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Upon rotation
Dennis Morris

The nature of a spatial rotation depends upon the nature of the space within
which the rotation takes place.

In 2-dimensional euclidean space, rotation is a repetitive thing whereby
one gets back to the starting point every 360 degrees. Mathematically,
a position in 2-dimensional euclidean space is represented by a euclidean
complex number matrix; the position (x,y) is represented as the matrix

{ v y]E(C, where z,y € R.
—y

Rotation through the angle 6 is accomplished by multiplying this position
matrix by the 2-dimensional euclidean rotation matrix

[ cos 0 siHO}

—sinf cosf

Since cos 0 = cos 2nm & sin 0 = sin 2n7 and these functions are periodic, the
magnitude of the elements in the rotation matrix repeats every 2w. Thus,
when a position matrix is multiplied by a rotation matrix whose angle is
2nm, it moves the position matrix to where it was prior to the rotation. To
put it another way, as € varies, the rotation matrix repeatedly becomes the
identity matrix:
1 0
v

It is important that the trigonometric functions have the same period.
If it were the case that the cosine function repeats every 27 and the sine
function repeats every 3w, then rotation through neither 27 nor 37 would
return the position matrix to its original coordinates; rotation through 6
would do it. If it were the case that the ratio of the repeating periods of
the trigonometric functions was irrational, then rotation would never return
a position matrix to its original position because, as 6 varies, the rotation
matrix would never become the identity matrix. A rotation in the positive
direction can be undone by a rotation through the same angle in the negative
direction because

[ cosf  sinf } [ cos —f  sin —0 }

—sinf cos6 —sin—60 cos—0

_ cosf sin6 cosf) —sin6 _ 1 0
o —sinf cos6 sinf  cosf o 0o 1|
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The key to this is the trigonometric identity cos?6 + sin®# = 1 and the
identities: cos —0 = cosf, sin —f = —sinf. The first of these arises from
the fact that the determinant of the rotation matrix is unity; the second
arises from the symmetry and anti-symmetry of the cosine and sine functions
with respect the sign. In 2-dimensional hyperbolic space (Minkowski space—
time), the position matrix and the rotation matrix are

{x z} where z,y € R, and [

coshf sinh@ ]
y .

sinh® cosh@

The graphs of these hyperbolic trigonometric functions are as follows.

~10

L—-10

These trigonometric functions are not periodic. At no point is the value of
the sinh function equal to zero except § = 0. Thus, the rotation matrix
can never be the identity matrix except at 6 = 0. Hence, multiplication
by the rotation matrix will never rotate a position matrix in 2-dimensional
hyperbolic space back to its own position.

These trigonometric functions are symmetric and anti-symmetric with
respect to the sign of the angle and, of course, the determinant of the
rotation matrix is unity:

sinh@ = —sinh —0, cosh = cosh —0, cosh?# — sinh?@ = 1.

‘We have
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sinh @ cosh6 sinh —6 cosh —60

coshf sinh@ coshf —sinh6 _ 1 0
sinh® cosh® —sinh® coshé o0 1|

{ cosh@ sinh6 ] [ cosh —6 sinh —0 }

This means that rotation in the positive direction can be undone by a
rotation in the negative direction through the same angle. If it were the case
that sinh x = — sinh —2x and cosh z = cosh —2z, then, to undo a rotation in
the positive direction through angle x would require a rotation through 2y
in the negative direction. If it were the case that sinhz = —sinh —3x and
cosh x = cosh —2x, then a rotation in the positive direction through angle x
could not be undone by a rotation in the negative direction alone; rotation
in the negative direction through 6y followed by rotation in the positive
direction through 2x would do it. If the ratio were irrational instead of
2 : 3, then no combination of rotations would ever return to the original
position.

