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The Gnomon:
√
2 Ancient Greek calculator?

Sebastian Hayes
Ironically, the theorem which is forever associated with the name of
Pythagoras undermined the ‘numerical paradigm’ which he had master-
minded and paved the way for the ‘geometric paradigm’ associated with
Plato and which was destined to replace it.

For it soon became clear that only certain triangles satisfied the re-
quirement a2 = b2 + c2 exactly. Even worse was the realization that, in
the simplest possible case, that of an isosceles right-angled triangle, the
diagonal was ‘incommensurable’ with its sides! The now familiar proof of
the irrationality of

√
2 (as we would put it) is cited by Aristotle: it is a

reductio ad absurdum argument showing that, with a, b relatively prime if
a2 = 2b2, or 2 = (a/b)2, then b must be both odd and even, which is impos-
sible. We do not know if this argument goes back to the time of Pythagoras
and, to me, the neat—rather too neat—logical style points to a much later
date. Early societies prefer direct proofs to proofs by contradiction (as I do
myself) and, indeed, some people think that the very idea of mathemati-
cal proof is a 6th century BC Greek invention. A scholium (commentary)
to Euclid Book X states that ‘the Pythagoreans were the first to address
themselves to the investigation of incommensurability, having discovered it
as the result of their investigation of numbers’ (T. L. Heath, A History of
Greek Mathematics). Note that the commentator speaks of ‘investigation of
numbers’ not geometrical investigations. It seems to me much more likely
that the Pythagoreans based their conclusion on a property of ‘square’ and
‘rectangular’ numbers, namely that a rectangle AD can only be transformed
into a square, m2, if A = h2, D = l2. This excludes at one fell swoop all
cases where a2 = nc2 and n is not itself a square number.

Be that as it may, the Pythagoreans almost certainly had a special
method for engendering Pythagorean triples and similar sets of numbers.
In a famous passage of The Republic Plato discusses ‘geometric numbers’,
making a hard and fast distinction between what he calls the ‘irrational
diagonal’ of a square side 5, and the ‘rational diagonal’, which is 7, the root,
not of 2 · 52 but of 2 · 52 − 1. The passage suggests that the Pythagoreans
knew the first terms of the series a2 = 2c2 ± 1 which Theon of Smyrna
actually provides some centuries later.

Although not himself a mathematician, the giant figure of Plato strad-
dles the history of mathematics like the Colossus of Rhodes. For Plato
resolved the conflict between arithmetic and geometry by a separation of
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the spheres: geometry concerned itself with a transcendental reality of which
the physical world was at best a poor imitation while arithmetical number
was restricted to the mundane everyday world and essentially ‘the affair of
craftsmen and traders rather than philosophers’.

By Euclid’s time, geometry had so completely swamped arithmetic that
most people today, flipping through Euclid’s Elements, do not realize that
he actually devoted three whole books to Number Theory and that a good
deal of important number theoretic theorems can be discerned, like extinct
insects trapped in amber, embedded in the strictly geometric books as well.
Euclid perversely insists on presenting numbers in his (sparse) diagrams
as continuous line segments instead of dots or dashes and he scrupulously
avoids giving any numerical values whatsoever almost as if he is afraid of
contagion.

Certainly, the early Pythagoreans did not employ logical/geometric rea-
soning à la Euclid to deliver particular sets numbers such as Pythagorean
triples. So how did they do it? Probably by using ‘gnomons’.

A gnomon was originally a sort of set-square that could be stood on
its edge and used to measure the lengths of shadows—present-day sundials
have a ‘gnomon’ on the top though the shape is more complicated. Thales
is supposed to have used a gnomon to estimate the height of the Great
Pyramid by employing properties of similar triangles and it was presumably
measurements of noonday shadows at places on the same longitude that led
the Pythagoreans to conclude that the Earth was a sphere suspended in
space.

But the gnomon was important in
number theory as well since sets of
gnomons put together—or drawings of
them—exhibit many important arithmetic
properties of the integers.

