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Solution 194.2 – Surface area of an ellipsoid
Obtain a formula for the surface area of the ellipsoid

X2

a2
+
Y 2

b2
+
Z2

c2
= 1.

Tony Forbes
Call the ellipsoid E. Consider a point (x, y, z) on the surface of the part of
E defined by X,Y, Z ≥ 0. Let B = b/a

√
a2 − x2 and C = c/a

√
a2 − x2.

X

Y

Z

a

b

c

B

C

rds dt

x
x + dx y y + dy

z

Ex

Ey

Let Ex be the elliptical cross-section of E passing through (x, y, z) and
parallel to the (Y, Z)-plane. Then Ex has radii B and C and equation

z =
C

B

√
B2 − y2. (1)

Let Ey be the ellipse which passes through (x, y, z), (a, 0, 0) and (−a, 0, 0).
Let the radii of Ey be a and r. Then Ey has equation

w =
r

a

√
a2 − x2. (2)

But w =
√
y2 + z2; hence r = a

√
y2 + z2/

√
a2 − x2.

Consider1 a small, approximately rectangular patch on E at (x, y, z)
with side lengths ds and dt, where ds is in the direction of the X-axis.
Then

ds =
√

(dw)2 + (dx)2, dt =
√

(dz)2 + (dy)2 (3)

1Footnote added 2014: This argument is rubbish when b 6= c; see M500 259, 15–16.
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and the surface area of E is given by

S(a, b, c) = 8

∫ a

x=0

∫ B

y=0

ds dt = 8

∫ a

0

∫ B

0

f(x, y) dy dx, (4)

where, on substituting (1) and (2) in (3), we have

f(x, y) =

√√√√√√√
1 +

c2y2

b4
(

1− x2

a2
− y2

b2

)

1 +

c2x2

a4
(

1− x2

a2
− y2

b2
+
y2

c2

)
.

I am now stuck. With or without help from computer software I am
unable to carry out the double integration.

Henceforth let c = b. Dick Boardman shows that the problem can be
solved completely. Sparing you the details, (4) becomes

S(a, b, b) =
8b

a

∫ a

0

∫ b/a
√
a2−x2

0

√
a4 − a2x2 + b2x2

a2b2 − a2y2 − b2x2
dy dx

=
4b π

a2

∫ a

0

√
a4 + (b2 − a2)x2 dx

= 2b2π +
2a2b π√
b2 − a2

log
b+
√
b2 − a2
a

. (5)

The formula holds for any a and b but if you are unhappy about taking
logarithms of things involving imaginary quantities, there is a purely real
alternative for b < a:

S(a, b, b) = 2b2π +
2a2b π√
a2 − b2

arctan

√
a2 − b2
b

.

Note that as b→ a, arctan(
√
a2 − b2/b)→

√
a2 − b2/b and thus S(a, a, a) =

2a2π + 2a2π = 4a2π, the correct formula for a sphere of radius a. Also by
letting a → 0 one can see that S(0, b, b) = 2b2π, consistent with the thing
degenerating into a two-sided disc of radius b. And if you put c = 0 in (4),
then f(x, y) reduces to 1 and you easily get S(a, b, 0) = 2abπ, corresponding
to an elliptical disc of radii a and b.

It is interesting to see how (5) compares with various simple formulae
that might suggest themselves. First, let us put b = a+ ε in (5), where ε is
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small. Then developing (5) as a power series in ε yields

S(a, a+ ε, a+ ε) = 4a2π +
16aπε

3
+

8πε2

5
+

16πε3

105a
− 4πε4

63a2
+ . . . . (6)

David Kerr offers the formula

S1(a, b, c) =
4π

3
(ab+ bc+ ca), (7)

obtained by painting the ellipsoid. The volume of E is 4πabc/3. After
applying a uniform coat of thickness δ, one might approximate the volume
of the painted solid by 4π(a+δ)(b+δ)(c+δ)/3. Multiplying out, subtracting
4πabc/3, dividing by δ and discarding terms containing δ gives (7). However,
we can see that (7) is inconsistent with (6). Putting b = c = a + ε in (7),
we have

S1(a, a+ ε, a+ ε) = 4a2π +
16aπε

3
+

4πε2

3
, (8)

which deviates from (6) at the ε2 term. Thus (8), which specializes (7) to
the case of a nearly spherical ellipsoid, indicates that the general formula
(7) is only approximate. Actually this is not unexpected. The same kind
of reasoning gives, incorrectly, π(a + b) for the circumference of an ellipse
with radii a and b. Presumably the flaw in the argument is that the painted
ellipsoid cannot be sufficiently well approximated by an ellipsoid. Perhaps
someone can investigate why.

Colin Davies suggests an even simpler formula,

S2(a, b, c) = 4π(abc)2/3.

Doing the same sort of thing as before, we get

S2(a, a+ ε, a+ ε) = 4a2π +
16aπε

3
+

8πε2

9
+ . . . ,

again, agreeing with (6) up to the ε term but not beyond.

Curiously, a better (but still only approximate) formula results if instead
we use the arithmetic mean of the radii:

S3(a, b, c) = 4π

(
a+ b+ c

3

)2

.

Now we have

S3(a, a+ ε, a+ ε) = 4a2π +
16aπε

3
+

16πε2

9
,

and the ε2 term nearly agrees with 16πε2/10, the ε2 term in (6).
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The arithmetic/geometric mean inequality
John Spencer
Recent issues of M500 have carried several problems involving the arith-
metic/geometric mean inequality. In one form or another this inequality
has been a staple of mathematical puzzles and problems for more than two
millennia. Like most of the great mathematical theorems, it never seems to
lose its capacity to surprise.

Euclid (Elements, Book VI, Prop. 13) gives a construction for finding
the geometric mean of two given straight lines AB and BC. The construc-
tion involves placing AB and BC in a straight line ABC which is then made
the diameter of a semicircle. A line from B at right angles to ABC meets
the semicircle at D.

BA C

D

Clearly, BD is a mean proportional to AB and BC; that is to say, AB
bears the same proportion to BD as BD does to BC, i.e. AB : BD = BD :
BC. So BD, the geometric mean, is

√
AB ·BC. Another way of looking at

it is that4ABD and4BCD (and4ACD) are similar triangles. The AGM
inequality expresses the fact that BD cannot be longer than the radius of
the semicircle, (AB +BC)/2, which is not hard to see from the diagram.