If the only trigonometric functions were the 2-dimensional ones, then
all of the above would be nothing more than light conversation. However,
there are trigonometric functions in all the higher-dimensional spaces. As
hyperbolic angles are very different things from euclidean angles, so the
angles of 3-dimensional space are very different things from the angles of
2-dimensional space—ditto rotations. In the 3-dimensional C3L'H?2-space
(the space of the group C3), a position matrix is

a b c
c a b
b ¢ a

For simplicity, we consider a position with ¢ = 0. The rotation matrix from
such a position will contain the simple trigonometric functions of this space
(which are the compound trigonometric functions when ¢ = 0). (Technically,
this is an erroneous way to do things and we ought properly to use the
compound trigonometric functions; however, to go that way would lead the
reader into a quagmire of mathematics when all we want to do is get some
simple points over.) We have

a b 0
exp 0 a b
b 0 a
e 0 AHg(b) BHg(b) CHg(b) 1 0 0
= 0 e 0 CHg(b) AHg(b) BHg(b) 01 0
0 0 e? BHg(b) CHd(b) AHd(b) 0 0 1
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Normalizing this gives the rotation matrix in which AHs(), BH5(), CHs()
are the three simple trigonometric functions of this space. The graphs of
these functions are as follows, with details near the origin on the next page.

CH3 (x) 80

—20

—40

—60

AH3 (:L')

We do not have the identities of the 2-dimensional trigonometric functions.
In this case

AHs(z) # £AH3(—2), BHs(z) # £BHs(—z), CHj(z) # +£CHj(—2),

as is obvious from the graphs. This is due to the lack of symmetry with re-
spect to sign. That the determinant is unity leads to the analogous identity

AH;3(x)® + BH3(z)? + CHz(z)® — 3AH3(2)BH3(2)CHs(z) = 1.

This will be irrelevant when multiplying two rotation matrices together since
the terms within it will never appear in the product. Obviously and clearly,
a rotation in the positive direction cannot be undone by a rotation through
the same angle in the negative direction. Obvious and clear it might be;
true it is not. Remarkably:
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F2
CHg(SC)
7 . ; ;
AHg(.IJ)
F—1
BH3(J})
AHg(.’E) BHg(SL’) CHg(fE) AH3(—x) BHg(—(L’) CHg(—ZL’)
CHS({L‘) AHS({L‘) BHg(LL') CHg(—l‘) AHg(—.’)S) BH3(—$)
BHg(LI}) CHg(x) AHg(x) BH3(—J?) CH3(—.Z‘ AH3(—LIJ)
1 0 0
= 01 0.
0 0 1
When x = 3 these matrices are
6.57... 6.82... 6.69... —2.54... —0.04... 2.63... 1 0 0
6.69... 6.57... 6.82... 2.63... —2.54... —-0.04...] =10 1 O
6.82... 6.69... 6.57... —0.04... 2.63... —2.54... 0 0 1

And so, a rotation in the positive direction through angle 6 can be undone by
a rotation in the negative direction through the same angle—Gobsmacking!
We have here a 3-dimensional form of symmetry with respect to sign anal-

ogous to the 2-dimensional symmetry but quite different.

Since a large

rotation can be accomplished by a series of infinitesimally small rotations.
The negative rotation follows the same route as the positive rotation (but

in reverse).

Rotations in the positive direction are similar to the case in hyperbolic

2-dimensional space.
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Consider rotations in the negative direction. We have

1 2 3
AHz(z) = ge” + ge_x/Q cos <\/2>x> )

1 x e % 2 f \/3.’17
ge —|— 3 / (\[SlIl( 5 ) — COS <2>> R
CHs () %em — 3¢ e /2 (\[81 (i ) + cos (\/23:1:)) .

These functions are not periodic. The varying amplitude of the periodic
bits as = increases in magnitude and the presence of the non-periodic term
prevents them from being so. The functions BH; and CHj3 are never si-
multaneously zero except at © = 0. Thus, in spite of the wavy character
of these functions when x < 0, a rotation in the negative direction can
never return to its initial position in all three dimensions. It can return to
its initial position in any one of the dimensions, but not all at the same
time. It does this with approximately the periodicity of the periodic term
in the respective trigonometric function. This periodicity is approximately
27/ v/3. Continued rotation in both the positive and the negative directions
maintains the distance from the origin—which it would since the rotation
matrix has determinant unity.