Simply by observation, the early Greek mathematicians deduced that
adding on a gnomon, the outer inverted L border, ‘preserves the square
form’ and, more significantly, since the gnomon is always odd, that The
difference of two successive squares is always an odd number. And someone
else had a Eureka moment when he (or she, for the Pythagoreans accepted
women into the community as well) realized that If the gnomon is itself a
square, we have a Pythagorean triple (Note 1).

The gnomon representation, sort of nomograph of the time, can be
applied to the problem of the diagonal of a unit square. A cursory exami-
nation of squares provides us with two ‘near misses’ to the

√
2 case, namely



M500 253 Page 3

32 = 2 ·22 + 1 and 72 = 2 ·52−1. Examination of larger squares would have
given scribes and hermits reason to suspect that there were any number of
cases that came as close as a single unit. So it was all a matter of deriving a
procedure that would generate such a sequence and this I decided to do for
myself using only the sort of visual or concrete methods of the time though
working with representations of gnomons rather than actual ones (because
the areas rapidly get too large). I hit on the following diagram.

122

122

52

52

22

22

12

12

1

41 412 = 2 · 292 − 1

29

17 172 = 2 · 122 + 1

12

7 72 = 2 · 52 − 1

5

3 32 = 2 · 22 + 1

2

1

The principle of formation can be deduced from the first two ‘true’
examples, 32 = 2 · 22 + 1 and 72 = 2 · 52 − 1. If we make the ‘inner square’
of the first example the top left hand corner square of the next gnomon
and repeat, we have the next pair of ‘doubling squares’. Continuing in
this way, it becomes apparent that, if one scales down, one has a method
for making the error in a2 = 2b2 as ‘small as we please’ to use the 19th

century expression (Note 2). Not only does such a mathematical procedure
deliver actual numbers that a craftsman could use but, more significantly, it
embodies the suggestive idea of progressive approximations to an idealized
configuration. The algorithmic process has a thoroughly modern feel and
one can imagine the ancient-world equivalent of a PC, a household slave,
being ‘programmed’ to continue such a diagram indefinitely without really
understanding what was happening.
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The complete precedence of geometry over arithmetic which seems to
have become de rigueur by the Alexandrian era must have seriously inhibited
mathematicians from investigating further not only irrationals but series
generally. For the ‘problem’ had been solved once and for all: hence no
point in bothering about progressively more accurate ‘solutions’. And as a
matter of fact, we have extremely few good Greek estimates of ‘irrational
numbers’ (though practising engineers must have had their own procedures
and tables).

All this had immense repercussions and may well have been an impor-
tant factor in holding back Greece, or rather Alexandria, from entering the
industrial era directly (Note 3) and thus dispensing with a troubled inter-
lude of nearly one thousand six hundred years! Hero of Alexandria was well
acquainted with the motive power of steam and he designed temple doors
which opened automatically not unlike ours (but powered by compressed
air). However, what a nascent industrial society needs from mathematics is
not so much recondite investigations into conic sections but ways of gener-
ating increasingly precise values for certain typical physical processes, espe-
cially those used in manufacturing. In other words it needs numerical series.
Later Greek higher mathematics was singularly ill-equipped to provide such
a back-up since it concerned itself exclusively with timeless, geometric reali-
ties. With the arrival of heat machines and complicated machines generally,
the concept of ‘steady state’ or dynamical equilibrium entirely replaces the
unreal notion of static equilibrium which reigned supreme in Greek sci-
ence. Interestingly, at the very moment when the age of steam was taking
off, Fourier came up with a completely new mathematical device that not
only produced progressively more accurate approximations to any ‘normal’
function but could even cope with (a countable number of) discontinuities.
Newton and the Enlightenment mathematicians would probably have disap-
proved of Fourier series and Laplace transforms—and most undergraduates
start off by disliking them—but these messy mathematical procedures were
precisely what was needed to model the complex and perpetually changing
industrial processes.

