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Problem 270.1 – Pond
Tony Forbes
Imagine that you are an Open Univer-
sity mathematics tutor floating at coor-
dinates (1/6, 0) on the surface of a cir-
cular pond of radius 1 centered at (0, 0).
Your speed on land is nine times your
speed in the water. What is your quick-
est route to point (−1, 0)?

After you have dried yourself off you remember that the students have
recently learnt how to use differentiation to find maxima and minima. So
you think it would be a good idea to set them an assignment question like
the one above but with different parameters for the starting coordinates
(a, 0) and the land/water speed ratio r. Can you find numbers a and r such
that the problem has a non-trivial solution which comes out nicely?

By ‘comes out nicely’ I mean that we avoid complicated expressions
involving too many irrational numbers. I claim that my choice a = 1/6,
r = 9 is amongst the nicest, and I would be interested if someone can prove
otherwise. If you change r from 9 to 8 in our problem, the solution (but
not necessarily the process of obtaining it) becomes trivial: swim directly
to (−1, 0). Similarly if you change a from 1/6 to 1/7.

Problem 270.2 – Bernoulli numbers
The Bernoulli numbers are defined by

Bn =

n∑
k=0

1

k + 1

k∑
j=0

(−1)j
(
k

j

)
jn.

Show that 2(2n − 1)Bn is an integer.

Thanks to S. Ramanujan (Notebook 2, p. 53) for suggesting this problem.

Problem 270.3 – Cubes with even digits
(i) Positive integer cubes which have all of their digits even are quite
common: 8, 64, 8000, 64000, 8000000, 8242408, 64000000, 6048464248,
6068404224, 6880682808, . . . . Show how to construct infinitely many.

(ii) If we allow only non-zero even digits, the supply seems to dry up.
Either show that 8 and 64 are the only examples, or find another one.
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Solution 268.1 – Two triangles

Find two triangles ABC
and ABD (so that they
share a common base) such
that

(i) angles CAB, CBA,
DBA and DAB are in the
ratio 1 : 2 : 3 : 4, and

(ii) |AB|, |AC|, |BC|,
|DA| and |DB| are positive
integers.

A B

C

D

Θ 2Θ

4Θ

3Θ

Chris Pile
To find the sides of the two triangles consider them separately. Triangle
ACB has sides in the ratio

|AC|
|CB|

=
sin 2θ

sin θ
= 2 cos θ.

The base is |AB| = |AC| cos θ + |CB| cos 2θ. For 4ADC, the sides are in
the ratio

|DB|
|AD|

=
sin 4θ

sin 3θ
=

4(cos θ)(2 cos2 θ − 1)

4 cos2 θ − 1
,

and the base is |AB| = |AD| cos 4θ + |DB| cos 3θ.

For the triangles to exist, 7θ < 180◦ and for the triangles to be acute,
θ < 22.5◦. These ratios indicate that for integer sides, cos θ should be
rational and greater than about 0.9. Let cos θ = s/t, where s and t are
integers. For 4ACB,

|AC|
|CB|

=
2s

t
and |AB| =

2s2

t
+
t(2s2 − t2)

t2
=

4s2 − t2

t
.

For 4ADC,

|DB|
|AD|

=
a

b
=

4s/t(2(s/t)2 − 1)

4(s/t)2 − 1
=

4s(2s2 − t2)

t(4s2 − t2)
.
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Also

cos 3θ = 4 cos3 θ − 3 cos θ =
4s3 − 3st2

t3
,

cos 4θ = 1− 8(cos2 θ)(1− cos2 θ) =
t4 − 8s2t2 + 8s4

t4
.

Example 1: cos θ = 11/12; θ ≈ 23.556◦.

We have

a

b
=

4s(2s2 − t2)

t(4s2 − t2)
=

4312

4080
=

539

510
,

d = a cos 3θ + b cos 4θ

= 359
143

432
− 510

191

2592
=

30421

216
.

Multiply all sides by 216 to give an integer
triangle:

a = 116424, b = 110160, d = 30421.

The sides of the small triangle are in the
ratio 2s : t = 22 : 12 and the base is 22 ·
11/12 + 98/12 = 85/3. Multiply by 3 to
give an integer triangle with sides 66, 36
and base 85.

The bases of the two triangles have
no common factors; so to give a common
base, the sides of each triangle must be
multiplied by the base of the other. Note
that, as 4θ ≈ 94.2◦, 4ADB is obtuse.
The sides are

|AD| = 9363600, |DB| = 9896040,

|AC| = 2007786, |CB| = 1095156,

and the commonn base is

|AB| = 2585785. A B

C

D

Θ 2Θ

4Θ

3Θ
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A B

C

D

E

F

M

N

Θ

2Θ

3Θ

3Θ

4Θ 4Θ

Example 2: cos θ = 15/16.

