
* ISSN 1350-8539

M500 268



The M500 Society and Officers

The M500 Society is a mathematical society for students, staff and friends of the
Open University. By publishing M500 and by organizing residential weekends, the
Society aims to promote a better understanding of mathematics, its applications
and its teaching. Web address: m500.org.uk.

The magazine M500 is published by the M500 Society six times a year. It
provides a forum for its readers’ mathematical interests. Neither the editors nor
the Open University necessarily agree with the contents.

The Revision Weekend is a residential Friday to Sunday event providing re-
vision and examination preparation for both undergraduate and postgraduate
students. For full details and a booking form see m500.org.uk/may.

The Winter Weekend is a residential Friday to Sunday event held each January
for mathematical recreation. For details see m500.org.uk/winter.htm.

Editor – Tony Forbes

Editorial Board – Eddie Kent

Editorial Board – Jeremy Humphries

Advice to authors We welcome contributions to M500 on virtually anything
related to mathematics and at any level from trivia to serious research. Please
send material for publication to the Editor, above. We prefer an informal style
and we usually edit articles for clarity and mathematical presentation.



M500 268 Page 1

Primes, sums of two squares, and palindromic con-
tinued fractions
Roger Thompson

Introduction

Every prime p of the form 4N + 1 can be expressed as the sum of two
squares. Here is a very fast algorithm for calculating these squares.

Find a prime q that is not a quadratic residue of p, i.e. q2N ≡ −1 mod p.
Let x = qN mod p. If x > p/2, then set x := p − x. If x2 + 1 = p, we are
finished, otherwise iterate the steps involved in calculating gcd(p, x).This is
done as follows: Let A = p,B = x. Set C := A mod B,R := (A − C)/B.
Set A := B,B := C, and repeat until A <

√
p. Then A2 +B2 = p.

Example: p = 193, so that N = 48. The low-
est q that is not a quadratic residue of p is 5. Now
5N ≡ 112 mod p, so we use x = 193 − 112 = 81.
At the entry marked with ****, A <

√
193. This

occurs at row K say, so denoting AK = A,BK = B
at this point, we find A2

K +B2
K = 122 + 72 = 193.

However, if we carry on to the conclusion of the
gcd calculation, i.e. when B = 1, we notice that
the sequence of R values is palindromic.

A B R
193 81 2
81 31 2
31 19 1
19 12 1
12 7 1 ****
7 5 1
5 2 2
2 1 2

By definition, the continued fraction for 81/193 is [2, 2, 1, 1, 1, 1, 2, 2].
Perhaps surprisingly, the continued fraction for BK/AK = 7/12 is [1, 1, 2, 2],
and the convergents for the continued fraction [2, 2, 1, 1] are 1/2, 2/5, 3/7,
5/12, with the denominators of the last two convergents being BK and AK .

To discover how the above algorithm works, we need to explore the
properties of palindromic continued fractions.

Palindromic continued fractions and the algorithm

Denoting the nth partial quotient (starting from n = 1) by an and the
nth convergent by rn/sn, we will use the following standard properties of
continued fractions:

rn−1sn − rnsn−1 = (−1)n,

rn = anrn−1 + rn−2,

sn = ansn−1 + sn−2.
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We first look at concatenating two continued fractions. Let

[a1, a2, · · · , an] =
rn
sn
, [b1, b2, · · · , bn] =

tn
un
.

Then by replacing partial quotient an with an + tn/un, we find that the
concatenated continued fraction [a1, a2, · · · , an, b1, b2, · · · , bn] is(
an +

tn
un

)
rn−1 + rn−2(

an +
tn
un

)
sn−1 + sn−2

=
un(anrn−1 + rn−2) + tnrn−1
un(ansn−1 + sn−2) + tnsn−1

=
unrn + tnrn−1
unsn + tnsn−1

.

Next, we look at the continued fraction [an, an−1, · · · , a1], where
[a1, a2, · · · , an] = rn/sn. Since sn = ansn−1 + sn−2, we have

sn−1
sn

=
1

an +
sn−2
sn−1

.

We repeat for sn−2/sn−1 etc. Finally, s1/s0 = a1 + s−1/s0 = a1 since
s0 = 1, s−1 = 0, so s0/s1 = 1/a1, giving [an, an−1, · · · , a1] = sn−1/sn.
Substituting into the concatenation expression derived above, we have

[a1, a2, · · · , an, an, an−1, · · · , a1] =
rnsn + rn−1
s2n + s2n−1

=
x

p
,

say (not entirely arbitrarily)! We have

x2 + 1 = r2n−1s
2
n−1 + r2ns

2
n + 2rn−1snrnsn−1 + 1

= (r2n−1 + r2n)p+ 2rn−1snrnsn−1 − r2ns2n−1 − r2n−1s2n + 1.

