
* ISSN 1350-8539

M500 271



The M500 Society and Officers

The M500 Society is a mathematical society for students, staff and friends of the
Open University. By publishing M500 and by organizing residential weekends, the
Society aims to promote a better understanding of mathematics, its applications
and its teaching. Web address: m500.org.uk.

The magazine M500 is published by the M500 Society six times a year. It
provides a forum for its readers’ mathematical interests. Neither the editors nor
the Open University necessarily agree with the contents.

The Revision Weekend is a residential Friday to Sunday event providing re-
vision and examination preparation for both undergraduate and postgraduate
students. For full details and a booking form see m500.org.uk/may.

The Winter Weekend is a residential Friday to Sunday event held each January
for mathematical recreation. For details see m500.org.uk/winter.htm.

Editor – Tony Forbes

Editorial Board – Eddie Kent

Editorial Board – Jeremy Humphries

Advice to authors We welcome contributions to M500 on virtually anything
related to mathematics and at any level from trivia to serious research. Please
send material for publication to the Editor, above. We prefer an informal style
and we usually edit articles for clarity and mathematical presentation.

M500 Winter Weekend 2017
The thirty-sixth M500 Society Winter Weekend will be held at

Florence Boot Hall, Nottingham University

Friday 6th – Sunday 8th January 2017.

Details, pricing and a booking form will be available nearer the time. Please
refer to the M500 Web site.

http://www.m500.org.uk/winter.htm



M500 271 Page 1

Conway’s and Kilminster’s prime-producing
fractions
Roger Thompson

Introduction

Here is a set of fractions with identifying letters.

A B D H E F I R P S T L M N
17

91

78

85

19

51

23

38

29

33

77

29

95

23

77

19

1

17

11

13

13

11

15

14

15

2

55

1

These fractions have the amazing property that they can generate all the
primes by following this simple algorithm. Start with x = 2. Scan the set
of fractions from left to right until the first fraction f is found such that x
is divisible by its denominator. Replace x by xf . If x = 2n for some integer
n, write down n. Do this repeatedly. The numbers that you write down are
the primes! To illustrate, here are the first twenty values of x, and the label
of the fraction used to transform one value of x to its successor.

2 M 15 N 825 E 725 F 1925 T 2275 A 425 B 390 S 330 E 290 F
770 T 910 A 170 B 156 S 132 E 116 F 308 T 364 A 68 P 4

The twentieth value of x is 4 = 22, so we write down 2. If we were patient
enough, we would find the 70th value is 23, the 281st is 25, the 708th is 27,
the 2364th is 211, and so on.

This set of fractions is an example of FracTran, a deliberately min-
imalistic computational model invented by John Conway. Its capabilities
are equivalent to that of a Turing machine (just as all modern computers
are). It demonstrates how the briefest of programs can achieve a relatively
complex computational goal, provided we ignore the effort involved in writ-
ing, or indeed understanding the program, and we don’t worry about its
execution time.

The next section explains how the primes are produced (a very belated
response to M500 Problem 226.1). We then go on to analyse another set
of nine fractions invented by Devin Kilminster which also produces primes.
These can be found on the Internet, along with an earlier version with ten
fractions. Neither set seems to be analysed in a published paper.

How the primes are produced

The fraction used to transform a power of 2 is clearly M , since this is the
only fraction whose denominator is a power of 2. We also find that the
last fraction used to transform x to a power of 2 is always P . Clearly, the
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factors of x are conveying the information on which this prime generating
‘machine’ operates, with the factors of the numerators and denominators of
the fractions dictating the transformations on successive x. Examining the
factors of the fractions

A B D H E F I R P S T L M N
17

7·13

2·3·13

5·17

19

3·17

23

2·19

29

3·11

7·11

29

5·19

23

7·11

19

1

17

11

13

13

11

3·5
2·7

3·5
2

5·11

1

we can see that each fraction apart from L and M has precisely one factor
from the set {1, 11, 13, 17, 19, 23, 29} in each of its numerator and denom-
inator (where 1 is the entire value); so these values act as machine states
(roughly, where the machine is in its program), with a particular fraction
switching from one state to another. The fractions L and M are only in-
voked when we are in state 1 and x is even, and don’t change state. Powers
of 2, 3, 5, 7 represent internal machine registers which can be incremented
or decremented, and tested if they are zero or not. For instance, we will
suppose we are in state 17, so x is divisible by 17. If the power of 5 in x
is greater than 0, fraction B detects this, subtracts 1 from the power of 5,
adds 1 to the powers of 2 and 3, and switches to state 13. If the power of 3
in x is greater than 0, fraction D detects this, subtracts 1 from the power
of 3, and switches to state 19. If the powers of 3 and 5 in x are both zero,
then fraction P switches to state 1.