We inherit not only our democratic institutions and nascent science
from the Greeks but also our priorities and scale of values. Algebra, a
Renaissance invention, removed mathematics even further from the physical
world than geometry and modern pure mathematicians are, almost to a man
(or woman) convinced Platonists in the sense that they believe mathematics
deals in truths that cannot be empirically falsified in the way scientific
theories can be. Plato would have wholeheartedly approved.
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Curiously though, we are currently in the midst of a resurgence of
the Babylonian/Pythagorean numerical tradition since our society has wit-
nessed the decisive victory of the digital computer over the analogue and
one notes a growing trend in the sciences to solve equations numerically
rather than analytically.

Would mathematics have been the poorer if we had followed the nu-
merical option from the beginning? On one level, clearly yes. But the nu-
merical approach would have brought about a much better understanding
of so-called ‘infinite series’ much earlier and likewise promoted the develop-
ment of a science of motion which the Greeks completely lacked. Recursive
procedures would have taken precedence over geometrical and analytical
ones. This is a radically different way not only of doing mathematics but
of envisaging reality and seems much closer to the way Nature actually
works which is by progressively approximating to a desired evolutionary
goal rather than by passively obeying changeless laws that cannot be im-
proved upon. Whether present day mathematicians like it or not, the switch
from the geometrical/analytical to the numerical/recursive is coming in fast
anyway with the increasing use of numerical approximations, computer sim-
ulations, genetic algorithms, cellular automata and the like.

Note 1. The ‘simple’ gnomon (2n + 1) = m2 only generates triples of the
form (

m2 + 1

2

)2

= m2 +

(
m2 − 1

2

)2

but if we allow the gnomon to have more than one layer as it were, we
can generate other sets. For example, a gnomon with three layers gives the
equation 2(3r) + 32 = m2; so all we need is an odd square larger than 9 and
divisible by 32.

Note 2. The
√

3 and
√

5 cases can be dealt with in a similar way but beyond
this we need algebra—or I do.

Note 3. The usual explanation is that the abundance of cheap labour (be-
cause of slavery) made it hardly worth the trouble building complicated
machines. This was certainly a major factor but we may also suppose that,
in a Spenglerian sense, Greek civilization was by this time exhausted by
its mammoth intellectual and artistic achievements and ready to cede first
place to the more efficiently organized but unmathematical Romans.
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Pick’s theorem
Tony Forbes
At one of the weekly Mathematics Study Group meetings at the London
South Bank University, myweb.lsbu.ac.uk/∼whittyr/MathsStudyGroup/, I
was pleased to be listening to a talk by Robin Whitty on the LLL algorithm,
the subject of a forthcoming Theorem of the Day, www.theoremoftheday.org/.
But the talk was interrupted for several minutes by a lively discussion about
Pick’s theorem, mainly because nobody could remember the formula—
except me. However it turned out that the formula I offered, (2), below,
was not the one Robin had in mind.

Pick’s theorem tells you how to calculate the area of a simple polygon
(such as S1 in the illustration at the end) whose vertices are points on the
integer lattice, Z2. The formula, (1), below, is quite remarkable because
its only parameters are the numbers of lattice points inside and on the
boundary of the polygon. For example, (1) gives the correct area, 1/2, for
any triangle whose closure contains no lattice points apart from the three
vertices. This is what Pick’s theorem usually says.

Let S be a simple polygon in the plane whose vertices have integer
coordinates. Then its area is given by

area(S) = i+
b

2
− 1, (1)

where i and b are respectively the numbers of integer lattice points
inside S and on the boundary of S.

Amazing for its simplicity and elegance, (1) is the expression you will find
in Wikipedia and elsewhere, and indeed the formula was the one that our
lecturer and his audience were eventually able to reconstruct. Although
Georg Pick (1859–1942) is the name that has become associated with the
formula for the area, it seems likely that anyone with access to a pencil and
an infinite amount of squared paper will eventually deduce (1) for himself
or herself. But in my opinion there is a much nicer formula, and moreover
it applies with somewhat greater generality.