We examine an alternative method for the construction of the triangle with
angles 3θ and 4θ. In the diagram above, construct 4DEF with angles θ
and 2θ. Then sides DE and EF are in the ratio (sin 2θ)/(sin θ) = 2 cos θ.
That is,

|DE|
|EF |

=
30

16
and hence |DF | = |DE| cos θ + |EF | cos 2θ =

161

4
.
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Multiply all sides by 4 to give integers: |DE| = 120, |EF | = 64, |DF | = 161,
and extend DE to B making |EM | = |MB|. Therefore |FB| = |FE| and
4DFB has angles θ and 3θ. Hence

|EM | =
|DF |2 − |EF |2 − |DE|2

2|DE|
=

495

16
, |EB| =

495

8
.

Multiply sides of 4DBF by 8 to give integers: 1455, 512, 1288. Extend
BF to A, making |FN | = |NA|. Then

|FN | =
|DB|2 − |DF |2 − |BF |2

2|BF |
=

195937

1024
, |AF | =

195937

512
.

Multiply by 512 to give integers: |DB| = 744960, |DA| = 659456, |AB| =
458081. The triangle can be combined with the original generating θ/2θ
triangle (120 : 64 : 16) by multiplying each by the base of the other; i.e. the
common base is 161 · 458081 = 73751041.

Example 3: cos θ = 12/13.

Similarly (to Example 1) we have

|AC|
|CB|

= 2 cos θ =
24

13
,

|DB|
|DA|

=
sin 4θ

sin 3θ
=

5712

5291
.

Multiplying by 13 gives 4ACB with integer
sides |AC| = 312, |CB| = 169, |AB| = 407,
and multiplying by 2197 gives 4ADB with in-
teger sides |AD| = 11624327, |CB| = 12549264,
|AB| = 4632263. The two bases have no com-
mon factor; so the triangles must each be mul-
tiplied by the base of the other:

|AD| = 4731101089, |DB| = 5107550448,

|AC| = 1445266056, |CB| = 782852447,

and the common base is

|AB| = 1885331041.
A B

C

D

Vincent Lynch also found the solution given by Example 3, above.
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Solution 268.7 – Interest
I deposit 50 pence in a bank account that offers interest at 2
per cent per annum. How much will I have after 200 years if the
interest is calculated (i) annually, (ii) every six months?

Tony Forbes
I can’t remember whether we did this stuff at high-school. Nevertheless,
I expect most of you know that there is a simple formula for compound
interest calculations. After y years at interest r per cent your initial in-
vestment amount A will have matured to A(1 + r/100)y. This is assuming
the interest is compounded annually. For the every-six-months option, we
halve the interest rate and double the time, A(1 + r/200)2y. Applying the
formula then gives the straightforward answer (1), below.

However, real life does not quite work like that. Most banks I know
of round their calculations by discarding fractions of a penny—with the
unfortunate consequence that your 50p investment will remain 50p for ever
when the interest is added half-yearly. I suppose there might exist banks
which offer more generous terms. Possibly as a promotional device, or as
a special service for long-term small savers, one might round upwards. Or
perhaps the banks will just round, i.e. round to the nearest integer number
of pennies, in one of its many variations depending on how you handle
0.5. Anyway, I thought it would be interesting to see how our 50 pence
investment behaves under various schemes.

(1) Exact, using the formula, rounding down only at the end of the
200-year period: (i) £26.24, and (ii) £26.76.

(2) Round down each time the interest is added: (i) £15.28, (ii) £0.50.

(3) Round up each time the interest is added: (i) £39.42, (ii) £48.95.

(4) Round interest with 0.5→ 0: (i) £24.20, (ii) £0.50.

(5) Round interest with 0.5→ 1: (i) £24.67, (ii) £30.34.

(6) Round interest towards an even integer; that is, for integer n, all
numbers in the closed interval [2n−0.5, 2n+0.5] are rounded to 2n whereas
numbers in the open interval (2n+ 0.5, 2n+ 1.5) go to 2n+ 1: (i) £24.46,
(ii) £0.50.

(7) Round capital plus interest towards an even integer; this differs from
(6) whenever the capital is an odd number of pence and the interest is an
odd multiple of 0.5p: (i) £24.29, (ii) £0.50.

(8) Round interest towards an odd integer; a simple way of doing this
is to add 1, round towards an even integer as described in (6) and then
subtract 1: (i) £24.29, (ii) £30.50.
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(9) Round capital plus interest towards an odd integer: (i) £24.46, (ii)
£30.05.

(10) Round interest with 0.5→ 0 or 1 chosen at random with probability
1/2; here we quote results from 100000 trials: (i) mean £24.40, standard
deviation £0.17, (ii) mean £29.91, standard deviation £0.44.

In view of (1)–(10), above, I am slightly amazed at the immense com-
plexity of the rounding process. Determining the best way to handle all
those annoying halves is evidently a major problem in elementary arith-
metic which has no doubt occupied the brains of some of our great thinkers.
Someone told me that financial organizations use (6), rounding towards an
even integer. A bizarre choice, surely, as it introduces a significant bias
against odd numbers (like 51). If you don’t believe me, look again at (6)(ii)
and (8)(ii). In fact all of (4)–(9) must be unsatisfactory for the same kind
of reason. And if you compare (6) and (7), say, you will see that the final
result of a calculation can depend on when you actually do the rounding.