The same does not happen with the compound trigonometric functions.
We have

vA(z,y) = 16x+y + 267(x+y)/2 cos M7
3 3 )
vB(z,y) = Loty | Lo-@rp <\/§Sin V3@ —y) cos V3(x — y)) 7
3 3 9 5
vC(z,y) = lexﬂ/ B 137(I+y)/2 (\/gsin \/§(x —Y) + cos \/ﬁ(x _ y)> )
3 3 9 5
vA(z,y) vB(z,y) vO(z,y)]| [vA(~z,—y) vB(—z,—y) vCO(—z,—y)
vC(x,y) vA(z,y) vB(x,y)| |vC(-z,—y) vA(—x,—y) vB(—z,—y)
vB(x,y) vC(x,y) vA(z,y)| |vB(—z,—y) vO(—z,—y) vA(—z,—y)
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When x = 3 and y = 3, these matrices are

134.5095 134.4597 134.4597| | 13.3912 —6.6944 —6.6944 1 00
134.4597 134.5095 134.4597 | | —6.6944 13.3912 —6.6944| = (0 1 O].
134.4597 134.4597 134.5095 | | —6.6944 —6.6944 13.3912 0 01

But rotation through 67/y/3 does return to the starting point The graphs
of these functions form a 3-dimensional version of the graphs of the simple
trigonometric functions above.

Solutions to Page 21: {Broken Arrow, The Third Man, The Killing Fields, The
Fifth Element, Dr Strangelove, Twelve Monkeys, North by Northwest, Monsters
Inc., Fahrenheit 911, Raiders of the Lost Ark, Short Circuit, Titanic, The Sphere,
Bridge Over Troubled Water, The Simpsons, Fahrenheit 451, A Walk in the Black
Forest, Route 66, Love Minus Zero: No Limit, The Two Towers, The Matrix
Revolutions, Separate Tables, Prime Suspect, 20000 Leagues Under the Sea}

Solution to Colours (page 14): Mensa’s answer: 75—count 15 for vowels, 10 for
consonants. Of course, the correct answer is 60—by mixing paints; purple = blue
+red, green = blue + yellow, orange = yellow + red.
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Solution 223.3 — Factorization

4

For which integer values of d does x* — x — d factorize?

Dick Boardman

All quartics have four roots and can be factorized into four linear factors.
However, the roots may be integer, rational, irrational or complex. I will
consider first the case where one of the roots is integer.

When d =0, 2 —z =z(z — 1)(2® + 2 + 1).

Let g(z) = 2* — x. If z is less than 0 or greater than 1, g(x) > 0.
For 0 < < 1, g(x) is negative and has a minimum with a value about
0.227. Differentiating g(x) shows that it has no other local minimum. Hence
g(z) = d where d > 0 always has two real roots and two complex roots. The
two real roots will have opposite signs.

Consider the set of integers S = {g(n)}, where n is an integer. Then
g(z) = g(n) will always have one integer root at x = n. Furthermore

gl@) — g(n) _

r—n

—14n®+n’z + na® + 2>

Thus when d is a member of the set S, g(x) — d will always factorize into a
linear term and a cubic polynomial with integer coefficients.

Suppose d is an integer not in S, d > 1. Let SP be the set of integers
{g(n) : g(n) > 1}. If d is not in SP, it must lie between two consecutive
members of SP. That is, g(m) < d < g(m + 1). However, g(z) — d is
negative for x = m and positive for x = m + 1 and is strictly increasing for
m < x <m+ 1. Hence g(x) = d has a positive root between m and m + 1
and it cannot be an integer. Similarly, by defining a set of integers SM =
{g(n) : g(n) < 0,n € Z}, it can be shown that g(z) — d cannot have an
integer negative root. Thus g(x) = d can be factorized into a linear factor
and a cubic polynomial with integer coefficients if d € S and not otherwise.

We now consider the case where d is a rational number a/b, where
—M < a< M and 0 < b < N and the fraction (possibly improper) is in its
lowest terms. Call the set of these numbers R. This is a finite set with less
than M N members and no duplicates. Arrange the members in increasing
order and number them 1,..., K, K < MN.

Now consider the set G = {g(n) : n € R}. By the same argument,
g(z) — d can be factorized into a linear and a cubic polynomial with rational
coefficients which are members of R if d is a member of G. If d is rational
and its numerator and denominator are less than M* and N* but is not a
member of G it cannot be so factorized.
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Mathematics in the kitchen — V
Tony Forbes

Following the trend we started in M500 188 and continued in one or two
further M500s since then, here’s another experiment that you can perform
with materials available in any reasonably well-equipped kitchen.

You will need a heavy saucepan lid, the heavier the better. It should
have a generous rim (the part that fits inside the saucepan) the bottom of
which forms a perfect circle. It must have rotational symmetry, including
the handle, and, ideally, be made out of stainless steel. To give you some
idea of what I have in mind, go to your local department store and inspect
the largest item in the STELLAR range of cookware.