Using rn−1sn − rnsn−1 = (−1)n and some messy algebra, all but the first
term cancel out, leaving x2 +1 = (r2n−1 +r2n)p, and of course s2n + s2n−1 = p.

We have shown that palindromic continued fractions give rise to x and
p with the right properties, but we need to show that for x and p to have the
right properties, the corresponding continued fraction must be palindromic.
This is very straightforward. A necessary (but not sufficient) condition for
a, b with a < b, where a2+b2 is prime, is that gcd(a, b) = 1. All we therefore
have to show is that it is possible, for any such a and b, to construct a
continued fraction with sn−1 = a, sn = b. This is easy, for we have already
done it. Namely, take the continued fraction for a/b and reverse the order
of the partial quotients.
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It should also now be apparent why x was constructed as it was. By
construction, x = qN mod p, where q2N ≡ −1 mod p, so x2 + 1 is a multiple
of p, and from above, we now know what that multiple is. In our example,
rn−1 = 3, rn = 5, so x2 + 1 = 6562 = (32 + 52)193.

Next, we have to show how sn, sn−1 turn up as A,B entries. From the
definition of the A, we have An−1 = AnRn−1 +An+1. If we remap the order
of the A so that n+ k → m− k − 1, we have Am = Am−1Rm +Am−2, the
relationship for evaluating a continued fraction, so the An, reading back-
wards, are successive denominators of [an, an−1, · · · , a1]. Since Bm+1 = Am

(still reading backwards), there will be an entry with A = sn, B = sn−1.

Finally, we need to see why the first A <
√
p identifies AK , BK such that

A2
K + B2

K = p. Reading forward again, we have AK−1 = AKRK−1 + BK ,
Bk−1 = AK , so A2

K−1 ≥ (AK +BK)2 > A2
K +B2

K = p, so AK−1 >
√
p.

Reference
S. Wagon (1990) ‘Editor’s Corner: The Euclidean Algorithm Strikes Again’,
The American Mathematical Monthly, Vol. 97, No. 2, pp 125–129.

Mathematics in the kitchen – X
Tony Forbes
I think this experiment requires a gas-
operated cooking device. Take a shal-
low vessel of diameter about 20 cm,
place it on the stove and almost fill it
with water. Add a small amount of
washing-up liquid; about 25ml should
suffice. Heat. When the water has
reached boiling point adjust the gas so
that the mixture is simmering vigor-
ously. Observe.

When I did it I was surprised to see a neat cross-like pattern develop
and then maintain itself with remarkable stability. Can anyone explain? I
suspect that the alignment of the four iron supports with the four arms of the
cross might not be entirely coincidental. The dark coloration is irrelevant;
it is merely the result of a previous overcooking incident.

Please do not perform this experiment unless you are willing to accept
full responsibility for accidents. Boiling water is dangerous and can cause
severe scalding.
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Solution 264.3 – Determinant
An n × n matrix has a in each entry on the diagonal and b
everywhere else. What is its determinant?

Edward Stansfield

Solution

The determinant is given by

(a− b)n−1[a+ (n− 1)b].

Preface to proof

At first sight I thought that the solution to this problem would have a
simple expression, and a quick experiment with Mathematica confirmed
that this is indeed the case (as shown above). However, when I set about
trying to prove what Mathematica suggested, it turned out to be far from
easy. I tried various matrix decompositions, all to no avail, until I came
across a proof of ‘Sylvester’s Determinant Theorem’. One version of this
states that for suitably dimensioned (not necessarily square) matrices A and
B, det(I + AB) = det(I + BA), where I is an identity matrix. The proof
of this theorem provided me with a clue to finding a solution. The proof
involves a square matrix Q of dimension n + p, containing a sub-matrix A
with dimension p× n and a sub-matrix B with dimension n× p, such that
it has the partitioned form and a block LU decomposition given by

Q =

(
Ip −A
B In

)
=

(
Ip 0
B In

)(
Ip −A
0 In +BA

)
.

In this equation, Ip is an identity matrix of order p, and similarly In is an
identity matrix of order n. It turns out that the determinant of Q is given
by

det(Q) = det(In +BA).

To see this, observe that, since the left-hand matrix of the block LU decom-
posed form is lower triangular with unity values along the main diagonal,
its determinant is unity. This can be shown by expanding along the top
row to reduce the dimension by one, and repeating this process until the
dimension is just one. For the right-hand matrix of the block LU decom-
position, we can expand along the first column to reduce the dimension by
one. This process can be repeated p times, at which point we are left with
just the determinant of the lower right-hand side sub-matrix. The result
immediately follows.
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Proof

Let Hn be the n× n matrix of the desired form, which can be written as

Hn =


a b b . . . b
b a b . . . b
b b a . . . b
. . . . . . . . . . . . . . .
b b b . . . a

 = (a− b)In + b in i
T
n

= (a− b)
(
In +

b

a− b
in i

T
n

)
= (a− b)Pn.