The cause of the trouble is the parity of 10, the base of our number
system. All we need to do is adopt an odd base, 9, say, and the problem
goes away. One half in base 9 is the non-terminating sequence 0.444 . . . and
hence the rounding of 1/2 never arises. Thus, for example, 8.4 rounds to 8
and 8.5 rounds to 10. Obviously I am aware that changing the number base
will cause trouble. So, as a more sensible alternative, I strongly recommend
that in the interest of fairness we all adopt the only one of the procedures we
have considered that is truly unbiased, method (10). Round to the nearest
integer if there is one; otherwise toss a coin and then round up if it is a
head, down if it is a tail.

Chris Pile agrees with (1) and offers two more alternatives. Recall that
we failed to make it clear what type of interest was to be used.

(11) Simple interest (calculated exactly): £2.50, and of course the fre-
quency doesn’t affect the final result.

(12) Continuous compounding (calculated exactly); this is the limit as
n→∞ of computing the interest at regular intervals n times per year:

£ lim
n→∞

0.5

(
1 +

0.02

n

)200n

= £0.50 · e4 = £27.30,

a significant improvement on (1)(ii).

Vincent Lynch also gives (1) and (5) as well as the realistic answer to the
problem. Our 1p and 2p coins are likely to be withdrawn before very long,
certainly within the next hundred years. Probably also other coins under a
pound could go. So, you could ask an economics expert about the rate of
inflation over a 200-year period. He couldn’t give you an answer.
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Solution 267.4 – Bernoulli numbers
Let n be a positive even integer, let b(n) = (2n!)1/n/(2π) and
denote the nth Bernoulli number by Bn. Show thatb(n)n

bb(n)c∑
k=1

1

kn

 = b|Bn|c or b|Bn|c − 1,

or find a counter-example. See page 1 for the definition of Bn.

Roger Thompson
I have found these counter-examples less than 1017: n = 7907318552180658,
n = 18138477272887374, n = 22197553586127894, n = 40209779143948206,
n = 46068253987800486, n = 47486531600097486, n = 72367464814087326,
n = 82440878149934382. The following explains how they were discovered.

Since b(n)n
bb(n)c∑
k=1

1

kn
< 1 for n < 14, we only need to consider n ≥ 14.

Now

b(n)n
bb(n)c∑
k=1

1

kn
= b(n)n

ζ(n)−
∞∑

k=db(n)e

1

kn

 = |Bn| − b(n)n
∞∑

k=db(n)e

1

kn

= |Bn| −B(n), say.

Since b(n) is strictly increasing for n > 6, B(n) has local maxima at values
of n such that bb(n+ 1)c > bb(n)c. Such values occur at n = 30, 47, 64, 81,
98, . . . . We have

log
b(n)

n
=

log 2

n
− log(2π)− log(n)

+

[
log(n)− 1 +

1

2n
log(2πn) +

1

12n2
− 1

360n4
+

1

1260n6
− 1

1680n8
+ . . .

]
,

where the bracketed terms are the standard expansion for
log(n!)

n
. Simpli-

fying, we get

log
n

b(n)
= log(2πe)− 1

2n
log(8πn) +O

(
1

n2

)
,

i.e. n/b(n)→ 2πe ≈ 17.079468 . . . as n→∞.
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Assuming the fractional part of b(n) is uniformly distributed on [0, 1),
which is borne out empirically, then for any ε > 0, there exists some (prob-
ably large) n such that b(n) + δ = N for some integer N and some positive
δ ≤ ε. Denoting 2πe by C, we have for small δ, N = db(n)e, n ≈ NC; so

B(n) = b(n)n
∞∑
k=N

1

kn
≈

∞∑
k=0

(N − δ
N + k

)NC
≈

∞∑
k=0

( N

N + k + δ

)NC
≈

∞∑
k=0

e−(k+δ)C =
e−δC

1− e−C
≈ e−δC(1 + e−C) > 1

if δ < e−C/C ≈ 2.23875593 × 10−9. The fractional part of |Bn| = ∆ say,
can be arbitrarily small (see Erdős and Wagstaff (1980)). However, n may
be colossally large in such cases. Fortunately, we find that ∆ for B417534 is
equal to

1−the fractional part of

(
1

2
+

1

3
+

1

7
+

1

79
+

1

107
+

1

607
+

1

7879
+

1

32119

)
=

67157225

54535834912799982
≈ 1.231433× 10−9,

which will do very nicely. If B(n)−∆ > 1, then⌊
b(n)n

bb(n)c∑
k=1

1

kn

⌋
= b|Bn|−B(n)c = bb|Bn|c+ ∆−B(n)c < b|Bn|c− 1.