Let S be any plane shape bounded by straight lines that has a well-
defined area and whose vertices have integer coordinates. Then

area(S) =
∑
P∈Z2

w(P ), (2)
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where w(P ), the weight of P , is calculated as follows. Let D(P ) be
a disc with centre P which is so small that it does not intersect the
boundary of S other than at edges of S containing P . Then w(P )
is the fraction of D(P) that intersects S.

Note that the sum is over all integer lattice points, but those outside S have
zero weight anyway and so they can be ignored. Points inside S have weight
1 but points on the boundary have various weights in the interval [0, 1].

Clearly, (2) implies the first formula if the contribution to (1) from v, the
number of vertices, is v/2 − 1. But this follows because the edges meeting
a given vertex, V , subtend an angle inside S of 180 degrees minus the
exterior angle at V . So each vertex contributes 1

2 , and the −1 comes from
the sum of the exterior angles, 360 degrees. Applied to the simple polygon
S1 both (1) and (2) agree. The weights of the vertices are arctan(2)/(2π),
1
4 + arctan( 1

2 )/(2π), 1
4 , 1

8 and 5
8 , and the area is 31

2 .

If you use formula (2) to compute the area of S2, a 7× 3 rectangle with
two holes, you also get the correct answer. The two points inside S2 have
weight 1, a corner of the big rectangle has weight 1

4 , a corner of a hole has
weight 3

4 and all other points on the boundary have weight 1
2 . Putting these

together gives 2+4 · 14 +8 · 34 +18 · 12 = 18. On the other hand, with formula
(1) you have a choice. You can either (i) say that S2 is not simple and give
up, or (ii) apply (1) anyway to get the wrong answer, 2 + 30 · 12 − 1 = 16,
or (iii) apply (1) to the big rectangle after removing the holes, then apply
(1) to each hole separately and subtract.

This is most unsatisfactory, and we (Robin and I) were wondering if
Pick’s formula can be fudged. So we offer this problem to you. Find an
elementary extension to (1) for more general shapes. Formula (2) also works
in degenerate situations, such as S3 or even a single point, S4, where in each
case (1) fails if you consider all the points to be on the boundary. Anyway, if
you do find a suitable extension, we hope you will amuse yourself by trying
it out on ever more bizarre shapes, at the same time confirming that (2)
never fails to give the correct area.
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Solution 249.1 – Hypersphere
Show that the volume of the unit n-dimensional hypersphere is
given by∫ ∞

−∞

∫ ∞
−∞

. . .

∫ ∞
−∞

e−(x2
1+x

2
2+···+x

2
n)

n/2

dx1 dx2 . . . dxn. (1)

Stuart Walmsley
1 Introduction. The objective is to show that the integral (1) is numer-
ically equal to the volume of an n-dimensional sphere of unit radius. In
section 2, the result is demonstrated for the particular case n = 2.

In section 3, the result is proved for the general case in a compact man-
ner. A transformation is made to generalized polar coordinates, consisting
of r, the radial coordinate, and n− 1 angles, giving an integral which is the
product of an integral over r and an integral over the angles, An say. The
result is proved without explicitly determining the value of An.

In section 4, the angular contribution An is determined, but using a
method which only involves integration over r. Finally in section 5, the
generalized n-dimensional polar coordinates are defined and the angular
integrals determined directly. This serves to cross-check the forms obtained
in section 4.

2 The two-dimensional case

Here

I2 =

∫ ∞
−∞

∫ ∞
−∞

exp
(
−(x21 + x22)

)
dx1 dx2. (2)

The integral may be transformed to polar coordinates, r and φ, for which

r2 = x21 + x22 and dx1 dx2 = r dr dφ;

r is positive and has the range 0 to ∞ and φ has the range 0 to 2π. Then

I2 =

∫ ∞
0

∫ 2π

0

exp(−r2) r dφ dr = π,

which is the area of a unit radius circle, thus proving the desired result. The
Cartesian coordinate form (2) may be factored to give∫ ∞

−∞
exp(−x2)dx =

√
I2 =

√
π, (3)

thus giving a direct evaluation of the well-known Gaussian integral.
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3 The general case

In the general case we see that the integrand of In depends only on the
radial coordinate r:

In =

∫ ∞
−∞

∫ ∞
−∞

. . .