The inequality can be derived algebraically from the observation that
the square of any number is always either positive or zero. Then

(
√
a−
√
b)2 ≥ 0 → a+ b− 2

√
ab ≥ 0.
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Adding 2
√
ab to both sides and dividing by two gives the standard form of

the inequality, with the arithmetic mean on the left and the geometric on
the right:

(a+ b)

2
≥
√
ab.

Problem 193.4 asked for proof that

n! ≤
(
n(n+ 1)3

8

)n/4
.

Most readers will accept, I imagine, that n! ≤ nn. The more difficult
part of the problem is to establish that

n! ≤
(
n+ 1

2

)n
.

An elegant proof of this assertion, due to Gauss, is given in Invitation to Dis-
crete Mathematics by Jǐŕı Matoušek and Jaroslav Nešetřil (Oxford, 1998),
a book I found entertaining and useful when I was doing M203 and MT365.

Each of the numbers i ∈ {1, 2, . . . , i, . . . , (n− 1), n} is multiplied by the
number at the same place in the reverse sequence {n, (n − 1), . . . , n + 1 −
i, . . . , 2, 1} giving i(n+ 1− i), so that the product of all these pairs

n∏
i=1

i(n+ 1− i) = (n!)2

and

n! =

n∏
i=1

√
i(n+ 1− i).

Now replace a by i and b by n + 1 − i in the arithmetic/geometric mean
inequality to give√

i(n+ 1− i) ≤ i+ n+ 1− i
2

=
n+ 1

2

so that

n! =

n∏
i=1

√
i(n+ 1− i) ≤

n∏
i=1

n+ 1

2
=

(
n+ 1

2

)n
.
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So we can write

(n!)4 ≤ nn
(
n+ 1

2

)3n

,

and taking positive, real, fourth roots on each side,

n! ≤
(
n(n+ 1)3

8

)n/4
.

An earlier issue of M500 contained Problem 191.7, which asks for proof that

(a1 + a2 + a3 + ...+ an)

(
1

a1
+

1

a2
+

1

a3
...+

1

an

)
≥ n2.

Let us assume this is the case for n = k. Let Sk = a1 +a2 +a3 + ...+ak

and Rk =
1

a1
+

1

a2
+

1

a3
...+

1

ak
. Then

Sk+1Rk+1 = (Sk + ak+1)

(
Rk +

1

ak+1

)
= SkRk + 1 +

Sk
ak+1

+Rkak+1

and

Sk
ak+1

+Rkak+1 =
a1
ak+1

+
a2
ak+1

+ · · ·+ ak
ak+1

+
ak+1

a1
+
ak+1

a2
+ · · ·+ ak+1

ak

in which each fraction is matched by its reciprocal. But by the AGM in-
equality

an
ak+1

+
ak+1

an
≥ 2

√
an
ak+1

ak+1

an
= 2.

So, since there are k pairs of fractions, Sk/ak+1 +Rkak+1 ≥ 2k and by our
assumption

Sk+1Rk+1 ≥ k2 + 2k + 1 = (k + 1)2.

If the proposition is true for n = k, it is true for n = k + 1. By induction,
then, since S1R1 = 12,

(a1 + a2 + a3 + ...+ an)

(
1

a1
+

1

a2
+

1

a3
...+

1

an

)
≥ n2

for all n.
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Solution 193.3 – Thirteen tarts
There are 13 tarts. All weigh the same, with one exception.
Either (i) devise a strategy involving three weighings to deter-
mine the odd tart and whether it is lighter or heavier than the
others; or (ii) prove that (i) is impossible.

As usual, a weighing means selecting two sets of tarts and
determining which set (if any) is lighter.

What about (3n − 1)/2 tarts?

John Seldon
This is a perennial problem and was presented to me as an example in
information theory. This allows one to dispense with long lists of tables and
weighings by rote.

The theory says that an experiment, in this case a weighing, yields
the optimum information if all outcomes are equally likely. With 12 tarts
there are 24 possibilities. Weighings can have one of 3 results. Set up an
experiment aiming to reduce the possibilities to 8. Easy—weigh 4 against 4.
Eight possibilities are left and the next experiment can be set up accordingly.

What about 13 tarts with 26 possibilities? Put 1, 2, 3, 4, 5 or 6 tarts
on each side of the scales. The respective possible results are {2 – left up,
2 – left down, 22 – unmoved}, {4, 4, 18}, {6, 6, 14}, {8, 8, 10}, {10, 10,
6}, {12, 12, 2}. In each case 10 or more possibilities remain; 10 cannot be
resolved in a further two weighings, so 13 tarts cannot be resolved in three
weighings.

What about 40 tarts with 80 possibilities? The most informative weigh-
ings are 13 or 14 tarts against each other yielding {26, 26, 28} and {28, 28,
24}. Thus 28 possibilities cannot be resolved in a further three weighings.

As a simple statement rather than a proof for larger n, note that the
results of weighings always yield an even number of possibilities. But 3n−1
divided into three even number partitions always includes one partition
greater that 3n−1 which cannot be resolved in n − 1 further weighings.
QED.

Police in Xiangzhou, China, who jailed the members of two prostitution
rings, said that all of the women were over 70 years old. ‘This is not just
a moral issue,’ a spokesman from the vice squad explained. ‘More seri-
ously, these people are clearly contravening the terms of their pension by
continuing to work.’ The oldest was 93. [Sent by EK.]
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Products of digits
David Singmaster

Here are some results on a problem I saw some time ago, but don’t remember
the source of. The original question began with an example for two digits.
Starting with 38, form the product of the digits, which is 24. Repeat, getting
8. The process now loops and we saw the iteration lasts for two steps before
this ending. Question – what two digit number has the longest iteration?

There are are two ways to attack this. One method is to start at the
end and work backward. For example, if we end at 2, we must have come
from 12 or 21. But 12 can come from 26, 34, 43, 62, while 21 can come
from 37, 73. Though the factoring and branching is awkward, it is small
enough to get the longest path fairly easily. The other method is to just
repeat forming the product of the digits for each number 0, 1, . . . , 99.