We therefore require e−δC(1 + e−C) > 1 + ∆; i.e. we require

the fractional part of b(n) = 1− δ > 1− log(1 + e−C)− log(1 + ∆)

C

≈ 1− e−C −∆

C
≈ 0.99999999783334426.

Since b(417534) = 24447.018627 . . . , δ is far too big in this case, so we
need to search for 417534m for which no additional primes q are such that
417534m is divisible by q − 1 (so that their fractional part is also ∆), and
attempt to find much smaller δ values.

For large m, this is best done by turning the criterion on its head, i.e.
there must be no factor f of 417534m for which f + 1 is prime, other than
1, 2, 6, 78, 106, 606, 7878, 32118, the factors of 417534 for which f + 1 is
prime. This task is made simpler by considering factors of 417534p, where
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p is prime. Since 417534 = 2× 3× 13× 53× 101, we need to check p × each
of the 31 factors of 417534. This excludes most small primes. For example,
the only permissible primes < 1000 are 97, 149, 223, 349, 619, 811 and 929.
If any prime factor of m is excluded, we can reject m immediately.

The number of 417534m in a given interval which pass the above test
on factors increases, albeit slowly, as m increases. This occurs because the
majority of acceptable m are prime. In this case, the factors of 417534m
are the 2m{f}, where the {f} are the set of 16 odd factors of 417534. All
of 2m{f}+ 1 are more likely to be composite for large mf , outweighing the
lower likelihood that m is prime. This all suggests the best place to search
is for large values of m.

A quick search around n = 1016 reveals that in an interval of 1012, there
are about 32 acceptable values ofm with the fractional part of b(417534m) >
0.999. Assuming uniform distribution again, this suggests there should be
one with fractional part > 1− 2.166× 10−9 in an interval of

1012

32
· 10−3

2.166× 10−9
≈ 1.5× 1016,

in reasonable agreement with the number actually found < 1017. The fol-
lowing method searches far more efficiently than just looking at each odd
m.

We examine the continued fraction for RS =
417534

S/b(S)
, where S is the

start of the search, and R∞ = 417534/C. For example, if we start searching
at S = 1015,

R∞ = 24446.5453556750764396 . . . , RS = 24446.5453556755380264 . . . ,

with RX between these two values for all X ≥ S.

The fractional part of RS has the continued fraction 1, 1, 5, 83, 2, 2, 4, 1,
43, . . . , and the fractional part of R∞ has the continued fraction 1, 1, 5, 83,
2, 2, 5, 3, 1, 1, 1, . . . . The first four convergents for both are 1/1, 1/2, 6/11,
499/915, . . . . We use the denominators of these convergents to see how to
predict the fractional parts of b(417534m) for different m. The table on
the next page gives the fractional part of dR∞, dRS for relevant d, showing
where values agree in bold. We will need these values in a moment, where
we will also use the convention [a± b] to indicate the range of values in the
first digit that does not agree for the two R values. Suppose n = 417354m,
and b(n) = N − ε, where N is an integer, and ε < 0.0012 (we will see why
this value is chosen in a moment). Then mRn = N − ε. By definition,
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b(417534(m+ a)) = (m+ a)Rn+417534a ≈ N − ε+ aRn+417534a,

with fractional part −ε+A, where A is the fractional part of aRn+417534a,
or 1− ε+A if A < ε.

d dR∞ fractional part dRS fractional part

1 0.54535567507643963. . . 0.54535567553802644. . .
2 0.09071135015287927. . . 0.09071135107605289. . .
11 0.99891242584083603. . . 0.99891243091829092. . .
904 0.00153026910143421. . . 0.00153068637590896. . .
915 0.00044269494227024. . . 0.00044311729419989. . .
926 0.99935512078310628. . . 0.99935554821249081. . .

For a = 1, the fractional part α is much less than 1− 0.0012 = 0.9988.

For a = 2, α is 0.09071135[0± 1], so is much less than 0.9988.

For a = 11, α is 0.9989124[3± 1]− ε, with 1−α = ε+ 0.0010875[7± 1],
i.e. worse than ε. For successive multiples of 11, this worsening continues.

For a = 915−11, α is 0.001530[5±3]−ε, 1−α = ε−0.001530[5±3] < 0,
so gives a small value of the fractional part of b(417534m).

For a = 915, α is 0.00044[3 ± 1] − ε, 1 − α = ε − 0.00044[3 ± 1], i.e.
better than ε if ε > 0.00044[3± 1], but gives a small value of the fractional
part of b(417534m) otherwise.

For a = 915 + 11, α is 0.999355[3± 3]− ε, 1− α = ε+ 0.000644[7± 3].