∫ ∞
−∞

exp(−rn) dx1 dx2 . . . dxn.

In general, for a transformation to a new coordinate system q1, q2, . . . , qn,

dx1 dx2 . . . dxn = |J(x, q)| dq1 dq2 . . . dqn,

where J(x, q) is the Jacobian of the transformation, being the determinant
of the matrix whose elements are (∂xj/∂qk).

In the generalized n-dimensional polar coordinates (which will be de-
fined in section 5), q1 is the radial coordinate r and the other coordinates
are angles. Furthermore, each coordinate xj is proportional to r, so that
the elements in one column of the Jacobian matrix J are independent of r
and the elements in all other columns are proportional to r. In this way,
rn−1 may be factored out of J and the terms remaining in J depend only
on the angles.

The integral In when transformed to polar coordinates thus takes the
form

In =

∫ ∞
0

rn−1 exp(−rn) dr An,

in which An represents the value of the product of the integrals over the
angular variables. Each individual integrand is the product of a dq and the
terms in q from the Jacobian. The limits correspond to the range of q in its
coordinate system.

The integral in r is readily evaluated:∫ ∞
0

rn−1 exp(−rn) dr =

[
− exp(−rn)

n

]∞
0

=
1

n

so that

In =
An
n
.

The volume of the n-sphere, Vn, can be determined by integrating the
volume element of the polar coordinates over the dimensions of the hyper-
sphere. Thus r is integrated from 0 to r, the radius of the n-sphere. The
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angles are integrated over their appropriate ranges leading to the value An.
In this way

Vn =

∫ r

0

rn−1 dr An =
rn

n
An = rnIn

showing that In is equal to the volume of an n-sphere of unit radius and
hence proving the desired result.

4 The angular term An in terms of integrals over the radial coor-
dinate

A complete description of Vn requires the evaluation of An. This can be
done using integrals over r only. The requirement is a function that can be
integrated over xj and over r. Such a function is

exp
(
−(x21 + x22 + · · ·+ x2n)

)
= exp(−r2).

Then factoring the integral over the Cartesian coordinates and noting the
equality of the factors, we get(∫ ∞

−∞
exp(−x2) dx

)n
=

∫ ∞
0

rn−1 exp(−r2) dr An.

The integral on the left-hand side has been evaluated (3), so that

An =
(
√
π)
n∫∞

0
rn−1 exp(−r2) dr

=
(
√
π)
n

Pn
.

It is now required to evaluate the denominator denoted by Pn.

It will be convenient to consider even and odd values of n separately:

P2n =

∫ ∞
0

r2n−1 exp(−r2) dr, P2n+1 =

∫ ∞
0

r2n exp(−r2) dr.

For P2n, the integral is simplified by a coordinate transformation:

s = r2, ds = 2r dr,

giving

P2n =
1

2

∫ ∞
0

sn−1 exp(−s) ds.

This may be integrated by parts with

u = sn−1, dv = exp(−s) ds, du = (n− 1)sn−2 ds, v = − exp(−s).
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In
∫
u dv = uv −

∫
v du, uv vanishes when evaluated at the limits, leading

to

P2n =
n− 1

2

∫ ∞
0

sn−2 exp(−s) ds = (n− 1)P2n−2.

The process is repeated until P2 = 1
2

∫∞
0

exp(−s) ds = 1
2 is reached, so that,

finally

P2n =
(n− 1)!

2
.

For odd values of n, integration by parts is used directly:

P2n+1 =

∫ ∞
0

r2n exp(−r2) dr,

u = r2n−1, dv = r exp(−r2) dr, du = (2n−1)r2n−2 du, v = − 1
2 exp(−r2).