You will also need a perfectly flat kitchen worktop. If yours is of the
currently fashionable type, where there is an outer covering of ceramic tiles,
the experiment won’t work very well, and you will need to get it replaced
by a basic worktop made of plastic-covered chipboard. Failing that, a solid
1m x 1m x 5cm block of platinum will do.

Now for the experiment. This is really simple. Hold the saucepan lid
right-way up but at an angle of about 30 degrees to the horizontal. Give it
a spin and let it drop on to the worktop.

Under the right conditions you might observe the following interest-
ing behaviour. At first the saucepan lid performs some ungainly spin-
ning/rolling motion around the worktop. But after a few seconds, the thing
reverses its direction and then settles down to a steady slow rotation (about
%W/SGC in my case) on which is superimposed a kind of wobbly vibration
component. This continues for some time during which, as gravity exerts
its influence, the amplitude of the vibration decreases but its frequency in-
creases. While all of this is going on the saucepan lid continues to rotate
at the same steady rate in the direction opposite to its original spin. Even-
tually a climax is reached and the noise becomes unbearable to anyone else
who happens to be in the kitchen. The saucepan lid then comes to a sudden
halt and all is quiet again.

Needless to say, I am utterly amazed. Please write to us if you can
explain what is going on.

You are advised to issue yourself and any spectators with suitable ear
protection. Also you should clear the area of anything breakable. And, as
usual, we ask you not to perform the experiment if you are unwilling to take
responsibility for accidents.
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Pascal’s triangle revisited revisited

Sebastian Hayes

Thanks to Martin Hansen (M500 221) for a ‘back to basics’ article ‘Revis-
iting Pascal’s triangle’ and the charming formula.

The problem with Pascal’s triangle—known centuries earlier to the
melancholy hedonist Omar Khayyam and earlier still to the Chinese—is
to connect up the formula for a particular entry with the binomial coef-
ficients. As Martin Hansen says, it is most annoying that the r in "C,
does not, in the customary notation, refer to the row but to the column.
Also, the stylish n!/((n — r)!r!), which has now almost invariably replaced
nn—1)(n—2)...(n—r+1)/r!is offputting to the beginner and does not
demonstrate the relation between permutations and combinations.

In my experience as a teacher, it is fairly readily grasped by the beginner
that, if we are selecting r (distinguishable) objects from a store of n objects,
there are n ways to choose the first object, only n — 1 ways of choosing the
second object (since one object has already been selected), and so on. One
is tempted to end with (n — r) but we must have r items and the first
slot can be filled in n = n — 0 ways, so the last bracketed expression is
(n—(r—1)) = (n—r+1). Thus the formula n(n —1)(n—2)...(n—r+1)
for the total permutations of r objects taken from a pool of n objects with
1 < r < n. This can be checked for simple cases, for example when we take
the whole lot giving n(n — 1)(n — 2)...(n — n 4+ 1) = n! permutations as
expected and when we only take a single object with n...(n—1+1) =n
ways of doing just this.

The next step is to argue that, for any r objects taking them all, there
are r! permutations but only one selection (since the same objects are
present each time). Confusingly, mathematicians call this a combination—
even though in the case of a ‘combination’ lock the order of the digits is im-
portant. We conclude that the rapport total number of permutations : total
number of combinations is r! : 1. So to reduce the number of permutations
to the number of combinations we divide by r! giving us the time-honoured
formula n(n—1)(n —2)...(n—r+1)/rl. This is how old-fashioned algebra
books, such as those by Crystal or Hall & Knight introduce the topic of
combinations. The relation to the expansion of

(a+d)" = (a+b)(a+b)(a+b)...(a+Db) (n brackets)

becomes clear once we realize that the number of times a” comes up is the
same as the number of ways of selecting r things from n.
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The triangular representation of the binomial coefficients is picturesque
and so ingrained now that it will probably never be changed. But it does
not generalize readily to formulae for the triangular, tetrahedral and higher-
order numbers because each set starts one step behind the previous one, as it
were, and this throws out the reckoning. A much more logical representation
is the following.

3 4 ) 6
1 1 1 1
3 4 5 6

6 10 15 21
10 20 35 56
15 35 70 126
21 56 126 252

O T T O e =
O T W N - N

UL W N

Thus "X, o =X, with ¢ = 1,2... and r = 1,2,... fixes any entry.
The Rule of Formation is given by

chJrl = CX'/‘ + c_er+1; ch =1

Take 56 in the bottom row above. It is in the fourth column and sixth
row. We have 56 = 4 X = * X5 + 23X = 35 + 21.