Here, in is a unity column vector of length n (i.e. every element is unity).
Observe that

det(Hn) = (a− b)n det(Pn).

Next consider a related square matrix Qn+1 of order n+1 whose partitioned
and block LU decomposed form is given by

Qn+1 =

(
1 −β iTn
β in In

)
=

(
1 φTn
β in In

)(
1 −β iTn
φn In + β2 in i

T
n

)
.

Here, φn is a zero vector of length n. The left-hand matrix in the decom-
posed form is lower-triangular with unity values on the main diagonal, and
hence its determinant is unity. The determinant of the right-hand matrix
in the decomposed form is det(In +β2 in i

T
n ). If we set β =

√
b/(a− b) then

it can be seen that
det(Qn+1) = det(Pn).

Observe mow that Qn+1 has the (recursive) partitioned form

Qn+1 =

(
Qn −β jn
β jTn 1

)
.

Here, jn is a column vector of length n whose first element is unity and
all other elements are zero. This suggests that det(Qn+1) can be expressed
simply in terms det(Qn) if we expand along the bottom row, which contains
just two non-zero elements. That is,

det(Qn+1) = β(−)n+2mn+1,1 + (−)2n+2 det(Qn).

In this equation, mn+1,1 is the minor of Qn+1 when row n+1 and column 1
are deleted. By expanding down column n, which contains just one non-zero
element, this takes the form

mn+1,1 = det

(
−β iTn−1 −β
In−1 φn

)
= −β(−)n+1 det(In−1) = −β(−)n+1.



Page 6 M500 268

Back substitution back then yields the following recursion for det(Qn):

det(Qn+1) = det(Qn) + β2.

Starting with det(Q2) = 1+β2 we quickly obtain by induction the general
case det(Qn+1) = 1 + nβ2. Finally, again with β =

√
b/(a− b), we have

that

det(Hn) = (a−b)n det(Pn) = (a−b)n det(Qn+1) = (a−b)n
(

1 + n
b

a− b

)
.

This leads directly to the result:

det(Hn) = (a− b)n−1[a+ (n− 1)b].

I found it very satisfying to discover that this formula is exactly what
my Mathematica program had suggested some days previously.

Conclusion

This really is a deceptively simple problem with a simple solution, but my
proof is certainly not trivial. I cannot but wonder if there is a much simpler
way to prove the simple formula for the determinant. I look forward to
receiving future issues of the M500 Magazine to see if anyone has succeeded
in finding one.

Problem 268.1 – Two triangles

Find two triangles ABC and
ABD (so that they share a com-
mon base) such that (i) angles
CAB, CBA, DBA and DAB
are in the ratio 1 : 2 : 3 : 4, and
(ii) |AB|, |AC|, |BC|, |DA| and
|DB| are positive integers.

I (TF) am of the opinion
that it is difficult to make |DC|
an integer as well. Thanks to
Dick Boardman for suggesting
this problem. A B

C

D

Θ 2Θ

4Θ

3Θ
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Solution 232.2 – Angles
Suppose A+B + C = 45◦. Show that

(cosA+ sinA)(cosB + sinB)(cosC + sinC)

= 2(cosA cosB cosC + sinA sinB sinC).

Dave Wild
We have

( cosB + sinB)(cosC + sinC)

= (cosB cosC + sinB sinC) + (sinB cosC + cosB sinC)

= cos(B + C) + 2 sinB sinC + sin(B + C)

or − cos(B + C) + 2 cosB cosC + sin(B + C).

So

( cosA+ sinA)(cosB + sinB)(cosC + sinC)

= cosA(− cos(B + C) + 2 cosB cosC + sin(B + C))

+ sinA(cos(B + C) + 2 sinB sinC + sin(B + C))

= 2(cosA cosB cosC + sinA sinB sinC) + (sin(B + C) cosA

+ cos(B + C) sinA)− (cosA cos(B + C)− sinA sin(B + C))

= 2(cosA cosB cosC + sinA sinB sinC)

+ sin(A+B + C)− cos(A+B + C).

Therefore if, as in this problem, sin(A+B+C) = cos(A+B+C) then the
given identity is satisfied.