We therefore start searching by finding an acceptable m with the frac-
tional part ν of b(417534m) > 0.9988. Since m − 11 has a fractional part
ν + 0.0010875[7 ± 1] < 1 for ν < 0.9989114, we need to add 904 to m in
this case, otherwise we add 915 to m. If the resulting b(417534m) has a low
fractional part, we add 11 to m then use whatever ε value this gives. This
may be worse than the last ε used, but will always be less than 0.0012, since
the increment for 11 is 0.0010875[7± 1]. We continue by repeatedly adding
915 or 915+11 as appropriate. If we keep track of the predicted value of the
fractional part of b(n) using estimates based on RS , R∞, we don’t need to
evaluate b(n) unless the estimates differ by more than some small threshold
(5× 10−5 seems adequate). Of course, if two estimates straddle an integer
boundary, their difference will exceed the threshold. Once the threshold
has been exceeded, we evaluate b(n), resetting the estimated values to the
actual value, then check if m is acceptable.

The first four convergents of RS agree for S > 1012. For n between 1012

and 1015, it’s best to choose some upper limit F , and use RF instead of
R∞. For n < 1012, checking all odd m is probably necessary.
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We already showed that if B(n)−∆ > 1, then⌊
b(n)n

bb(n)c∑
k=1

1

kn

⌋
< b|Bn|c − 1.

All the n values found are prime multiples of 417534. The following tables
show the value of these primes, B(n)−∆ and b(n).

n p B(n)−∆
7907318552180658 18938142887 1.0000000297068976 . . .

18138477272887374 43441916761 1.0000000015677401 . . .
22197553586127894 53163463541 1.0000000298645131 . . .
40209779143948206 96303005609 1.0000000337175813 . . .
46068253987800486 110334138029 1.0000000269527712 . . .
47486531600097486 113730933529 1.0000000136774489 . . .
72367464814087326 173321130289 1.0000000128670188 . . .
82440878149934382 197447101673 1.0000000021692892 . . .

n b(n)
7907318552180658 462972169039301.9999999995726780 . . .

18138477272887374 1062004788435248.9999999979251351 . . .
22197553586127894 1299663022719835.99999999958190639 . . .
40209779143948206 2354275794508250.99999999980750288 . . .
46068253987800486 2697288509605263.99999999941142440 . . .
47486531600097486 2780328424859966.99999999863415654 . . .
72367464814087326 4237102872706908.99999999858670599 . . .
82440878149934382 4826899526395583.99999999796035573 . . .

Recall that 417534 = 2 × 3 × 13 × 53 × 101. So we also need to check
that none of the numbers in the first column of each of the two tables on
the next page are prime. For each p, the smallest divisor is shown for each
entry. Since none of the numbers are prime, the fractional part for each Bn
is exactly 67157225/54535834912799982. However, even the lowest Bn is
approximately 1.76561657×10115965214218311873. The only other n < 4×107

for which the fractional part of |Bn| < e−C is 9265494, with

1 − the fractional part of

(
1

2
+

1

3
+

1

7
+

1

43
+

1

2339
+

1

7927

)

=
857

33485502918
≈ 2.5593× 10−8.

This leads to an even more stringent requirement for δ, so this has not been
investigated further.
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p = 18938142887 43441916761 53163463541 96303005609

2p+ 1 5 3 13 117703
2p×3 + 1 23 2689 1613 5
2p×13 + 1 277 3 31 5
2p×13×3 + 1 7 17 7 7
2p×53 + 1 3 19 3 3
2p×53×3 + 1 67 11 11 97
2p×53×13 + 1 3 9511 3 3
2p×53×13×3 + 1 239 5 5 19973
2p×101 + 1 3 23 3 3
2p×101×3 + 1 419 7 600577 5
2p×101×13 + 1 3 4057 3 3
2p×101×13×3 + 1 89 9753853 17029 19
2p×101×53 + 1 641 3 53951 5
2p×101×53×3 + 1 1523 8747 1217 11486347
2p×101×53×13 + 1 47 3 43 23
2p×101×53×13×3 + 1 79 5 5 223

p = 110334138029 113730933529 173321130289 197447101673

2p+ 1 7 3 3 7
2p×3 + 1 5 5 5 43
2p×13 + 1 5 3 3 11
2p×13×3 + 1 1723 122663 7 5
2p×53 + 1 3 5 5 3
2p×53×3 + 1 31 97 31 5
2p×53×13 + 1 3 1249817 1361 3
2p×53×13×3 + 1 131 54601 149 19
2p×101 + 1 3 61 113 3
2p×101×3 + 1 5 5 5 29
2p×101×13 + 1 3 5 5 3
2p×101×13×3 + 1 11 23 23 5
2p×101×53 + 1 5 3 3 3001
2p×101×53×3 + 1 7 7 13 5
2p×101×53×13 + 1 89 3 3 5
2p×101×53×13×3 + 1 5347 116247049 16787077 127

Reference

P. Erdős and S. S. Wagstaff Jr (1980), ‘The fractional parts of the Bernoulli
numbers’, Illinois Journal of Mathematics, vol. 24, no. 1, pp. 104–112.
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Postscript

There should be primes p such that(
1

2
+

1

3
+

1

7
+

1

79
+

1

107
+

1

607
+

1

7879
+

1

32119
+

1

417534p+ 1

)
< 1,

417534p+1 is prime, but that there is no other factor f of 417534p for which
f + 1 is prime, other than 1, 2, 6, 78, 106, 606, 7878, 32118. Acceptable p
are 2113, 2213, 2633, 2749, . . . . The first of these gives ∆ for

B882249342 =
4713582721153193

48114204521774246409911826
≈ 9.796655× 10−11.