Applying this across the board means that to sum any column up to
and including the entry in the rth row we simply move across one space.
(This is the case because all entries in the first row are the same, namely
1.) For example,

56 = 35421
20 4 15 + 21

10+10+15+21
446+10+15+21

= 1+3+6+10+15+21 = » %X,

“Hey, how many people do you need to have in a room to guarantee the
chance that at least two of them would have the same birthday?”

“I don’t know. Three hundred sixty-four.”

“Ha! Twenty-three. At least two out of every twenty-three people will
have exactly the same birthday. Statistical odds. A lot of life is coinci-

dence. —The Kills by Linda Fairstein [sent by JRH]
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The class number and Wilson’s theorem

Paul Jackson

Using Wilson’s theorem we have (p — 1)! = —1 (mod p), and there are
an even number of elements in the group Z; of integers modulo p under
multiplication; so we can rewrite the left-hand side as a product of squares,
12.22.32..... ((p — 1)/2)?s, by pairing up each element with its additive
inverse, where s = (—1)(»~1/2_ Then, equating with —1, we have in general
((p—1)/2)")? = —s (mod p); thus when p = 4n + 1, —s = —1, and when
p=4n—1, —s = 1.

Now for the former case we already know that square roots of —1 exist,
there will be two of course, and so we can evaluate ((p — 1)/2)! for odd
primes p = 4n+ 1. For the other case, however from looking at small values
it appears that there is no obvious pattern to the value of ((p—1)/2)! when
the prime has the form 4n — 1.

In general, (((p—1)/2)!)? is the product of non zero quadratic residues,
and for a prime of the form 4n — 1, which we call g, this is congruent to 1.
We reduce these squares modulo ¢ to lie in the interval [1,¢—1] and call this
set @, and we know that these all have distinct magnitudes; that is, they
do not form pairs that sum to zero, as we have for the quadratic residues of
primes of the form 4n + 1. So if in @) we replace all those elements x that
exceed (¢ —1)/2 by x — ¢ we have the set Q’. But by group properties these
will have the same magnitudes as the complete set 1,2,...,(¢ — 1)/2, the
product of which we wish to find.

For example, working modulo 11, we have Q@ = {1,4,9,5,3}, and
Q' ={1,4,-2,5,3}, and we see that each element in @’ takes a magnitude
the range 1 to 5. Now of course in general @) is a group under multipli-
cation, hence each element has an inverse; so the product of the elements
is congruent to 1, so our problem is equivalent to counting sign changes,
or counting the number of elements of @ that exceed (¢ — 1)/2. Also we
only need the information about whether there is an odd or even number of
negative signs. How are we to do this? In the above example, to transform
Q into Q" we only need to subtract 11, and in the general case we will need
to subtract g an appropriate number of times. But we know that the sum
of the elements of () and hence Q' is congruent to zero modulo q.

So if we denote the sum of the elements of @, as X(Q), and the sum of
the elements of Q' as X(Q’) then, putting X(Q) = mp and X(Q’') = np, we
suspect that if we knew the parity of m, the parity of m — n, would follow,
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and the problem would be solved!

We next observe using the example above that 3(Q) = 1+9+4+3+4+45 =
22, and 2(Q')=1-243444+5=14243+4+5-2-2=11, and it
is easy to see that this will work in general. Let T'(n) be the nth triangle.
We can define the value of T'(n) when n = (¢ — 1)/2 as T((¢ — 1)/2), and
so as we found above for ¢ = 11, T'(5) — 2 - 2 = 11 or, generalizing under
modulo ¢, T((q — 1)/2) — 2e = 2(Q’). But 2e is always even; so 2(Q’) and
T((q¢ — 1)/2) must share the same parity. Here, e is defined as the sum of
the magnitudes of non-quadratic residues we must replace in () when we
perform the reduction. Further, 3(Q') =0 (mod q); so T((¢ —1)/2) and 2e
are in the same congruency class. Thus we know the parity of n.

