6 and n = 9 we have

det

[
a3 a4
a4 a5

]
= det

[
2 −6
−6 18

]
= 0,

det


a2 a3 a4 a5
a3 a4 a5 a6
a4 a5 a6 a7
a5 a6 a7 a8

 = det


0 2 −6 18
2 −6 18 −56
−6 18 −56 180
18 −56 180 −594

 = 0,

and by developing the series a little further you can verify that

det


2 −6 18 −56 180
−6 18 −56 180 −594
18 −56 180 −594 2002
−56 180 −594 2002 −6864
180 −594 2002 −6864 23868

 = 0,

corresponding to n = 12.

This result is not unrelated to the fact that
you can draw an equilateral triangle whose
vertices lie on a circle of radius 2 and whose
sides are tangent to a circle of radius 1. But
the point of this exercise is to see if there is a
direct proof that does not involve geometry.
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“I’m even scoring in binary!”
Ken Greatrix
At the archery club recently it was our annual indoor competition, consisting
of sixty shots, three at a time on a target with ten rings.

In golf it’s known as ‘the yips’, an involuntary movement causing a bad
shot. We have a similar thing in archery. One of my fellow competitors who
is also a computer engineer had a bad case of this so that when it came to
scoring he called out, “Ten, ten, one.”

Absolutely disgusted with himself he continues: “I’ve worked with bi-
nary, octal and hexadecimal and now I’m even scoring in binary!”

Realizing that he had written ‘10101’ on his score-card, I said, “And it
makes the same score.”

I then wondered if any other scores fitted this pattern, but I was only
able to bring two more examples to mind. If we ignore the conventions of
calling scores in descending order and of recording ‘M’ for a miss then ten,
ten, zero and zero, zero, one also have total scores that look the same when
read as binary numbers.

Are there any other scores that have this property with three shots on
a ten-ring target? What about any number of shots on a target with any
number of rings?

PS. If anyone is really interested – I won the bronze medal.

Life expectancy – the unprofessional calculation
Peter L. Griffiths
The whole life expectancy of 80 years should be compared with the lowest
age for certainty of death say 125 years to give a fraction of 80/125 equalling
0.64, whose shortfall from 1 is 0.36, which is the fraction applied to the
actual present age to be added to the 80 years to give the part life expectancy
at the actual present age for a number of years higher than 80 but less than
125 (80/0.64 = 125).

Age Part life expectancy
0 × 0.36 + 80 80 (whole life)
20 × 0.36 + 80 87
40 × 0.36 + 80 94
55 × 0.36 + 80 100
70 × 0.36 + 80 105
80 × 0.36 + 80 108
100 × 0.36 + 80 116
120 × 0.36 + 80 123
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Solution 262.1 – Binomial ratio
Let r and s be positive integers and suppose m is an integer

other than −2, −1, 0, 1. Show that
ms − 1

mr − 1
and

s

r
are either

both integers or both non-integers. Or find a counter-example.

Ledger White
Let x = mr − 1 then:

ms − 1

mr − 1
=

(x+ 1)(ms−r)− 1

x
=

xms−r +ms−r − 1

x

= ms−r +
ms−r − 1

x
= ms−r +

ms−r − 1

mr − 1
.

The second term is the same format as the original, and therefore it may
be similarly expanded too, and further expansion can be continued with
n = 2, 3, . . .

. . . +ms−nr +
ms−nr − 1

mr − 1
. . .

. . . until s − nr ≤ r. Thus, the original expression can be written as a
sum of a [possibly empty] series of integers ms−nr, n = 1, 2, 3, . . . plus a
final term. If, in the final term, s − nr = r then the final term is 1 and
both (ms − 1)/(mr − 1) and s/r are integers. Otherwise [recalling that
m 6∈ {−2,−1, 0, 1}] the final term is a non-zero fraction in (−1, 1) and they
are both non-integers.

The reverse is true, begin with (s − nr) ≤ r and build the series from
right to left. Wherever you stop both divisions are integers or they are both
non-integers. Thus

928 − 1

97 − 1
= 921 + 914 + 97 + 1

and
927 − 1

97 − 1
= 920 + 913 + 96 +

96 − 1

97 − 1
.

Given the simplicity of this argument I wonder if the answer to the original
problem really is (i) [obviously true]. If not, it is certainly very close!

TF writes. If, like me, you are having difficulty with the meaning of the
word ‘simplicity’, you might like to have a go at the problem on the next
page.
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Problem 266.5 – Binomial ratio revisited
Suppose r and s are positive integers such that r does not divide s. Let
n = bs/rc. Show that for integer m, (ms−nr− 1)/(mr− 1) is not an integer
except possibly when m ∈ {−2,−1, 0, 1}.

M500 Winter Weekend 2016
The thirty-fifth M500 Society Winter Weekend will be held at

Florence Boot Hall, Nottingham University

Friday 8th – Sunday 10th January 2016.

Cost: £205 to M500 members, £210 to non-members. This includes accom-
modation and all meals from dinner on Friday to lunch on Sunday. You can
obtain a booking form either from the M500 web site,

http://www.m500.org.uk,

or by emailing the Winter Weekend Organizer at winter@m500.org.uk.

The Winter Weekend provides you with an opportunity to do some
non-module-based, recreational maths with a friendly group of like-minded
people. The relaxed and social approach delivers maths for fun. And as well
as a complete programme of mathematical entertainments, on Saturday we
will be running a pub quiz with Valuable Prizes.

M500 Mathematics Revision Weekend 2016
The M500 Revision Weekend 2016 will be held at

Yarnfield Park Training and Conference Centre,

Yarnfield

Staffordshire ST15 0NL

from Friday 13th to Sunday 15th May 2016.

We expect to offer tutorials for most undergraduate and postgraduate math-
ematics Open University modules, subject to the availability of tutors and
sufficient applications. Application forms will be sent via email to all mem-
bers who included an email address with their membership application or
renewal form, and are included with this magazine mailing for those who
did not.

Contact the Revision Weekend Organizer, Judith Furner, at email
address weekend@m500.org.uk if you have any queries about this event.
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Front cover One of Bryan’s table mats. See page 1. Observe that the
discs in the outer ring have very nearly the same radius as the central
circle. In this example G(14, π/32) ≈ 0.994689.