K = 2

10 32 34 23 1
77

K = 3

10 247 340 310 84 9
679, 688

K = 4

10 2759 3258 2590 1152 219 12
6788

K = 5

10 33821 35922 18354 9087 2409 377 20
68889

K = 6

10 402539 375227 123860 66772 24654 4488 2450
68889, 168889, 238889, 246889, 266688, 267799, 336888,
344889, 346688, 347799, 366779, 377779, 377889, 444689,
446668, 467789, 666778

K = 7

10 4619788 3658522 907620 503573 224610 41196 39452 5229
2677889, 2799999, 3477889, 3667788, 3679999, 4467789,
4666778, 6888999, 6999999
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I had the calculations for the first method for two digit numbers on
my desk for some time as I had thought of posing this on Puzzle Panel in
August 2003 but decided it was too much work for it. But I wondered if I
could extend this to three digits. But now 2 can arise from 12, 21, 112, 121,
211, etc. And one has to factor three-digit numbers. Hence this becomes a
formidable task to do by hand and rather messy to do by computer.

So I decided to use the second method and just let the computer iterate
the function: F (N) = product of the digits of N , until the result was < 10.
I could have much shortened the program and the output by observing that
one only needs to consider integers N whose digits are in non-decreasing
order. There does not seem to be any pattern, so I simply tabulate the
results, opposite, for K-digit numbers, K = 2, . . . , 7. Note that this really
means numbers with at most K digits.

The first row gives the number of values whose iteration has length L,
L = 0, 1, 2, . . . . Note that L = 0 if and only if N = 0, 1, . . . , 9. The total of
the entries in this row is 10K . Below this row, I list the values, with digits
in non-decreasing order, which give the maximum length.

Note that the maximum L fails to increase from K = 5 to K = 6.

Is there someone out there who is willing to continue the calculations?

London Mathematical Society
Popular Lectures 2004

This year’s LMS popular lectures will take place on the following dates.

Manchester – 6 May 2004

London – 11 June 2004

The speakers are

Professor Ken Binmore (University College London),

Big money mathematics,

Professor Helen Byrne (University of Nottingham),

Just a spoonful of maths helps the medicine.

For further information contact the local organizers: Manchester: Nige
Ray (nige@ma.man.ac.uk); London: Susan Oakes (oakes@lms.ac.uk), Lon-
don Mathematical Society, De Morgan House, 57–58 Russell Square, Lon-
don WC1B 4HS (tel: 020 7637 3686). Full details are available on the LMS
web site www.lms.ac.uk.
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Solution 194.3 – Sixteen lamps
There are 16 lamps of 1 ohm resistance wired up to a 1 volt
battery as in the circuit diagram on page 11, opposite. What
are the currents flowing through the bulbs when the switches
are closed as indicated?

ADF
I must admit that originally I had no idea how to deal with this kind of
problem other than by actually building the circuit and going round it with
a meter. But now I am enlightened.

We use Kirchhoff’s First Law. If you have never heard of Kirchhoff, or
his First Law, it doesn’t matter—common sense works just as well. Take
any point, P , on an electrical circuit. Then the total current flowing into P
equals the total current flowing out of P .

Let the voltages on the vertical wires be a, b, 1, c. Let the voltages on
the horizontal wires be d, e, 0, f . Let the current out of the battery be t.
Then the currents through the lamps are

a− d b− d 1− d c− d
a− e b− e 1− e c− e
a b 1 c

a− f b− f 1− f c− f

 .
For each of the eight distribution wires, choose a point on the wire and

equate current in to current out:

4a− d− e− f = 0, a+ b+ 1 + c− 4d = 0,
4b− d− e− f = 0, a+ b+ 1 + c− 4e = 0,
4− d− e− f = t, a+ b+ 1 + c = t,
4c− d− e− f = 0, a+ b+ 1 + c− 4f = 0.

Solving yields

a =
3

7
, b =

3

7
, c =

3

7
, d =

4

7
, e =

4

7
, f =

4

7
, t =

16

7
,

which give the currents shown in the diagram.

Clearly, it is possible to do the same kind of thing with any combination
of switch settings. For instance, as Keith Drever points out, if all the
switches are on, the circuit behaves as if all the lamps are wired in parallel.
The current is 1 amp through each lamp. The case where all the switches
are off is even easier.
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1�7 1�7 3�7 1�7

3�7 3�7 1 3�7

1�7 1�7 3�7 1�7

1�7 1�7 3�7 1�7

a b 1 c

d

e

0

f

Problem 197.1 – Consecutive integers
Roger Winstanley

Show that every even number which is not a power of two can be represented
as a sum of three or more consecutive integers. Thus 6 = 1 + 2 + 3, 10 =
1 + 2 + 3 + 4, 12 = 3 + 4 + 5, 14 = 2 + 3 + 4 + 5, etc. Which odd numbers
can be so represented?

ADF—We did something similar before (M500 114, 117). If you want
have a go at something completely different, try the following.

Problem 197.2 – Consecutive cubes
Which numbers can be expressed as a sum of two or more consecutive cubes?
For example, 9 = 1 + 8, 35 = 8 + 27, 36 = 1 + 8 + 27, etc.
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Solution 193.1 – Smallest square
Given a convex quadrilateral Q with area A and diagonals r, s,
show that the smallest square containing Q has area at least

r2s2 − 4A2

r2 + s2 − 4A
.

[As we shall see, the wording of the problem should not be taken
too literally.]

David Porter
There is a problem with this problem, namely that what we are asked to
prove is not true for all convex quadrilaterals but only for some.

First a basic result. If α is the acute angle between the diagonals r and
s of a convex quadrilateral then the area A is given by

A =
rs

2
sinα.

This shows that given r, s and A we have defined the angle between the
diagonals but have not defined the point where the diagonals cross.

Let B be the area of the minimum circumscribing square so what we
are being asked to prove is that

B ≥ r2s2 − 4A2

r2 + s2 − 4A
.

In the special case when r = s this becomes

B ≥ r4 − 4A2

2r2 − 4A
=

r2

2
+A,

which is the sum of the area of the square with diagonal r and area of the
quadrilateral.