Now the value of m is given by the function L(q) = (¢ — 1 — 2h(q))/4,
where h(q) is the class number of the quadratic field Q(y/—¢). This formula
is from Kenneth Ribet’s article, ‘Modular forms and diophantine questions’
at http://math.berkeley.edu/~ribet/Articles/icfs.pdf. So the function L(q)
for ¢ = 3 (mod 4) depends on the class number, h(g), and so the solution
to this problem is connected to uniqueness of factorization of integers in
Q(v/—q). Also L(q) = £(Q)/q = m, so we would know the parity of m,
and as we know the parity of n, given by T'((¢ — 1)/2) — 2e = nq, we can
compute the value of ((¢ — 1)/2)! modulo odd primes gq.

We could write this explicitly, by observing the following: as ¢ is odd,
ng and n share the same parity, which is also the case for 3(Q’) and T'((¢ —
1)/2). Thus n and T'((¢ —1)/2) have the same parity, and as T'((¢—1)/2) =
(¢*> —1)/8, we can put

(3(g—1) = (-1)°, where ¢ = §(¢° — 1) + L(q).

We further observe that this can be simplified, depending on the quadratic
character of 2, as (2/q) = (—1)°, where b = (¢> — 1)/8. Hence

(~1)E@ if (2/q) = 1,
(—LEOH i (2/q) = — L.

—
[NIESSIES
—
[}
|

—_
~—
=

11l

Thus we have a surprising connection between Wilson’s theorem and the
class number: even a seemingly trivial problem can have unexpected depths.

Reference

K. A. Ribet, Modular forms and diophantine questions, Challenges for the
21st Century (ed. L. H. Y. Chen et al.), World Scientific, Singapore 2001.
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Problem 225.1 — Toroidal planet
Tony Forbes

There is a planet which, rather than being a spherical object, has the shape
of a (solid) torus. You are standing somewhere on its innermost circle.
Depending on the parameters of the torus, do you stay attached to the
ground, or do you drift upwards, attracted towards the rest of the planet
arched out above you?

I was going to add the condition that the material of which the planet
is made has uniform density, but I now think this is not necessary. In
keeping with real life, as on Earth, for instance, all you can assume about
the planet’s density is that it is constant under rotation about its main axis
of symmetry.

Thanks to Robin Whitty for communicating this problem to me.

There’s a picture of a torus on the front cover of M500 204.

Problem 225.2 — Eighth powers

For what values of m is 16 an eighth power modulo m?

Problem 225.3 — GCD

Compute ged(n! + 1, (n 4+ 1)), where n is a positive integer.

Problem 225.4 — | choose a number
Tony Forbes

I am very generous. I choose an integer X, 1 < X < oo. You choose an
integer, Y. If Y < X, I give you £Y. If Y > X, I give you £0. The offer is
available once only.

How best do you take advantage of my generosity?

Colours
I (TF) found this in a list of problems published by Mensa.

Purple is worth 70 points, green is worth 60 points and red is
worth 35 points. How many points is orange worth?

It shouldn’t give you too much trouble. But be surprised when you look up
Mensa’s answer on page 7 of this issue.
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Tarts
lan Adamson

There are N tarts, all the same weight except one, which is
a little heavier or a little lighter than the others. It is well
known that n weighings are sufficient to find the faulty tart
when N = (3" — 1)/2, and sometimes it is also possible to tell
whether the faulty tart is light or heavy. Recall that ADF asked
a good question at the bottom of page 20 in issue 222: Are there
any n for which we can always determine the relative weight of
the bad tart amongst (3™ — 1)/2 tarts in n weighings?

The performance of n weighings appears to give a results space of 3" pos-
sibilities.

However if the weighings are (obviously) designed to give a result then of
these 3™ possibilities, two will never occur as they would imply impossible
situations (a tart being in more than one state of heaviness, lightness or
goodness—or more than one tart being faulty) and one possibility won’t
occur unless all the tarts are good. Thus all m tarts must be weighed and
solution space is 2m =3" -3 = m = (3" —3)/2.

However if only the faulty tart is required and not whether it be heavy or
light then one tart need not be weighed and solution space is 1+2(m —1) =
3" —2 = m=(3"—1)/2. (If the faulty tart is weighed then its heaviness
or lightness is given whether or not we want to know.)

Geometers (does not that include all of us?) might like to note that if
for each weighing we write +1, — 1, 0 as the right pan ascends or descends
or neither respectively then we obtain coordinates of the cells of an n-cube.