Problem 268.2 – Induction
What’s wrong with this argument? We wish to prove that

n∑
k=1

k = O(n). (∗)

Clearly
∑1

k=1 k = 1 = O(1). Using induction, we assume (∗) is true for

some n ≥ 1. Then we have
∑n+1

k=1 k = O(n) + n+ 1 = O(n+ 1). Hence (∗)
is true for all n ≥ 1. �

A nice result except that it is actually false. On the other hand, it is
true that

∑n
k=1 k = O(n2).
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Solution 188.1 – Ones
Throw n dice. The total score is s. What is the expected number
of ones?

Reinhardt Messerschmidt
We will:

� summarize some facts about the discrete uniform distribution and
sums of independent discrete uniform random variables;

� derive the exact conditional distribution of the number of ones given
the total score;

� generate a numerical example;

� approximate the exact distribution with the normal distribution for
large n.

For the necessary background knowledge on probability generating func-
tions, the central limit theorem and the bivariate normal distribution, see
(for example) Introduction to Probability and Mathematical Statistics by L.
J. Bain & M. Engelhardt.

The discrete uniform distribution

Suppose a, b are non-negative integers with a ≤ b. The discrete uniform
distribution with start point a and end point b is the distribution that assigns
a probability of 1/(b− a+ 1) to each of the elements of {a, a+ 1, . . . , b}. It
will be denoted by DU(a, b). If U is a DU(a, b) random variable, then its
expected value is

1

b− a+ 1

b−a∑
j=0

(a+ j) =
a+ b

2
,

and its variance is

1

b− a+ 1

b−a∑
j=0

(a+ j)2 −
(
a+ b

2

)2

=
1

b− a+ 1

(
a2

b−a∑
j=0

1 + 2a

b−a∑
j=0

j +

b−a∑
j=0

j2
)
−
(
a+ b

2

)2

=
(b− a+ 1)2 − 1

12
.
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The probability generating function GU of U is

GU (z) = E[zU ] =
1

b− a+ 1

b−a∑
j=0

za+j =
za

b− a+ 1

1− zb−a+1

1− z
.

Sums of independent discrete uniform random variables

Suppose U1, U2, . . . , Um are independent DU(a, b) random variables. The
expected value of

∑m
j=1 Uj is

m∑
j=1

E[Uj ] =
m(a+ b)

2
,

and its variance is

m∑
j=1

var[Uj ] =
m((b− a+ 1)2 − 1)

12
.

The probability generating function G(
∑

Uj) of
∑
Uj is

G(
∑

Uj)(z) = E
[
z
∑m

j=1 Uj

]
=

m∏
j=1

GUj (z) =
zam

cm

(
1− zc

1− z

)m

,

where c = b− a+ 1. By the binomial theorem,

(1− zc)m =

m∑
j=0

(
m

j

)
(−zc)j1m−j =

m∑
j=0

(−1)j
(
m

j

)
zcj ,

and by Taylor’s theorem,

1

(1− z)m
=

∞∑
k=0

(
m+ k − 1

m− 1

)
zk;

therefore

G(
∑

Uj)(z) =
1

cm

m∑
j=0

∞∑
k=0

(−1)j
(
m

j

)(
m+ k − 1

m− 1

)
zam+cj+k.

Substituting r = am+ cj + k,

G(
∑

Uj)(z) =
1

cm

m∑
j=0

∞∑
r=am+cj

(−1)j
(
m

j

)(
r − (a− 1)m− cj − 1

m− 1

)
zr.
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Changing the order of summation,

G(
∑

Uj)(z)

=

∞∑
r=am

[
1

cm

b(r−am)/cc∑
j=0

(−1)j
(
m

j

)(
r − (a− 1)m− cj − 1

m− 1

)]
zr. (1)

By the properties of probability generating functions, P[
∑
Uj = r] is equal

to the coefficient of zr in (1). Since
∑
Uj ≤ bm with probability 1, the

coefficients of zbm+1, zbm+2, . . . simplify to 0.

Exact conditional distribution of number of ones given the total
score

Suppose d is an integer with d ≥ 2 and X1, X2, . . . , Xn are independent
DU(1, d) random variables. If d = 6 then X1, X2, . . . , Xn represent n dice
rolls. Let Yn be the number of elements in the sequence (X1, X2, . . . , Xn)
that are 1. The random variable Yn has a binomial distribution with pa-
rameters n and 1/d, therefore if y ∈ {0, 1, . . . , n} then

P[Yn = y] =

(
n

y

)(
1

d

)y(
1− 1

d

)n−y

.

Let Sn =
∑n

j=1Xj . The probability P[Sn = s] is equal to the coefficient of
zs in (1), with a = 1, b = d, c = d and m = n.