The following n = 882249342p with p prime, with B(n) −∆ > 1, with Bn
having the above fractional part, and there is no factor f of n for which
f + 1 is prime, other than 1, 2, 6, 78, 106, 606, 7878, 32118, 882249342.

n = 1951614983613709401546,

p = 2212090041563,

b(n) = 114266728490919584943.9999999999740517 . . . ,

B(n) = 1.0000000376956147 . . . .

The above B(n)−∆− 1 is more than 98.5% of its maximum value, e−C =
0.00000003823676133978.

Problem 270.4 – Limit
Show that

(2 n!)1/n

n
→ 1

e
as n→∞.

Problem 270.5 – Binomial coefficient sum
Integers n and k satisfy k > n ≥ 0. Show that

k∑
j=0

(−1)j
(
k

j

)
jn = 0.

One way of getting this result is via the recursion formula for Stirling num-
bers of the second kind. However, we are really interested in a simple, direct
proof, assuming such a thing exists.
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An artist encounters mathematics
Eddie Kent
Emmanuel Radnitzky, known as Man Ray, was an American painter who
moved to Paris in 1921. Living in the artist’s quarter he knew Alice (Kiki) de
Montparnasse, a model and character. His experiments in photography led
to early work with the moving image – now well represented on You Tube.
In 1929 he began an affair with Lee Miller, a surrealist photographer, who
became his assistant. Since most of the artists and poets around sat for his
portraits he became very well known; indeed some of his pictures of Kiki
have become iconic.

Thus in 1934, Christian Zervos, critic and historian, commissioned him
to photograph a collection of three-dimensional mathematical models at the
Institut Henri Poincaré. These were of course nineteenth-century teaching
aids but Zervos admired their interesting and beautiful shapes, and he pub-
lished the pictures in Cahiers d’Art in 1936, as ‘Crisis of the Object.’ Man
Ray, however, began entering the original photographs in Surrealist exhi-
bitions. This was against the advice of his friend André Breton who had
strict ideas about what constitutes surrealism.

With the arrival of the Nazis Man Ray returned home, to work in Holly-
wood which he said was the most surreal place on earth. While in America
he reinvented himself, married a dancer and published a manifesto declaring
that La Photographie n’est pas l’Art. On leaving Paris he had abandoned
all his work, but in 1947 he returned for it. And now he began to see those
mathematical pictures in a new light.

Breton suggested titles for them: ‘The rose penitent,’ ‘Pursued by her
hoop,’ etc., but Man Ray went in a different direction, and used titles of
Shakespeare plays. The exhibition he put on was called Man Ray—Human
Equations: A Journey from Mathematics to Shakespeare.

In the Sotheby’s catalogue Andrew Strauss wrote that Man Ray had
wedded himself to the idea of working in different media in a new and
exciting combination. ‘Man Ray felt that refreshing new titles in English
could add to their potential popularity and commercial appeal in his new
environment.’ The cover had a flap designed by Man Ray with ‘To Be’
written on it. You lifted the flap to read ‘Continued Unnoticed.’

Now, long after Man Ray’s death, this exhibition has been revived.
The Phillips Collection of Washington DC have called it Man Ray–Human
Equations and toured it extensively. There is a book Man Ray: Human
Equations by Wendy Grossman (Hatje Cantz 2015) which contains all the
photographs, as well as the paintings suggested by them.

(There might be some equations to upset mathematicians: for instance
written on the blackboard that is shown in Shakespearean Equation, Julius
Caesar, one can see 2+2 = 22; also a : A = b : B and a : b = A : B but these
must be thought of as an interface between mathematics and surrealism.)
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Uniform acceleration
Tommy Moorhouse

A uniformly accelerated observer forms a crucial link between special and
general relativity. This is because a uniformly accelerated observer is pos-
tulated to be equivalent to an observer situated in an homogenous gravi-
tational field, and physics as seen by one is the same physics seen by the
other.

In this article we will try to unravel the secrets of the uniformly acel-
erated observer, and find some curious insights into her world. Part of the
problem is making clear which reference frames we are using, and under-
standing this unlocks a wide range of results.

The first question to get to grips with is: in whose world is the ac-
celeration ‘uniform’? To answer this, and give our investigation a solid
framework, we define some key ideas. Our uniformly accelerated observer,
Oa, must feel the same acceleration at all times. The time in question is
the time according to the observer’s watch, or the observer’s ‘proper’ time.