The term in uv vanishes as before, leaving

P2n+1 =
2n− 1

2
P2n−1.

The process is repeated until P1 =
∫∞
0

exp(−r2) dr = 1
2

√
π, and

P2n+1 =
2n− 1

2
· 2n− 3

2
· . . . · 1

2

√
π

2
,

and more compactly

P2n+1 =
(2n− 1)!!

2n+1

√
π.

Putting these results together,

A2n =
2πn

(n− 1)!
, I2n =

πn

n
,

A2n+1 =
2n+1πn

(2n− 1)!!
, I2n+1 =

2n+1πn

(2n+ 1)!!
. (4)

5 Hyperspherical polar coordinates and the angular derivation of
An

In two dimensions the polar coordinates are r, the distance of the point
from the origin, and φ, the angle r makes with the x1 axis.

In three dimensions, a coordinate θ3 is added, the angle r makes with
the x3 axis. Its range is from 0 (along +x3) to π (along −x3). Explicitly,

x1 = r sin θ3 cosφ, x2 = r sin θ3 sinφ, x3 = r cos θ3.
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The Jacobian has the form J = r2 sin θ3 and the integration element is

dx1 dx2 dx3 = r2 dr sin θ3 dθ3 dφ.

When extended to higher dimensions, a new angle θn is added at each stage,
being the angle r makes with the new Cartesian coordinate direction. The
range is 0 to π. The coordinates x1, x2, . . . , xn−1 are augmented by sin θn
and the new coordinate is r cos θn. In this way

xn = r cos θn,

xn−1 = r sin θn cos θn−1,

. . . ,

x3 = r sin θn sin θn−1 . . . cos θ3,

x2 = r sin θn sin θn−1 . . . sin θ3 sinφ,

x1 = r sin θn sin θn−1 . . . sin θ3 cosφ.

The Jacobian is extended by a factor r sinn−2 θn at each stage.

The integrals over the angles An thus become

An =

∫ 2π

0

dφ

∫ π

0

sin θ3 dθ3

∫ π

0

sin2 θ4 dθ4 . . .

∫ π

0

sinn−2 θn dθn.

The first factor is 2π and introducing

Sn =

∫ π

0

sinn θ dθ,

An becomes An = 2πS1S2 . . . Sn−2.

The integrals Sn may be evaluated using integration by parts with u =
sinn−1 θ, dv = sin θ dθ, du = (n− 1) sinn−2 θ dθ, v = − cos θ. The factor uv
is zero over the integration limits giving

Sn = (n− 1)

∫ π

0

sinn−2 θ cos2 θ dθ = (n− 1)Sn−2 − (n− 1)Sn,

yielding

Sn =
n− 1

n
Sn−2.

The chain is terminated by S0 = π or S1 = 2 as n is even or odd. Then

S2n =
π(2n− 1)!!

(2n)!!
, S2n+1 =

2(2n)!!

(2n+ 1)!!
,
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where

(2n)!! = 2n(2n− 2) . . . 2, (2n+ 1)!! = (2n+ 1)(2n− 1) . . . 1.

There is extensive cancellation in the product of the S factors leading to

A2n =
2nπn

(2n− 2)!!
, A2n+1 =

2n+1πn

(2n− 1)!!
.

The second of these is exactly in the form (4). The two forms given here,
however, emphasize the similarities between the even and odd cases.

The expression for A2n derived without direct reference to the angles
can be recovered by noting that

(2n− 2)!! = (2n− 2)(2n− 4) . . . 2 = 2n−1(n− 1)!

and A2n = 2πn/(n− 1)!, which shows that there is agreement between the
two methods.

To round off this account, some numerical values of An and In = An/n,
the volume of a hypersphere of unit radius are given.

n An n An n In n In

2 2π 3 4π 2 π 3 4π/3
4 2π2 5 8π2/3 4 π2/2 5 8π2/15
6 π3 7 16π3/15 6 π3/6 7 16π3/105
8 π4/3 9 32π4/105 8 π4/24 9 32π4/945

Problem 253.1 – A Diophantine equation
Vincent Lynch
Given that P = 2, Q = 1, and R = 7 is a solution to the Diophantine
equation

P 4 + 8P 2Q2 +Q4 = R2,

use this to find further solutions.