Now consider what happens if we make our quadrilateral a nearly square
rectangle. The above relationship would predict that the smallest square
containing Q would have an area of at least twice that of Q when it is
perfectly obvious that square obtained by extending the shorter sides of the
rectangle slightly would ‘do the business’ and have a much smaller area.

In fact what the expression has given is the area of a circumscribing
square touching all four corners of the rectangle and with the diagonals of
the square coinciding with the two twofold axes of symmetry of the rect-
angle. For our nearly square rectangle (α close to a right angle) this is
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obviously the wrong orientation but for a long thin rectangle (α close to
zero) it would be perfect. Somewhere between α = 0 and α = π/2 the
orientation of a rectangle that gives the minimum square will flip from one
of these to the other. A fairly simple bit of trig shows the two areas to be
the same when α = π/4.

To try and see what is going on let’s consider the slightly more general
set of quadrilaterals where the only restriction is that the diagonals bisect
each other, i.e. the parallelograms. With no further loss of generality we
can assume r ≥ s.

Diagram 1

w

hΑ

Diagram 2

Α
Β

Diagram 3

Α
Β

Diagram 4

Α
Β

Now if we start from the position in Diagram 1 and rotate the parallel-
ogram anticlockwise about its centre and at the same time adjust the size
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of the circumscribing square so that the ends of the long diagonal continue
to lie on the vertical edges, the size of the square will reduce and one of
two things will happen. Either at some stage the horizontal edges of the
square will encounter the ends of the short diagonal, or the parallelogram
will have been turned through an angle of π/4 and the long diagonal will
coincide with a diagonal of the square. Whichever happens, any further
anticlockwise rotation will result in an increase in the size of the circum-
scribing square, i.e. we have reached a local minimum for the size of the
circumscribing square. Any circumscribing square must have a diagonal at
least as long as the longer diagonal of the parallelogram (i.e. must have a
minimum area of B0 = r2/2); so there is no need for further analysis of the
latter case. For the former case the position is now as shown in Diagram 2
and we have that

w = r cosβ, h = s sin(α+ β);

but h = w, so on expanding the sin we get r cosβ = s(sinα cosβ +
sinβ cosα). Hence tanβ = (r − s sinα)/(s cosα) and, since cos2 β =
1/(1 + tan2 β), we have

cos2 β =
s2 cos2 α

r2 − 2rs sinα+ s2 sin2 α+ s cos2 α
=

s2(1− sin2 α)

r2 + s2 − 2rs sinα
.

So, since the area of the square (B1) is w2 = r2 cos2 β and remembering
that 2A = rs sinα we have that

B1 =
r2s2 − 4A2

r2 + s2 − 4A
.

Now if we could say that B = B1 for all parallelograms, then we might
argue as follows. The parallelogram is the most ‘compact’ convex quadri-
lateral with area A and diagonals r and s so any other convex quadrilateral
with this specification will require the smallest square containing it to be
at least this size and hence B ≥ (r2s2 − 4A2)/(r2 + s2 − 4A) for all convex
quadrilaterals. Unfortunately, we have seen that this is not true.

Let’s now step back to Diagram 1 and consider what happens if we
rotate our parallelogram clockwise instead of anticlockwise. Again there
are two possibilities. The first is that we again turn through π/4 without
the shorter diagonal encountering an edge of the circumscribing square.
The second possibility is that we reach a point where the short sides of
the parallelogram lie on the vertical sides of the square; if in doing this we
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have turned through an angle of less than α, we will again have reached a
position of local minimum in square size (Diagram 3). In this case we have
that

w = r cosβ, w = s cos(α− β);

so on equating and expanding the cos we get r cosβ = s(cosα cosβ +
sinβ sinα); hence tanβ = (r − s cosα)/s sinα and

cos2 β =
s2 sin2 α

r2 − 2rs cosα+ s2 cos2 α+ s sin2 α
=

s2 sin2 α

r2 + s2 − 2rs cosα
.

So since the area of the square (B2) is w2 = r2 cos2 β and remembering that
2A = rs sinα we have that

B2 =
4A2

r2 + s2 − 2
√
r2s2 − 4A2

.

Not quite such an elegant relationship as before.

Finally, if β ≥ α (Diagram 4) then a local minimum has not been
reached and further rotation will continue to reduce the size of the square
until eventually the short diagonal will span the vertical sides of the square
and the long diagonal the horizontal sides. The situation will then be as if
Diagram 2 had been rotated by π/2 clockwise and so this is not a new local
minimum.

What, if anything, can be salvaged from all this? I suspect that the
best we can do for a lower limit on B is

B ≥ max{B0, min{B1, B2}},

and even this will be an increasingly bad estimate of B as the crossing point
of the diagonals moves away from their centres.

Solution 193.5 – Dissect a triangle
Dissect an equilateral triangle into three triangles whose areas
are in the ratio 3:3:2 and all sides of all triangles are integers.

David Porter
Let the triangle have sides of length 8 units with A the apex and B and C
the corners of the base. Let D be the mid-point of BC and let E and F
be the points on BC one unit from D. Then AD = 4

√
3 and ED = 1. So

AE =
√
AD2 + ED2 =

√
48 + 1 = 7. Thus the three triangles ABE, AEF

and AFC all have integer sides and since they all have the same height (AD)
their areas are proportional to their bases BE = FC = 3 and EF = 2.
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Prime prime
Tony Forbes
In M500 194 Eddie Kent asks ‘Can you find a prime number from which
successive right-hand digits can be stripped off, leaving a prime number
at each step?’ However, there is (in at least my opinion) a much more
interesting problem: Find long chains of primes, p1, p2, . . . , pn, linked by
the condition pi−1 = [pi/10], i = 2, 3, . . . , n. This is the same as Eddie’s
problem except we don’t require the sequence to start at a single-digit prime.

The best I can manage is this sequence of 12 primes:

1457011 14570117399 145701173999399
14570117 145701173999 1457011739993993
145701173 1457011739993 14570117399939939
1457011739 14570117399939 145701173999399393

Can anyone do better? Notice that once you hit a prime which is ≡
2 (mod 3) the numbers thereafter must end in 3 or 9.