For the conditional probability P[Yn = y |Sn = s] to exist, we must have
s ∈ {n, n + 1, . . . , dn}, otherwise P[Sn = s] = 0. Since Yn of the elements
in (X1, X2, . . . , Xn) are 1, the remaining n − Yn elements have values in
{2, 3, . . . , d}, therefore

Yn + 2(n− Yn) ≤ Sn ≤ Yn + d(n− Yn)

with probability 1. This implies that, given s ∈ {n, n + 1, . . . , dn}, the
probability P[Yn = y |Sn = s] will be positive if and only if y ∈ {0, 1, . . . , n}
and

y + 2(n− y) ≤ s ≤ y + d(n− y),

i.e. if and only if y ∈ {0, 1, . . . , n} and

2n− s ≤ y ≤ dn− s
d− 1

.
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If (y, s) is such that P[Yn = y | Sn = s] exists and is positive, then

P[Yn = y | Sn = s] =
P[Yn = y, Sn = s]

P[Sn = s]
=

P[Sn = s | Yn = y] P[Yn = y]

P[Sn = s]

=
P[Tn−y = s− y] P[Yn = y]

P[Sn = s]
,

where Tn−y is the sum of n − y independent DU(2, d) random variables.
The probability P[Tn−y = s − y] is equal to the coefficient of zs−y in (1),
with a = 2, b = d, c = d− 1 and m = n− y. It follows that

P[Yn = y | Sn = s]

=

(
n

y

) b(s−2n+y)/(d−1)c∑
j=0

(−1)j
(
n− y
j

)(
s− n− (d− 1)j − 1

n− y − 1

)
b(s−n)/dc∑

j=0

(−1)j
(
n

j

)(
s− dj − 1

n− 1

) .

Numerical example

Let d = 3 and n = 8. The following table shows the unconditional distribu-
tion of Yn and its conditional distributions given small, medium and large
values of Sn (with rounding to four decimal places).

P[Yn = y | Sn = s]
y P[Yn = y]

s = 12 s = 16 s = 20

0 0.0390 0.0009 0.2632
1 0.1561 0.0506 0.6316
2 0.2731 0.3794 0.1053
3 0.2731 0.5059
4 0.1707 0.2632 0.0632
5 0.0683 0.6316
6 0.0171 0.1053
7 0.0024
8 0.0002

E[·] 2.6667 4.8421 2.5799 0.8421√
var[·] 1.3333 0.5861 0.6904 0.5861
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Approximation of the exact distribution with the normal distri-
bution

We have

E[Yn] =
n

d
, var[Yn] =

n

d

(
1− 1

d

)
,

E[Sn] =
n(d+ 1)

2
, var[Sn] =

n(d2 − 1)

12
.

Furthermore,

E[YnSn] =
∑
y

∑
s

ysP[Yn = y, Sn = s]

=
∑
y

∑
s

ysP[Sn = s | Yn = y]P[Yn = y]

=
∑
y

y P[Yn = y]
∑
s

sP[Tn−y = s− y]

=
∑
y

y P[Yn = y]
∑
t

(y + t)P[Tn−y = t]

=
∑
y

y2 P[Yn = y] +
∑
y

y P[Yn = y]E[Tn−y]

=
∑
y

y2 P[Yn = y] +
∑
y

y P[Yn = y]
(n− y)(d+ 2)

2

= E[Y 2
n ] +

n(d+ 2)

2
E[Yn]− d+ 2

2
E[Y 2

n ]

=
n2(d+ 1)− n(d− 1)

2d
;

therefore

cov[Yn, Sn] = E[YnSn]− E[Yn]E[Sn] =
−n(d− 1)

2d
.

By the central limit theorem, if n is large then the distribution of
(Yn, Sn) is approximately bivariate normal. By the properties of the bi-
variate normal distribution, the conditional distribution of Yn given Sn = s
is approximately normal with expected value
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E[Yn] +
cov[Yn, Sn]

var[Sn]
(s− E[Sn]) =

n

d
− 6

d(d+ 1)

(
s− n(d+ 1)

2

)
, (2)

and variance

var[Yn]− cov[Yn, Sn]2

var[Sn]
=

n

d

(
1− 1

d

)
− 3n(d− 1)

d2(d+ 1)
.

Equation (2) confirms that E[Yn | Sn = s] ≈ E[Yn] if s = E[Sn], and that
E[Yn | Sn = s] is approximately linear in s.

Problem 268.3 – Sequences

Let S1 denote the sequence (1/2!). Suppose Sn = (s1, s2, . . . , sN ), where

N = 2n−1. For i = 1, 2, . . . , N , suppose si =
±1

ai! bi! . . .
, where the ordering

of the factorials is relevant, and from si create two new expressions,

s′i =
∓1

(ai + 1)! bi! . . .
and s′′i =

±1

2! ai! bi! . . .
.