Buy 2 shoes get 3rd 1
2 price.

— Sign in a shoe shop window [sent by Ralph Hancock]
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Solution 250.7 – Bernoulli numbers
Recall that the Bernoulli numbers, Bn, are defined for non-
negative integers n as the coefficients of xn/n! in the Taylor
expansion of x/(ex − 1):

x

ex − 1
=

∞∑
n=0

Bnx
n

n!
.

When is Bn a fraction with denominator 6?

Tommy Moorhouse
One way into this problem is the theorem proved independently by von
Staudt and Clausen: for all n > 0

B2n = In +
∑

p−1|2n

1

p
.

Here In is an integer (see T. M. Apostol, An Introduction to Analytic Num-
ber Theory, Chapter 12, Exercise 12 for a simple proof).

Since 2 − 1 = 1 and 3 − 1 = 2 we always have the terms 1
2 + 1

3 in the
sum. This means that if there are no other primes p such that p− 1 divides
2n then the denominator of B2n is 6.

Inspecting the list of indices 2k we see that in most cases this is of the
form 2p where p is a prime of the form p = 6m+ 1. We can prove that such
a term is divisible by q − 1, where q is a prime, only if q = 2 or q = 3. This
follows since the only prime factors of 2p are 2 and p, but if q − 1 = p then
q must be divisible by 2 and hence not prime. Thus, since the only factors
of 2p are 2, p and 2p, if q − 1|2p then q − 1 = 2p. But 2p + 1 = 12m + 3
is divisible by 3 and so q cannot be prime. There is no prime q > 3 such
that q − 1|2p. More generally, if p is prime but 2p + 1 is composite then
the denominator of B2p is 6. We can thus say that p cannot be a Sophie
Germain (SG) prime (a prime p such that 2p+ 1 is also prime).

Note that since 5 − 1 = 4 the Bernoulli numbers B4k cannot have
denominator equal to 6 for any k. Considering primes of the form p =
Am + B where the greatest common divisor (A,B) = 1 we see that if
(Am, 2B + 1) 6= 1 then the only primes q such that q − 1|2k are 2 and 3.
Dirichlet’s result that any such sequence has an infinite number of primes
shows that the list of Bernoulli numbers with denominator equal to 6 is
infinite. However, a prime can lie in more than one such sequence, and not
all the entries in the list of indices are of the form 2p where p is prime, so
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the question of ordering the indices 2p to get a formula for the graph seems
difficult.

Other indices also work. For example, if p and Q are both not SG
and 2pQ+ 1 is composite then B2pQ has denominator 6. For example, the
denominators of B98 = B2.7.7 and B182 = B2.7.13 are 6.

To get a very rough idea of the behaviour of the true graph, let us take
all the indices in the list to be of the form 2pm where pm is the mth prime.
The prime number theorem gives (see Apostol, p. 80)

pn ∼ n log n.

Then at nth position in the list we have 2pn ∼ 2n log n so we plot
(n, 2n log n). The gradient tends to a constant as n→∞, but not as rapidly
as the full sequence as demonstrated in the graph in M500. By considering
more carefully the conditions on the primes p = An+B, (An, 2B + 1) 6= 1
we can hope to improve this first guess.

Tony Forbes writes. The graph mentioned above is the one that plots a
point at (x, y) if y is the xth entry in the list of Bernoulli numbers that
have denominator 6. In M500 251 I stated that it looks almost as if it could
be linear with slope about 11.8. Here it is again with more data. The slope
is now about 12.9.

pizza
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Pi revisited
Colin Davies
Re: Pi [Letters, M500 250, 14–16]. Edward Hoppus was a Victorian gen-
tleman who devised a system for calculating the volume of a tree using a
girth tape and a book of tables. We had a book of Hoppus’s measure in
the office of the timber company where I worked in the 1950s. That copy of
the book has long gone, but Google have put it on a Google Books website,
and I have copied two examples of ‘how to find the volume of a round log
by girting it.’