Now consider changing the number base from 10 to 2. Unlike the base-
10 case, interest in the binary version of the problem seems to extend beyond
the realm of mathematical curiosities. A sequence of n primes, p, 2p + 1,
4p + 3, . . . , 2n−1p + 2n−1 − 1 is known in the literature as a Cunning-
ham chain of order n. The longest to date is a 16-chain, starting with
810433818265726529159, discovered by Paul Jobling in 2002.

There is a connection with primality testing. For instance, one way of
proving that P is prime involves factorizing (P − 1)/2. If Q = (P − 1)/2
turns out to be prime, the problem has been reduced by half. Conversely,
once the primality of the smallest element of a Cunningham chain has been
established, one can deal with the other members by working up the chain.

It is also worth mentioning that Cunningham chains of order 2 feature
in Sophie Germain’s proof of a special case of Fermat’s Last Theorem. If p
and 2p + 1 are prime and if xyz is not a multiple of p, then xp + yp = zp

has no non-trivial solutions.

Finally, to answer to EK’s original question you can verify that these
eight numbers,

3, 37, 373, 3733, 37337, 373379, 3733799, 37337999,

are prime and that 373379991, 373379993, 373379997, 373379999 are not.

Correction. M500 195, page 28, line 4. Delete the words ‘do not’.
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Solution 193.2 – Concave to convex

Start with a non-convex
quadrilateral. By removing
some bits of it you can end
up with a convex polygon.
What is the minimum area
you have to remove?

Θ

l

r

s

A B

C

P

David Singmaster
As shown, one wants the line l through P which trims off the least area.
It is easier to look at maximizing the triangle at A and this simplifies the
problem to the following. Given an angle A and a point P inside it, find the
line l through P which forms the largest triangle at A. The effects of the
limiting positions determined by points B and C are considered afterward.

Consider a line l through P meeting the sides of the angle. Let r, s
be the distances along l from P to the sides of the angle and let θ be the
angle between l and the lower side of the angle. A small turn of the line
l corresponding to a small increase ∆θ in the angle causes the area of the
triangle to increase by an approximate amount ∆A = r2∆θ/2 − s2∆θ/2.
From this, we see that if r ≥ s, then we want to increase θ; otherwise, we
want to decrease θ. Taking these to the extremes, we get infinite area when
the line l is parallel to either side of the angle. However, one may wonder
if r = s can occur.

Let d, e be the perpendicular distances from P to the sides of the angle
and let the size of angle A be α. Then r = d csc θ, s = e csc(θ − α). These
are equal iff d sin(θ − α) = e sin θ. A little inspection of such curves shows
that these curves cross just once. Hence our area A has one minimal value
for some θ and increases in both directions from this minimum. So for
the quadrilateral problem, the maximum area A must occur at one of the
limiting situations where l passes through B or C, and one has only to
compare these two cases.

Problem 197.3 – Cot series
Sebastian Hayes
Show that for positive integer n,

cot
π

4n
− cot

3π

4n
+ cot

5π

4n
− · · · ± cot

(2n− 1)π

4n
= n.
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Solution 194.4 – Getting dressed
Your wardrobe consists of h hats, b bras, p panties, d dresses,
s pairs of socks and f pairs of shoes. In how many ways is
it possible for you to get properly dressed? Assume (i) you
wear one of each type of clothing; (ii) underwear goes on before
dress, and sock before shoe; (iii) socks and shoes are paired; (iv)
chirality is relevant for shoes but not socks.

ADF
The answer is 6720h b p d s f .

First assume that you have chosen each item of clothing. We want
to determine the number of ways of putting them on. Split them into
three independent subsets: head-wear = {hat}, body-wear = {bra, panties,
dress}, footwear = {left sock, right sock, left shoe, right shoe}. Assume
that you have already chosen orderings for body-wear and footwear, say the
sequences just given. Assume also that you have designated which sock is
to go on the left foot.

We now ask: In how many ways can you splice (bra, panties, dress)
into the sequence (left sock, right sock, left shoe, right shoe)? There are
three items and five available slots. We could choose to put the bra, panties
and dress into three different slots, say, for example, (bra, left sock, right
sock, panties, left shoe, dress, right shoe). There are

(
5
3

)
= 10 ways of doing

this. Or we could put the bra into one slot and the panties and dress into a
second slot; that’s

(
5
2

)
= 10. Or we could put the bra and panties into one

slot and the dress into another; that’s also
(
5
2

)
. Or we could put all three

into the same slot; 5 ways. Adding them together makes 35.

There are two valid orderings of bra, panties, dress, namely (bra,
panties, dress) and (panties, bra, dress). And, as you can easily verify,
there are six ways to sequence the footwear. Hence there are 420 = 35 · 2 · 6
ways of dealing with the seven non-hat items of clothing.

Since you can now place the hat into any one of eight slots, the number
of ways of getting dressed from a given set of clothes is 8 · 420 = 3360.

To get the final answer we must multiply by the numbers of ways of
choosing the items of clothing. For the hat, bra, panties and dress, these
are clearly h, b, p and d, respectively. For the first sock it is 2s but for the
first shoe it is f . For the second sock and the second shoe it is 1. (Here
we are assuming that your footwear comes in pairs which you would never
consider splitting.) After doing the multiplication we get the stated result.
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Now that we have explained how to do this kind of combinatorial enu-
meration, have a go at solving a similar problem for your own wardrobe.
Make up your own rules if you want. And you don’t have to adhere to
our sequencing restrictions. Indeed, at a mathematics summer school I wit-
nessed someone giving a live demonstration that that it is possible to remove
your bra before taking off your dress. Presumably, therefore, the inverse is
possible.

If you get any interesting results, do send them in.

Problem 197.4 – Travels
Estimate how far you have travelled during the last twelve months: (i)
relative to your home; (ii) relative to the Sun; (iii) relative to the centre
of the Milky Way; (iv) through space-time, relative to your home twelve
months ago.

Estimate (ii) or (iii) can be useful as a suitable riposte to those people
who insist on trying to impress you with tales of their exotic holidays in
far-off places. On the same scale that six-week adventure trek through the
rain forests of South America, or whatever, should generate about the same
level of excitement as your last trip to the local supermarket!

Problem 197.5 – Toilet paper
Find a formula that relates the radius of a toilet roll (R), the total length
(L), the paper thickness (t) and the radius of the cylindrical cardboard thing
at the centre (r).