Define Sn+1 = (s′1, s
′′
1 , s
′
2, s
′′
2 , . . . , s

′
N , s

′′
N ). Thus

S2 =

(
−1

3!
,

1

2! 2!

)
, S3 =

(
1

4!
,
−1

2! 3!
,
−1

3! 2!
,

1

2! 2! 2!

)
,

S4 =

(
−1

5!
,

1

2! 4!
,

1

3! 3!
,
−1

2! 2! 3!
,

1

4! 2!
,
−1

2! 3! 2!
,
−1

3! 2! 2!
,

1

2! 2! 2! 2!

)
,

and so on, with the number of terms doubling at each step.

Now for the problem. Prove that when n is odd and greater than 1 the
terms in Sn sum to zero.

The construction is due to S. C. Woon (Generalization of a rela-
tion between the Riemann zeta function and Bernoulli numbers, arXiv:
math/9812143v1) and the sum is actually Bn/n!, where Bn is the n-th
Bernoulli number; see also Theorem of the Day number 238, which can be
found at http://www.theoremoftheday.org/. However, for odd n, we are par-
ticularly interested in a simple solution that avoids explicit reference to the
Bernoulli numbers.
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Solution 245.10 – Every other day
Find a simple function F , say, that maps a date to either 0 or
1 such that F (today) = 1 − F (yesterday). This is not just an
academic exercise. Such a function will be very useful in those
situations where the label on the packet says, ‘Take 1 tablet
every 2 days’.

Mike Lewis
The Julian Day Number is the continuous count of days since the beginning
of the Julian Period and is primarily used by astronomers. Clearly a function
or algorithm based on determining the parity of this quantity would satisfy
the requirement implied in the problem statement. Although it is not a
function, an algorithm for determining the Day Number exists [1].

A Little History

The Julian day number is based on the Julian Period proposed by Joseph
Scaliger (1540 – 1609) in 1583, at the time of the Gregorian calendar reform,
as it is the least common multiple of the length in years of three calendar
cycles used with the Julian calendar:

15 (Indiction cycle – a dating system for medieval manuscripts)
× 19 (Metonic cycle – 19 years is almost exactly equal to 235
lunar months) × 28 (Solar cycle – 7 possible start days to a leap
year and the 4 year interval) = 7980 years.

Its epoch falls at the last time when the first year of all three cycles (if they
are continued backward far enough) coincided. Scaliger chose this because
it preceded all historical dates. Years of the Julian Period are counted from
the year 4713 BC, which was chosen to be before any historical record [2].
The start of the period now used is 4800 BC.

Having established this highly unlikely set of numbers as a basis for the
algorithm we will now proceed.

Calculating the Day Number

Adjustment for first month of the year in the Julian Calendar,

a =

⌊
14−month

12

⌋
results in 1 for January (month 1) and February (month 2). The result is 0
for the other 10 months.

Calculate the Julian Year,

y = year + 4800− a.
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Calculate Julian Month Number,

m = month + 12a− 3.

The effect of the combined calculation of y and m is to adjust for the year
beginning in March and ending in February in accordance with the Julian
Calendar.

Calculate the Julian Day Number, JDN,

JDN = day +

⌊
153m+ 2

5

⌋
+ 365y +

⌊y
4

⌋
−
⌊ y

100

⌋
+
⌊ y

400

⌋
− 32045;

day is the day of the month, and b(153m+ 2)/5c calculates the number of
days in the months prior to the first month of the Julian Year. The next
four terms calculate the number of days in a year adjusted for leap years
and 32045 adjusts for the Julian Date January 1st 4713 BC being day 0 on
the Julian Calendar.

The final part of the calculation is to determine the JDN for the start of
the sequence of days and check its parity. Subsequently it is only necessary
to calculate the JDN for each day as it occurs and only take whatever action
is called for on the days that have the same parity as the first day.

Date Converters

A Julian Date Converter can be found at the US Naval observatory site
http://aa.usno.navy.mil/data/docs/JulianDate.php.

Matlab has a function juliandate. Excel has a function DATEVALUE
that converts a text format date to the date number based on January 1st
1900. This is used within the spreadsheet and can be used to calculate a
date a given number of days ahead from the current or some other date.
Useful for calculating the dates of payments, such as pensions, made at 28
day intervals.

References
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Solution 265.7 – Population control
In an overpopulated country the law restricts a woman to one
child if it is a boy and at most two if her first child is a girl. How
is the population affected?