We also need to consider a second, unaccelerated observer, Of . This
observer may be taken to be at rest at all times. One possible scenario we
could develop is a trip to colonise some distant planetary system. A fixed
observer remains on Earth while the colonists travel through space using a
propulsion system that gives a constant acceleration g, the acceleration due
to gravity at the Earth’s surface.

At this point we must be clear that the acceleration is constant ac-
cording to the accelerating observer. This means that in an interval ∆τ of
proper time the speed of the observer increases by g∆τ , as measured by the
accelerating observer by comparison with a sequence of inertial frames. The
effect is the same (in a sense) as if the observer were at rest in a gravitational
field.

We can use the relativistic law of addition of velocities (in this case
speeds in the x-direction) in the rest frame of the unaccelerated observer.
This observer sees Oa moving with an initial speed v, say. The accelerating
observer agrees with this, and due to the constant acceleration says that
g∆τ is added to the observed speed in the time ∆τ :

v + δv =
v + g∆τ

1 +
vg∆τ

c2
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so that, to first order in small quantities,

∆v = g∆τ

(
1− v2

c2

)
.

Taking the limit as ∆τ → 0 we have

dv

1− v2/c2
= gτ + gτ0,

which is solved (taking τ0 = 0) by v(τ) = c tanh(gτ/c). Thus, according
to the moving observer’s proper time, the constant acceleration leads to a
limiting speed of c. The world velocity of the accelerated observer can be
found in terms of the proper time τ using

v(t) =
dx

dτ
/ dt
dτ

and uµuµ = 1. Here uµ = (c dt/dτ , dx/dτ , 0, 0). (You can find the compo-
nents of uµ explicitly, and the answer is used in the next paragraph.)

According to the fixed observer the coordinates of the accelerating ob-
server, expressed in terms of that observer’s proper time and with obvious
initial conditions, are(

c2g−1 sinh
(gτ
c

)
, c2g−1 cosh

(gτ
c

)
, y, z

)
.

This may be plotted on the fixed (ct, x)-plane. Drawing on the lines x = ±ct
you can deduce that no information from the negative x-axis (in fact from
a larger space–time region—you could try to characterize it) can ever reach
the accelerating observer. There is an ‘horizon’ beyond which lies a region
about which nothing can be discovered by the accelerating observer.

The fixed observer sees that the t-coordinate and x-coordinates of Oa
are related by

x = c2g−1 cosh
(
g−1 sinh−1

(gτ
c

))
= c2g−1

√
1 +

g2t2

c2
.

The speed of the moving observer, as discerned by the fixed observer, is
therefore

dx

dt
=

gt√
1 + g2t2/c2

.

In the fixed frame the acceleration is not perceived to be constant, although
at small times we can expand the denominator and differentiate with respect
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to t to find that the acceleration is approximately given by g. The speed
asymptotically approaches c, as relativity demands.

Now we consider a coordinate frame for Oa. Since uµ has components
(cosh(gτ/c), sinh(gτ/c), 0, 0) we see that the vector

wµ =
(

sinh
(gτ
c

)
, cosh

(gτ
c

)
, 0, 0

)
is orthogonal to uµ (using the standard Minkowski metric). The line ρwµ is
orthogonal to the world-line of the moving observer, and so the coordnates
(τ, ρ, y, z) are good coordinates in this frame. The moving coordinates are
known as Rindler coordinates, and ρ may be interpreted as inverse accel-
eration. In these coordinates the accelerated observer asigns herself a fixed
position in ‘space’, say (ρ, y, z), and the Of coordinates are related to hers
by

ct = ρ sinh
(gτ
c

)
,

x = ρ cosh
(gτ
c

)
,

y = y,

z = z.

To find the metric in Rindler coordinates we note that

cdt = sinh
(gτ
c

)
dρ+

gρ

c
cosh

(gτ
c

)
dτ,

dx = cosh
(gτ
c

)
dρ+

gρ

c
sinh

(gτ
c

)
dτ,

c2dt2 − dx2 − dy2 − dz2 =
g2ρ2

c2
dτ2 − dρ2 − dy2 − dz2.

From now on we shall choose units such that c = 1 but hopefully the work
above shows how c can be explicitly reinstated. In the Rindler coordinates
the metric is diagonal:

g00 = g2ρ2, g00 = (gρ)−2

and so on, and
√
−det gµν = gρ. It is important to understand that this

frame is not obtained from the fixed frame by a Lorenz transformation: it
is a coordinate transformation of a more general kind.
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We can calculate the Christoffel symbols quite easily since gµν is diag-
onal. We fnd

Γ0
01 = ρ−1, Γ1

00 = gρ,

with all the others not related by symmetry vanishing. The covariant deriva-
tive can now be constructed, and we will use it shortly.

The above work can be applied to physical situations, and the electric
field of a uniformly accelerated charge is considered in [1]. It turns out that
the electric field lines emerge radially from the charge, but enter the ‘infinite
acceleration’ horizon (ρ = 0) at right angles, so that the horizon behaves
like the surface of an electrical conductor. There is an analogous situation
close to a black hole.