Example I Let the circumference of a tree, or piece of round timber
(found by girting it), be 36 inches, one quarter of which is nine inches, the
side of the square, and let the length of the piece be 40 feet: – what quantity
of timber is in this piece?

Find 9 inches, the side of the square, and over against 40 feet stands 22
feet 6 inches, which is the quantity of timber contained in a piece that is 40
feet long and 36 inches round.

Example II Let the girt of a piece of timber be 75 inches, 1
4 thereof is

18 3
4 , for the side of the square. And let the length of the piece be 45 feet:

– how much solid timber does this piece contain?

Find 18 3
4 inches the side of the square, and over-against 45 feet, the

length of the piece, stands the solid content, viz. 109 feet, 10 inches, and 4
twelfth parts or 1/3 of an inch.

It took me a long time to understand how this method of measuring
could work. The ‘22 feet 6 inches’ and the ‘109 feet, 10 inches and 4/12 =
1/3 of an inch’ seem to be cubic quantities.

But apart from that confusion, what Hoppus appears to be saying is
that a square whose circumference is the same as the circumference of the
(presumably circular) log will have the same surface area as the cross section
of the log. Which, if correct, means that he has found a way a squaring the
circle.

Then I met a man in the Timber Trade who I, and everyone else, knew
as ‘Victor Serry’ of Phoenix Timber. He pointed out to me that Hoppus’s
measure was based on the assumption that π = 4.

Outside the timber trade, Victor Serry used his original name as Victor
Serebriakoff, and became well known as an early member of Mensa. See
Wikipedia on Victor Serebriakoff. One of Serebriakoff’s more memorable
utterings was ‘being intelligent is no guarantee against being stupid.’
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Problem 253.2 – Quadratic
This is like finding Pythagorean triples but slightly different. Solve the
quadratic 3x2 + y2 = z2 for positive integers x, y, z.

Problem 253.3 – Four logs
This interesting problem appeared on the internet forum NMBRTHRY some
time ago. Let a, b, c, d be integers greater than 2 such that (log a)(log b) =
(log c)(log d). Is it always the case that at least one of (log a)/(log c) and
(log a)/(log d) must be rational?

Problem 253.4 – Two colours
Is it possible to colour each point of R2 red or blue in such a manner that
no continuous curve containing more than one point is monochromatic?

Problem 253.5 – Integral

Compute

∫
dθ

sin6 θ + cos6 θ
.

Problem 253.6 – Four sums
Prove the following

1

1 · 4
+

1

6 · 9
+

1

11 · 14
+

1

16 · 19
+ . . . =

π

15

√
1 +

2√
5
,

1

2 · 3
+

1

7 · 8
+

1

12 · 13
+

1

17 · 18
+ . . . =

π

5

√
1− 2√

5
,

1

1 · 11
+

1

13 · 23
+

1

25 · 35
+

1

37 · 47
+ . . . =

(2 +
√

3)π

120
,

1

5 · 7
+

1

17 · 19
+

1

29 · 31
+

1

41 · 43
+ . . . =

(2−
√

3)π

24
.

Problem 253.7 – Quintic roots
Show that the 27th powers of the roots of x5 + ax+ b add up to 90(ab)3.

A popular Italian-style dish has radius z and height a. What is its volume?
(Answer elsewhere in this issue.)
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M500 Winter Weekend 2014
The thirty-third M500 Society Winter Weekend will be held at

Florence Boot Hall, Nottingham University

Friday 3rd – Sunday 5th January 2014.

The theme is to be decided. Cost: £205 to M500 members, £210 to non-
members. You can obtain a booking form from the M500 web site.

http://www.m500.org.uk/winter/booking.pdf

If you have no access to the internet, please send a stamped addressed
envelope to Diana Maxwell.

As well as a complete programme of mathematical entertainments we will
have the usual extras. On Friday we will be running a pub quiz with
Valuable Prizes, and for the ceilidh on Saturday night we urge you to
bring your favourite musical instrument (and your voice). Hope to see you
there.