If all the weighings are designed in advance then (0,0, ...,0) is the cell
representing the situation where all tarts are good and +(e1, €9, ..., £, ) where
g; € {—1,+1} are the cells representing the two impossible situations. The
remaining 3" — 3 cells represent respectively the fact that one of the m or
m — 1 weighed tarts is faulty; +(eq1,é9,...,&,) gives a specific tart and the
sign shows its heaviness or lightness.

Useless of course!

An 82-year-old prostitute nicknamed Grandma was freed after being caught
soliciting a client on the street in the red light district of Taipei City. Tai-
wanese police said that she was in good physical shape and with light make-
up could easily pass for a 70-year-old. [Sent by Eddie Kent]



Page 16 M500 225

Solution 202.3 — The puzzled hotelier

A hotelier told me that the rooms on the first floor had consec-
utive 3-digit numbers, beginning with 1, starting at 101. “They
were,” he said, “off four corridors forming a square and ordered
so that the sums of pairs of numbers of adjacent rooms were all
primes.” He told me how many rooms there were (on the first
floor) and I countered, “There couldn’t have been fewer.” What
number did he say?

[This is one of a number of items that have lain dormant for a long time
waiting for right moment for someone to have a go. Indeed, the solution to
this one is appearing after an interval of nearly four years. It just goes to
show that it’s never too late to tackle an M500 problem.]

Steve Moon

This is one solution, for 24 rooms, but I suspect there are others.

223 211 229 223 211

239 120| 103 | 108 | 121 | 102 | 109 233
119 124
223 241
104 117
227 223
123 106
239 211
116 105
223 223
107 118
229 229
122 111
223 101| 110|113 | 114| 115 112 223

211 223 227 229 227

Each adjacent pair sums to one of the following primes: 211, 223, 227, 229,
233, 239, 241.

The total number of rooms must be a multiple of four. Twenty rooms
cannot work, because the first two rooms only sum to a prime with one
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other number in the range 101-120:

101 + 110 211
102 +109 = 211.

With 24 rooms, there are two combinations with rooms 101, 102, 103
that sum to a prime. The solution must contain the following components.

- 110 - 101 - 122 -~
- 109 - 102 - 121 -~
- 108 - 103 - 120 -

Then I put these fragments into a bipartite graph with odd and even num-
bers as the two sets, and I tried to construct a cycle.

102 104 106 108 110 112 114 116 118 120 122 124
l O 3 L o 77,. ’ 7_:.

101 103 105 107 109 111 113 115 117 119 121 123

Having worked out all the combinations of rooms in the range 101-124 which
give primes, I thought this would help—but there are too many. Hence my
solution by ‘trial and error’. I cannot be sure that it is unique.

Problem 225.5 — Pythagorean triangles

2

Find right-angled triangles with integer sides z, ¥y, 2, 22 = z? + 32, such

that z and x + y are squares.

The problem was posed by Fermat to Mersenne in 1643. So it shouldn’t
give you too much trouble, assuming Fermat did actually have a triangle or
two in mind. However, I (TF) do not know whether Mersenne succeeded in
finding any solutions.
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Problem 225.6 — Triangulations

Given a triangulation T of a set of points in the plane, show that any other
triangulation of the same set of points can be obtained from 7 by a sequence
of flipping operations.

A triangulation of a set of n > 3 points in the plane is a set of 3n — 6
lines, where each line joins two points, and the whole plane is partitioned
into triangles. The lines do not have to be straight and we are flexible as to
what is a triangle: it is just a set of three points joined together by three
non-crossing, continuous but not necessarily straight lines. And don’t forget
that the infinite part of the plane must also lie inside a triangle.

A flipping operation works like this. Choose any line. Then it will

necessarily be the common border of two triangles, ABC and ABD, say.
Remove the line AB and add a new line joining C'D. Like this.

N

A D A D

Thanks to Stefanie Gerke of Royal Holloway College, London for the
idea behind this problem.

Problem 225.7 — Cubes
Tony Forbes

Find non-negative integer solutions of

(a+b)a+c)(b+c)—a® b - = d°

Here are a few to get you started,
{1,79,92,2}, {4,17,31,2}, {10,10,32,2}, {35,875,1143,3},

but what we really want is a general pattern of some kind.
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The speed of dark

Tony Huntington

Eddie Kent dropped another of his ‘innocent’ questions at the end of his
piece on Russell’s Attic (M500 222) when he asked: “What is the speed of
dark?”. My first thought was that this was actually a trivial problem:—

Let ¢ (pronounced “see”) be the speed of light, then ¢ (pronounced “not
see”—because it’s dark) is the speed of dark. Assuming that dark is the
opposite of light then

Multiplying through by é:

hence

¢ = +v—0 = i-V0.