Richard Gould
First we note that, irrespective of the initial gender distribution in the
population, the distribution in each successive generation will depend only
on the number of women in the previous generation. The male population
needs only to be of a size sufficient to provide enough fathers (traditional
or donor) for their offspring.

Initially we develop a simple model where it is assumed that all the
women in the population are fertile and have as many children as the stated
rules allow. If there are N women initially and the probability of a male
birth is p then the next generation will comprise pN + (1− p)pN men and
(1− p)N + (1− p)2N women. Thus, if the numbers of men and women in
the nth generation are mn and wn respectively

mn = p(2− p)wn−1,

wn = (1− p)(2− p)wn−1, n = 1, 2, . . . .

Note that, even if the overall population declines, the male population may
increase in the first generation (perhaps if it was previously depleted by war
or some genetic factor). This will be the case if

p(2− p)w0 > m0.

The generation on generation ratio of the male population can be found
as follows:

mn

mn−1
=

p(2− p)wn−1

p(2− p)wn−2

=
p(2− p)(1− p)(2− p)wn−2

p(2− p)wn−2

= (1− p)(2− p).

So, after the first generation, the male population grows or declines at the
same rate as the female population. Should this have been expected?

For the overall population to increase we therefore require

(1− p)(2− p) > 1.
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Completing the square on the LHS gives(
p2 − 3p+

9

4

)
+ 2− 9

4
> 1,(

p− 3

2

)2

>
5

4
;

so either

p >
3

2
+

√
5

2
,

or

p <
3

2
−
√

5

2
. (1)

The first solution gives p > 1, which is not possible. The second gives p <
0.382 which, though feasible mathematically, is not consistent with historical
or current birth data which give p values of around 0.512−0.517. In general,
then, we would expect the population to decline and this tendency would
be increased if fewer than the maximum number of births occurred in each
generation.

Having got this far, let’s assume that some genetic anomaly has drasti-
cally reduced the male birth rate so that an increasing population becomes
possible. We could improve on the first model by assuming that only a
proportion k1 of women have one child and that, of those, a proportion
k2 go on to bear a second child. With an initial female population N ,
the next generation will now comprise pk1N + p(1 − p)k1k2N men and
(1− p)k1N + (1− p)2k1k2N women. Hence, we now have

mn = {1 + (1− p)k2}pk1wn−1,

wn = {1 + (1− p)k2}(1− p)k1wn−1, n = 1, 2, . . . .

The condition for population growth becomes

1− p+ k2(1− p)2 >
1

k1
.

Completing the square again (after some manipulation)(
p− 1 + 2k2

2

)2

>
k1 + 4k2

4k1k2
.

As before, growth is possible if

0 < p <
1 + 2k2

2
− 1

2

√
k1 + 4k2
k1k2

. (2)
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Setting k1 = k2 = 1 in equation (2) recovers equation (1), as we would
expect. If k2 = 1, k1 6= 1 we have positive growth if

3

2
>

1

2

√
k1 + 4

k1

from which k1 > 1/2.

For k1, k2 6= 1 if we take, for example, k1 = 3/4, equation (2) shows
that population growth is possible provided

12k32 + 12k22 − 13k2 − 3 > 0

which, for 0 < k2 < 1 has solution k2 > 0.785.

Problem 268.4 – Triangles in a grid
Nine dots are arranged in a 3× 3 grid.

(a) How many triangles can you make with the dots as vertices?

(b) How many distinct triangles can you make? Two triangles are distinct
if they are not congruent to each other.

Of course that was just a warm-up for the general problem. There are n2

dots are arranged in an n× n grid.

(i) How many triangles can you make with the dots as vertices?

(ii) How many distinct triangles can you make?

(iii) How many distinct integer triangles can you make? A triangle is
integer if its three sides are integers.

(iv) How many distinct integer, non-Pythagorean, non-isosceles triangles
can you make that have one vertex at coordinates (0, 0), the bottom-
left corner of the grid, and the other two on the grid at coordinates
(Ax, Ay) and (Bx, By) with positive Ax, Ay, Bx, By?

Apologies for the long-winded nature of (iv). However, this is the most
interesting part—in opinion of me (TF). Also it might be worth recalling a
corollary of Pick’s theorem. The area of a triangle drawn with its vertices
on an integer grid must be half an integer.
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Shorties
Eddie Kent
Ralph Hancock sent me an email. It said: This is said to be the short-
est known paper published in a serious mathematics journal. It was
in the Bulletin of the American Mathematical Society 72/6, 1966; see
http://goo.gl/okjjVe. I looked so you don’t need to. The entire paper, in-
cluding two lines of title, is 12 lines long. J. L. Lander & T. R. Parkin give
a counterexample to a conjecture of Euler, showing that even the greatest
sometimes get it wrong. But this reminded me of a famous incident.