Mathematics in the kitchen – III
For this experiment you will need an egg, some water, a sheet of paper and
a smooth, level tabletop.

Spread the paper on the tabletop, dip the egg in the water so that it is
completely covered and roll it along the table. You should then see a wavy
line, being the trace of the point of contact between the egg and the paper
as the egg wobbles its way across the table. We ask: What is the function
that describes the trace?

As the lopsidedness of a typical hen’s egg introduces an extra level of
complication, you might prefer to try the experiment with a more regular
ovoid object such as a football, rugby or American.

As with all scientific experiments, please take care. Do not perform the
experiment if you are unwilling to take responsibility for accidents.



Page 20 M500 197

Under the skin
Colin Davies
I read an article about a married couple who lived in England in the seven-
teenth century and who had several children. The article stated that after
an interval of 300 years, almost everybody in Britain must be descended
from them. That statement struck me as unlikely to be correct.

Many years ago, I used to know a fellow who claimed that he was
descended from William the Conqueror. This claim struck me as very likely
to be correct. I decided to investigate three problems:

1. If you take two British resident people at random (but ex-
clude obvious relatives and recent immigrants), how far back in
time would you have to go to be 99 per cent certain that they
have a common ancestor?

2. If you are of apparent British ancestry, what in the probabil-
ity of having any particular historical person as an ancestor?

3. How closely is any particular person in Britain likely to be
related to anybody else? (But again excluding close relatives
and recent immigrants.)

Amongst the more obvious criteria, these problems depend on the length of
a generation and the past population of Britain. I will take thirty years as
an average generation.

The population of Britain is very uncertain before the first census in
1841, but I have taken figures from A History of England by K. Feiling, and
A Concise Economic History of Britain by J. Clapham, and interpolated
the figures a bit. The table at the end shows the results.

Problem 1. Consider a person born in 1980. Going back ten gener-
ations (= 300 years), to 1680, that person will have 210 = 1024 great8

grandparents. The population of Britain was six million in 1680, so the
probability of two people in Britain having a common ancestor in 1680 is
1− ((6 · 106− 1024)/(6 · 106))1024 = 0.16. By this, I mean that 16 people in
every hundred alive in 1980 will have had a common ancestor in 1680.

Before 1680, the probability of having had ancestors in common in-
creases rapidly. The table at the end of this article has been worked out
using the probability formula above, and it shows that it is almost inevitable
that two people taken at random in Britain will have had a common ancestor
12 or 13 generations ago, around 1600.

There are objections to this simple model. Parents in other countries are
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not considered and one person’s great8 grandparent is likely to be another
person’s great9 or great7 grandparent, etc. The possibility of foreign parents
suggests that the simple-model probability is too high and the simultaneous
existence of different generations down different lines suggests it is too low.
Furthermore, prior to about 1250 the required number of ancestors exceeds
the population of the country. Obviously the same ancestor is cropping up
several times down different lines of descent. I don’t know what effect this
has. It would be useful to have a better mathematical model, if there is
one.

Problem 2. This seems to be equivalent to an ‘urn model’, in which an
urn holds s balls, so that s represents the population, and a ball is taken at
random and replaced. After n takings and replacements, the probability of
any particular ball being picked at least once is 1− ((s− 1)/s)n.

The table shows that between 1350 and 1320, call it 1340, the number of
ancestors will be the same as the population of 2.5 million. So if we say that
in 1340 there were 2.5 million people, and each of us now has 2.5 million
ancestors, then in the formula 1−((s−1)/s)n we can put s = n = 2.5 million,
and calculate that the probability of Edward III being your ancestor (down
one or more lines) works out at 0.632. Going back another 300 years, the
table shows that the probability of anybody now living not being descended
from William the First is less than 10−99.

For practical purposes, everybody in the country must be descended
from William I.

I can see two objections to this model. Firstly it does not take the lack
of mobility of population into account. I suspect that in olden times, people
tended to stay in much the same place for generations, and one would not
get a good mix of population. This is equivalent to the balls in the urn not
being properly mixed during sampling. The second objection is that not
everyone had children.

Problem 3. First cousins have grandparents in common; second cousins
have great grandparents in common. The table shows that everybody has
an ancestor in common after 12 or 13 generations, so again excluding recent
immigrants, everybody in Britain is at least an 11th cousin of everybody
else, and most people are more closely related than that.

The table shows this data together with the number of ancestors and
likely British population from 1800 to 1050. The probability of two random
people having a common ancestor is very low after 1740, but a near certainty
before 1590. The probability of being descended from a particular person
living after 1500 is very low, but before 1260 is a near certainty.
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I would be interested to have comments on the population figures I have
given, and suggestions for better mathematical models of populations and
samplings.

Generation Ancestors Year
Population
millions

Probability of two people
in 1980 having at least
one common ancestor

6 64 1800 11 0.00037
7 128 1770 8 0.0002
8 256 1740 8 0.00082
9 512 1710 7 0.037
10 1024 1680 6 0.016
11 2048 1650 5.5 0.53
12 4096 1620 5.5 0.95
13 8192 1590 5 0.999998

Generation Ancestors Year
Population
millions

Probability of a partic-
ular historical individ-
ual being an ancestor of
a person alive in 1980

14 16384 1560 4.5 0.0036
15 32678 1530 4 0.0081
16 65536 1500 3.5 0.019
17 131072 1470 3 0.043
18 262144 1440 2.5 0.1
19 524288 1410 2.5 0.19
20 1048578 1380 2 0.41
21 2097152 1350 2.5 0.57
22 4194304 1320 2.5 0.81
23 8388608 1290 3 0.94
24 16777216 1260 2.5 0.9988
25 33554432 1230 2.5 0.999998
26 67108864 1200 2 1
. . . . . . . . . . . . . . .
31 2147483648 1050 2 1

This article is an extensively rewritten version of an essay that originally

appeared in M500 87 (April 1984).
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Problem 197.6 – 36 circles
Tony Forbes
The circle in the middle has radius 1. Each of the five circles adjacent to
it has radius a. The ten circles in the next ring have radius b. The twenty
circles in the outer ring have radius c. What are a, b and c?