References

[1] This article was inspired by a desire to understand the material in Chap-
ter 2 of Black Hole Physics by V. P. Frolov and A. Zelnikov (Cambridge,
2011). This is a fascinating, modern exploration of the subject, with some
frustrating typos.

[2] A good introduction to general relativity and coordinate transformations,
using similar terminology to [1] is A First Course in General Relativity by
B. Schutz (Cambridge, 2009).

Solution 268.5 – Factorization
Factorize 24n+2 + 1. Hence or otherwise completely factorize
258 + 1.

Vincent Lynch

I thought this problem was going to be difficult, but then I remembered the
factorization of x4 + 4. And this is similar:

24n+2 + 1 =
(
22n+1 + 1

)2 − 22n+2 =
(
22n+1 + 1

)2 − (2n+1
)2
.

This is now the difference of two squares and hence factorises as

24n+2 + 1 =
(
22n+1 − 2n+1 + 1

) (
22n+1 + 2n+1 + 1

)
.

So

258 + 1 = (229 − 215 + 1)(229 + 215 + 1) = 536838145× 536903681.
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Solution 268.6 – Squares with even digits
Dave Wild

(i) Squares which have all of their digits even are very common:
0, 4, 64, 400, 484, 4624, 6084, 6400, 8464, 26244, 28224, 40000,
. . . . Show how to construct infinitely many.

(ii) If we restrict ourselves to non-zero even digits, there still ap-
pear to be plenty: 4, 64, 484, 4624, 8464, 26244, 28224, 68644,
228484, 446224, 824464, 868624, 2862864, 8282884, 8868484,
22448644, 26646244, 44462224, 82228624, 82664464, . . . . Are
there infinitely many?

(iii) On the other hand, squares with all digits odd seem to be
very rare. Either show that 1 and 9 are the only examples, or
find another one.

(a) If n is a non-negative integer, then 4 · 102n are squares with all their
digits even.

(b) If a digit d is repeated n times, where n is a non-negative integer, then
this will be written as dn. So, for example, 56072 = 577.

As 82 = 64, 682 = 4624, 6682 = 446224, 66682 = 44462224, and
666682 = 4444622224, it appears squares of numbers of the form 6n8 may
have the desired property. For n > 0,

6n82 =

(
20n+1 + 4

3

)2

=
402n+2 + 160n+1 + 16

9

=
40n−1160n−116

9
= 4n62n4.

It may be helpful to look at a couple of examples. When n = 1,

682 =
(200 + 4)2

9
=

41616

9
= 4624.

When n = 4,

666682 =
(200000 + 4)2

9
=

40001600016

9
= 4444622224.

Therefore numbers of the form 4n62n4 are squares which contain only non-
zero even digits.

(c) If the square only contains odd digits then it must be the square of an
odd number. We shall show that for any odd number greater than 3 the
tens digit is even.
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As 52 = 25, 72 = 49 and 92 = 81 this is true for the remaining odd
numbers less than 10. When a number is squared the only digits which
affect the value of the tens digit are the last two digits. Therefore we only
have to check the squares of the odd numbers between 10 and 100. These
are of the form 10d+ o, where o is an odd digit.

But (10d+ o)2 = 10(10d2 + 2do) + o2. Since 10d2 + 2do is even and any
carried value from o2 is even, the tens digit is even. Therefore 1 and 9 are
the only squares with all odd digits.

Prime k-tuplets
Tony Forbes
Prime k-tuplets are like prime twins except that there might be more than
two of them. More formally, given an integer k ≥ 2, a set S of positive
integers is a prime k-tuplet if (i) S consists of k primes, (ii) for every prime
q, there exists m such that p 6≡ m (mod q) for all p ∈ S, and (iii) the
difference between the largest and smallest elements of S is as small as
possible. For small k, it is common practice to use its Latin equivalent
rather than the number k itself; thus, for example, {11, 13, 17} is a prime
triplet, {11, 13, 17, 19} is a prime quadruplet, and so on.

Older readers of M500 will be aware that I am always keen to promote
activity concerned with the discovery of these things. Well, it happens that
two important milestones have been passed. Last year saw the discovery
by Raanan Chermoni and Jaroslaw Wroblewski of the first ever non-
trivial prime 21-tuplet:

{39433867730216371575457664399 + d :

d = 0, 2, 8, 12, 14, 18, 24, 30, 32, 38, 42, 44, 50, 54, 60, 68, 72, 74, 78, 80, 84}.

And more recently, the 1000-digit barrier was broken for k = 6. In March
this year Norman Luhn found the titanic prime sextuplet:28993093368077

∏
p≤2400, p prime

p+ 19417 + d : d = 0, 4, 6, 10, 12, 16


(1037 digits). The primes were verified using Primo, an implementation by
Marcel Martin of the elliptic curve primality proving method. In keeping
with tradition (see M500 146, 154, 189, 220 and 226), we have expanded
Norman’s discovery into decimal notation and put it on the front cover.
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