This is a very satisfactory outcome as its physical interpretation is that
the speed of dark is purely imaginary and has a magnitude equivalent to
the square root of nothing at all!

My smugness at this neat solution was short-lived when someone pointed
out that my fundamental assumption (that dark is the opposite of light) was
open to challenge. In what way are they opposites? Light has properties
such as intensity and colour. Does dark have equivalent inverse properties?
What does the equivalent of a beam of light look like (assuming that you
can somehow ‘see’ dark) in the dark world? Does dark have the same wave-
particle duality as light? I haven’t found satisfactory solutions to any of
these questions, but I do have a new gadget which should be of use. It’s
the latest SATNAV and it has a ‘Square One’ button. When you push this
button, the SATNAV shows you the most direct route back to square one.
Follow me ....

And a closing anecdote on the topic of light and dark, which unfortu-
nately is totally true .... I was once in a shop in Dubai attempting to buy a
pair of sun glasses. I didn’t find anything that I liked, but the salesman was
determined not to let me out of the shop without relieving me of the burden
of my cash. In desperation he finally showed me a pair of spectacles with
clear plastic lenses. When I pointed out that they were not much use as
sun glasses, he remarked that they would be ideal for that service at night!
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The Ten Commandments of OU mathematics
Martyn Lawrence

Thou shalt answer the questions that are verily set out in the exam paper,
and not the ones that thou wouldst prefer to answer.

Whatsoever thou dost to one side of an equation, do thou also to the
other side. Dividest thou not by zero, lest the locusts of indefinability
are plagued upon thee.

Thou shalt use thy common sense (!) when thou hast derived an answer,
else thou wilt have olive trees 9,000 cubits high. Yea, even fathers younger
than sons.

Thou shalt not covet thy neighbour’s solutions, verily in pain of being
called a cheat.

Thou shalt be wary of the teachings of false prophets, particularly past
students from the same course who claim to know all about Integration
or Eigenvectors.

When thou knowest not, and thou art totally stumped, thou shalt consult
with course colleagues on the internet and, if thy search still elude thee,
thou shalt consult thine Almighty Tutor—assuming thou hast knowledge
of the particular combination number of his personal telephone apparatus
(and he’s not down the pub!).

The scribing of a correct answer in an assignment proveth not that thou
hast solved the problem successfully, as lack of working upon thy tablet
convinceth not thy doubting Tutor, and he shall diminish thy marks
accordingly.

Thou shalt reflect upon thy youth, and recall how easy study was in
those days before Adding-Up begat Sums, Sums begat Arithmetic, and
Arithmetic begat Mathematics. Fear not the Day of Judgement, nor thy
Exam, whichever cometh the sooner.

Should thou fail totally to work out a solution, thou shalt check to see
that thy Study Unit bear not false witness; or is possibly even telling
porkies. Hast thou checked the errata in the errata?

Thou shalt learn, read, scribe and speak in the many tongues of Mathe-
matics, all the days of thy life, so that Grade 1s and 2s shall surely follow
thee unto and beyond graduation.
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Page 21

A friend of mine in the legal profession told me to avoid the word ‘dingbats’
to describe these things—possibly that name is jealously guarded by some-
one. Anyway, see how many you can get before looking up the answers.
Films, TV, books, songs. Answers elsewhere in this issue.

N =561 vyt =l
3V =3 (mod N) -

o aree| VuXu 4V
UBs | 00-315° ) Oly vy, =0

946 320 |59 . 76  {12. \<
-13%3.17-19-23-29.
3141475071 021

C
20000/ 2321°C 4831°C
€ h g xxxx yyy
II.L'I yyyyy
il yyy
d
(6, a, ha a, b7 g)
£500 £500 £500 £500 £500 £500
8.124038404635960360. . . £500 £500 £500 £500 £500 £500

b
/ f(:v)dxmbga(f(a)+4f<a;b>+f(b)) g d d
[cosa Sina} |:COSB sinﬂ] u T

e o d
sina cosa sinf - cos 3 s 0, Ph.D.
-

1x2=22x2=4, 3x2=6,...

0 Alim(V — 0)

1x3=3,2x3=6,3x3=9,...
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