Sheila Bear
With great sadness we have to inform you that Sheila Bear, who was an
officer of the M500 Society from 1986 to 1994, died at the Churchill Hospital,
Oxford, on 11 March 2004 after a long illness. Sheila helped to organize the
1986 and 1987 Revision Weekends and she occupied various secretarial posts
from 1987 to 1994. She was a great Committee member, and we always got
on with her very well. Her contribution to the Society was much appreciated.
We offer our sympathy to her family and friends.
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Some maths from even longer ago
Dick Boardman
Bob Escolme (‘Some maths from long ago’, M500 194) uses co-ordinate
geometry and calculus to find the tangents and normals to conics. However,
some of the results predate both these techniques. The following proof of
the focal reflection/focal distance property of an ellipse is adapted from the
book Feynman’s Lost Lecture, by Goodstein and Goodstein, who attribute
it to Isaac Newton and say that a diagram similar to the one below appears
in his Principia Mathematica.

Statement Consider the curve which is the locus of a point P , such
that the sum of its distances from two fixed points is a constant. The lines
joining P to the fixed points make equal angles to the tangent to the curve
at P .

Construction Given: two points F1 and F2 and a point P . Draw a
circle, centre F2, radius PF1 +PF2. Extend the line F2P to meet this circle
at Q. Draw the line QF1. Draw a line through P perpendicular to QF1 and
meeting it at R.

F1 F2

P

Q

R

S
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Proof Consider triangles PQR and PF1R. Then PQ = PF1 (by
construction), ∠PRQ = ∠PRF1 = 90◦ (also by construction) and PR is
common. Hence these triangles are congruent and therefore angles QPR
and F1PR are equal. Also ∠QPR is equal to the angle between PF2 and
RP extended.

It remains only to prove that RP is a tangent to the curve to complete
the proof. Choose any point S on PR. Then triangles QSR and F1SR
are congruent, as before. So SF1 = SQ. However, QS + SF2 > QF2 by
the triangle inequality. Thus the line RP meets the curve only at P and is
therefore a tangent to the curve. QED.

The normal to the curve at P is parallel to QF1.

The book referred to above is fascinating in its own right. It gives a
proof of Newton’s famous result, proving Kepler’s laws of planetary motion.
This proof uses only the methods available to Newton, excluding calculus.
Richard Feynman, the author of the original lecture, a world class mathe-
matician and Nobel prize winner, says he can’t follow the proof in Newton’s
Principia Mathematica and has had to supply a crucial section himself! If
today’s best mathematicians cannot follow Newton’s proof, how could the
mathematicians in Newton’s time?

Chocolate math
Try this it works, weird!! It only takes a minute. This is pretty neat how it
works out. DON’T CHEAT BY SCROLLING DOWN FIRST It takes less than a
minute....... Work this out as you read. Be sure you don’t read the bottom until
you’ve worked it out! This is not one of those waste of time things, it’s funny.

1. First of all, pick the number of times a week that you would like to have
chocolate. (try for more than once but less than 10)

2. Multiply this number by 2 (Just to be bold)

3. Add 5. (for Sunday)

4. Multiply it by 50 – I’ll wait while you get the calculator................

5. If you have already had your birthday this year add 1753.... If you haven’t,
add 1752..........

6. Now subtract the four digit year that you were born.

You should have a three digit number.... The first digit of this was your
original number (I.e., how many times you want to have chocolate each week).
The next two numbers are......... YOUR AGE! (Oh YES, IT IS!!!!!) THIS IS
THE ONLY YEAR (2003) IT WILL EVER WORK, SO SPREAD IT AROUND
WHILE IT LASTS. IMPRESSIVE, ISN’T IT?

[Sic. Reproduced from something that appeared in Colin Davies’s in-box.]
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Solution 191.4 – What’s next?
Here are the first few terms of an infinite sequence, Sn:

10, 10, 11, 12, 15, 16, 21, 21, 23, 27, 27, 2B, . . . .

(i) What’s the next term? (ii) What’s the rule? (iii) Prove that
the terms always have two digits. (iv) What can you say about
the behaviour of the first digit of Sn as n→∞?

Tony Forbes
We have not had anything on this. However, it looks too interesting to
ignore and, besides, I need to fill this page to complete the task of editing
M500 197.

It is the sequence of primes as represented in different number bases;
Sn is the nth prime in base n + 1. Thus 2 = 2 + 0, 3 = 3 + 0, 5 = 4 + 1,
7 = 5 + 2, 11 = 6 + 5, 13 = 7 + 6, 17 = 2 ·8 + 1, 19 = 2 ·9 + 1, 23 = 2 ·10 + 3,
29 = 2·11+7, 31 = 2·12+1, 37 = 2·13+11, and so on. Obviously we have to
use symbols other than numerals to encode values greater than 9: A = 10,
B = 11, etc. What happens after Z = 35 I leave to your imagination.

Denote the nth prime by Pn and the number of primes up to n by π(n).
(They are almost inverse functions: π(Pn) = n for all n, Pπ(n) = n for prime
n but Pπ(n) < n for composite n.) Then (iii) asserts that

there exists a, b, 0 ≤ a, b < n+ 1, such that Pn = a(n+ 1) + b. (1)

The prime number theorem states that π(n) ∼ n/ log n and hence (1) should
follow easily. However, the PNT is only an asymptotic result (the symbol
‘∼’ is loosely interpreted as ‘tends to’) whereas what we really want is an
inequality involving Pn.

Instead we use a form of Tchebychev’s theorem:

π(n) >
1

6

n

log n
for n > 1. (2)

The proof of (2) is actually quite tricky; see, for example, George Andrews,
Number Theory (Dover). But (2) implies π(n) >

√
n for n ≥ 5. Indeed,

n/(6 log n) >
√
n for n ≥ 2109 and π(n) >

√
n for n ∈ [5, 2108] by trial.

Hence Pn < (n+ 1)2 (for all n ≥ 1) and (1) follows immediately.