F. N. Cole, at a meeting of the AMS on 31 October 1903, walked
to the blackboard in silence and calculated M67, and then worked
through 193, 707, 721 × 761, 838, 257, 287 to show that they both come to
147, 573, 952, 589, 676, 412, 927. He then sat down to a standing ovation.
The whole business took him about an hour and he didn’t say a word. He
said later that finding the factors had taken him ‘three years of Sundays.’

Of course the real mathematics happened in 1876 when Édouard Lucas
demonstrated that M67, or 267−1, the 67th Mersenne number, is composite.
Cole published a paper in the Bulletin of the AMS Vol. 10 in 1903 explaining
about how he did it, how Lucas had done his bit, and how ‘Some curious
misinformation in regard to these numbers was published by Mersenne in
the preface of his Cogitata physico-mathematica (1644).’

Cole, in On the factoring of large numbers, explained ‘In resolving a
large number N into its prime factors, a table of quadratic remainders of N
can be made to render efficient service in several different ways.’ So I guess
he did use some real mathematics too.

Problem 268.5 – Factorization
Tony Forbes
The above reminds me of another silly story involving positive integers and
the factorization thereof. You might recall that Fortuné Landry is credited
with the discovery in 1880 that 264+1 is composite (See Wilfrid Keller’s Fer-
mat Factoring Status at http://homes.cerias.purdue.edu/∼ssw/fdub.html).

This was actually part of a project to factorize 2n ± 1 for n ≤ 64, an
activity which kept Landry busy for many years. He describes one partic-
ularly stubborn case, ‘None of the numerous factorizations of the numbers
2n±1 gave as much trouble and labour as that of 258+1.’ However, Landry
was unaware that this number actually has an algebraic factorization based
on a general method found in 1871 by Léon–François–Antoine Aurifeuille.
With this discovery the task is so simple we can set it as a problem.

Factorize 24n+2 + 1. Hence or otherwise completely factorize 258 + 1.
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Scarne
Ralph Hancock
Mike Lewis’s mention of the book Scarne on Dice (Solution 260.3 – Three
dice) prompted me to look it up. It was written by John Scarne (original
name Orlando Carmelo Scarnecchia, 1903–1985), a successful stage magi-
cian specializing in card tricks. The book was a simple guide to gambling
games written in non-mathematical language for distribution to American
troops coming over to Europe during the war, on the admirable principle
that the wily Europeans were going to rob these naive boys blind and they
should understand what they were in for.

Scarne also gave lectures at army and navy bases.

His hands may be seen in a scene the 1973 film The Sting, substituted
for Paul Newman’s where the character has to manipulate cards.

Scarne invented several games including a very simple board game called
Teeko, which was successful for a few years and then faded from sight.

It is played on a plain board of 5 × 5 squares. Each player has four
identical pieces, such as black and white draughtsmen. You win by getting
your pieces in a straight line, horizontal, vertical or diagonal, or in a square
on four adjacent board squares. Players have alternate turns. In the first
eight turns they place their pieces on the board wherever they like. Then
each player can move any one of his pieces one square in any direction, until
one player wins or the world ends—since no pieces can be captured, it would
be possible to play for ever.

Teeko has been analysed by the computer scientist Guy Steele, a de-
veloper of Java, who found that it was impossible for either side to force a
win as long as the opponent played accurately—the sign of a well designed
game.

In 1955 Scarne played ten simultaneous games against a bunch of celebri-
ties including Judy Holliday, offering $1000 to any of them who could beat
him. He won all the games. In the picture http://goo.gl/45Cp1Q Judy Hol-
liday looks appalled, but perhaps she is just yawning because she is bored.
She is said to have had an IQ of 170, which perhaps she needed to play
dumb blondes.

Q. Can you make an anagram of Banach Tarski?

A. Banach Tarski Banach Tarski.
Sent by Jeremy Humphries.
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Problem 268.6 – Squares with even digits
(i) Squares which have all of their digits even are very common: 0, 4, 64,
400, 484, 4624, 6084, 6400, 8464, 26244, 28224, 40000, . . . . Show how to
construct infinitely many.

(ii) If we restrict ourselves to non-zero even digits, there still appear
to be plenty: 4, 64, 484, 4624, 8464, 26244, 28224, 68644, 228484, 446224,
824464, 868624, 2862864, 8282884, 8868484, 22448644, 26646244, 44462224,
82228624, 82664464, . . . . Are there infinitely many?

(iii) On the other hand, squares with all digits odd seem to be very rare.
Either show that 1 and 9 are the only examples, or find another one.
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most undergraduate and postgraduate mathematics OU modules, subject
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