Replacing n in (2) by Pn and using Pn < (n + 1)2, we obtain Pn <
12(n+ 1) log(n+ 1). Therefore in (1) we have a significantly tighter bound
for the first digit: a < 12 log(n+ 1). Furthermore, from the prime number
theorem it follows that a/ log n→ 1 as n→∞. This answers (iv).
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Letters to the Editor

Ellipsoids
Dear Tony,

Firstly, Sebastian Hayes, in his article in M500 193, seems unhappy
about being a sceptical, non-believing mathematician. In my humble opin-
ion, this is excellent thing to be! When you use mathematics to solve a
problem, you need an underlying theory and you must make simplifications,
assumptions and measurements that have a limited accuracy. Deficiencies
in any of these will render the mathematical solution valueless. Hence, any
solution suggested by mathematics must always be checked very carefully
against the original problem and every effort should always be made to find
checkable cases. The situation with regard to computer-produced solutions
is even worse. All the above caveats apply plus the additional possibility
that the computer is not actually calculating what was intended. Bugs in
computer programs are very common! So long live sceptical mathematicians
and computer users.

Problem 194.2 – Surface area of an ellipsoid. My copy of Schaum’s
Mathematical Tables gives volumes and surface areas for a number of dif-
ferent solids; however, for an ellipsoid the surface area is left blank. No
reason is given, but I suspect that no simple solution exists. I set up the
integral in Mathematica but this program could not find a symbolic solu-
tion. However, if I set two of the axes equal, so that the ellipsoid became a
solid of revolution, I could integrate it and produce a somewhat unpleasant
expression. [See page 1.]

For individual cases, you can evaluate the (general) integral numerically,
or you can replace the surface with a mesh of triangular facets and add up all
the areas of the triangles. Alternatively you could use the sort of reasoning
that makes mathematicians shudder whenever they talk to engineers.

Suppose you actually need an answer; for example, you might wish to
roof over an elliptical sports stadium with an ellipsoidal roof and want to
have an approximate figure for the area of sheeting and the weight that
the foundations need to support. You could work out the volume of the
ellipsoidal solid and then reduce the major axes by the skin thickness and
work out the volume of the smaller ellipsoidal solid. Subtracting the two
will give you the volume of the roof. Dividing by the volume of a sheet will
then give you a very rough estimate of the number of sheets. Even if you
had an accurate figure for the surface area, you would still have to make
allowances for joints and supports; so why bother? Ugh!!

Dick Boardman
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What’s next?
Dear Eddie and Tony,

Many thanks for M500 195. Surprised to see that I had submitted the
only solution for ‘50 pence’, however nastily it was got.

I took the first question in ‘What’s next’ seriously, and asked the advice
of my classical linguist friend Mindaugas Strockis. On the basis of what
he says (with selective use of sources and a little fudging) the sequence of
multiplets should be: 2 duplets, 3 triplets, 4 quadruplets, 5 quintuplets,
6 sextuplets, 7 septuplets, 8 octuplets, 9 novemplets, 10 decemplets, 11
undecimplets, 12 duodecimplets, 13 tredecimplets, 14 quattuordecimplets,
15 quindecimplets, 16 sedecimplets, 17 septendecimplets, 18 octodecimplets
(or duodevigintiplets), 19 novendecimplets (or undevigintiplets), 20 vigin-
tiplets. (Note the change from decem- to -decim- in 11+.)

And here is my continuation of the π poem. It seems sensible to repre-
sent a 0-letter word by π itself, a non-member of the roman alphabet.

Sir, I seek a rhyme excelling 3.14159
In mystic force and magic spelling. 265358

Celestial spheres elucidate, 979
But my own feelings can’t relate 323846

To digits that are ill disposed 264338
And in eternal regiments posed. 32795

π, an unending rambling line, 02884
A reckoning lacking a design, 19716

Ineffable and bothering— 939
Evaporate, you ghostly thing! 9375

O π! Cease worrying me, π— 105820
Irregular inanity! 97

Best wishes,

Ralph Hancock

ADF writes—Excellent!

We also had responses from a number of people who provided various
alternative offerings that they found on the WWW. There is no point re-
producing them here because all you have to do is enter ‘pi mnemonics’,
or something similar, in your favourite search engine. I also tried ‘celestial
spheres elucidate’ and I was quite amazed at the number of hits, mainly
from astrological sites. I suppose I shouldn’t have been.
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I am specifically interested in Sir, I seek because lines 1–4, which I
have known since childhood, are permanently engraved in my brain. It is
the poem that I use if ever I feel the urge to rattle off the first 21 digits of π. I
must have read it in a book somewhere but the precise reference is lost in the
mists of time. It is absent from the WWW—although there is an example
starting almost identically with ‘Sir, I have a rhyme excelling’ but deviating
significantly at the fourth line. Anyway, I am extremely grateful to Ralph
for providing eight original new lines—and his device for representing zero
is surely a stroke of genius!

Generally, π mnemonics do not exceed 32 words; so they don’t have to
worry about encoding zero. There is a notable exception.

Robin Marks writes—But why stop at silly poems? Let’s go for a
really silly story. It comes from The Mathematical Intelligencer 8, No. 3,
56–57. The story—which is a story about itself—contains the first 402
decimals of π. A punctuation mark other than a full stop represents a zero.
Words which are longer than 9 letters represent two consecutive digits (for
example, a ten-letter word represents the two digits 1, 0). A numeral stands
for the same digit in the expansion (surely this is cheating).

The story begins: ‘For a time I stood pondering on circle sizes. The large
computer mainframe quietly processed all of its assembly code. Inside my entire
hope lay for figuring out an elusive expansion. Value: pi. Decimals expected
soon. I nervously entered a format procedure. The mainframe processed the
request. Error. I, again entering it, carefully retyped. . . . ’

And concludes: ‘. . . There a narrative will I trust immediately appear, pro-
ducing fame. THE END.’

At least the author didn’t reach decimal place 601, where we get 000.
Or decimal place 772, where we encounter 9999998!

ADF again—After consulting my copy of the Intelligencer volume
quoted by Robin, I can confirm the existence of ‘Circle Digits: A Self-
Referential Story’ by Michael Keith. I noticed that in the printed version of
the story it is written: ‘... First number slowly displayed on the the flat screen
– 3. Good. ...’ (sic), and for a time I wondered if the repeated definite article
was actually represented in the π sequence. Fortunately it’s only a misprint;
the correct digits for that part of the story are indeed 56692346034.

Scorer – Mervyn, you require two. Commentator 1 – Which way will he go?
Commentator 2 – Double-one, I should think.

[World Darts commentary, BBC2, 8/1/2004. Spotted by JRH.]
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