Now x is always in the form 2t3s5r7qp, where p is one of {1, 11, 13,
17, 19, 23, 29}. Since x gets large very quickly, we will denote a particular
x value by (t, s, r, q)p, and refer to t as the value of the 2-register, s as
the value of the 3-register, and so on. The divisibility test on a fraction’s
denominator is therefore replaced by comparison of the registers with prime
power exponents in the denominators of the fractions.

A general program to print primes would look like this in pseudocode.

n := 1
loop

n := n+ 1
if n is prime then

Print n
end if

end loop

Given the restricted capability of the machine, determining if n is prime
could involve testing every divisor d from n− 1 downwards. If n is divisible
by any d > 1, then n is not prime. Our program therefore looks like this.
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n := 1
loop

n := n+ 1, d := n
repeat

d := d− 1
until n is divisible by d
d := d− 1
if d = 0 then

Print n
end if

end loop

Since the machine cannot divide, we will need to achieve this by repeated
subtraction.

procedure FindDivisor • Sets d to the highest value < n such that
• n is divisible by d

d := n− 1
repeat

b := n • Finds b such that b < d, ad+ b = n
repeat

b := b− d
until b < d
if b 6= 0 then

d := d− 1
end if

until b = 0
end procedure

The supplied fractions only have prime exponents of zero or 1, so cannot
add or subtract anything other than 1, and can only test for something
being zero, so we need to expand our routine even further. The idea is to
keep two counters q, s with q + s = d, with s being incremented from 0
to d, and q being decremented from d to 0 at the same time as r is being
decremented. Since we need to preserve n, we introduce another variable
t such that r + t = n, so that when r is decremented, t is incremented.
The t, s, r, q correspond to the 2-register, 3-register, 5-register and 7-register
values defined earlier.

Before we look at the detailed manipulation of these registers, it might
be helpful to look at an overall flow in terms of the fractions actually used
at each step. For ease of understanding, the pseudocode uses n, d, b, a, with
n = ad + b as above, even though we really only have t, s, r, q. In the
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listing below, the register and state values are shown at various points.
Fraction expressions such as [(AB)2C]3 mean successive fractions used are
ABABCABABCABABC.

d := 1, n := 1
(1, 0, 0, 0)1
loop

Ld−1Mn−d+1N
(0, n− 1, n, 0)11 • n has been incremented
d := n− 1
repeat

[(AB)dS(EF )]a

(n− b, 0, b, d)13
if b 6= 0 then

(AB)bAD(HI)nR(EF )b−1T
(0, 0, n, d)13 • d has been decremented

end if
until b = 0

end loop

Looking in more detail at register values, our program and FindDivisor
procedure have had to go through extensive revision, but their foundations
should hopefully still be visible. Both have been annotated with equivalent
FracTran fractions and state numbers.

r := 0
t := 1 • r + t = n = 1, giving the initial value of x = 2
q := 0, s := 0
State1:
s := t
r := t+ 1 • After t is cleared out below,
q := 0 • this effectively achieves (new) n := n+ 1
t := 0 • ≡ LqMn−qN : (n, 0, 0, q)1 → (0, n, n+ 1, q)11

• (L,M achieves q := 0, t := 0, N increments r),
• q + s = d = (new) n− 1

Call FindDivisor
if q = 0 then

Print t
else • n is divisible by q + 1 > 1, so n is composite,

• and x will be of the form 2n7q

end if
goto State1
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procedure FindDivisor • Sets q to the highest value < n
• such that n is divisible by q + 1

State11:
while s 6= 0 do • Always entered with q = 0,

• so swaps q and s
q := q + 1
s := s− 1

end while • ≡ (EF )sT :
• (t, s, r, q)11 → (t, 0, r, q + s)13

State13:
if q 6= 0 then

q := q − 1 • A
State17:
if r = 0 then

if s 6= 0 then
s := s− 1 • D
q := q + 1 • R (Compensates for q := q − 1 above,

• so that the net result is d := d− 1)
repeat • Always entered with r = 0,

• so swaps r and t
r := r + 1
t := t− 1

until t = 0 • Overall ≡ D(HI)tR :
• (t, s, 0, q)17 → (0, s− 1, t, q + 1)11

goto State11
else • P

exit procedure • In State1
end if

else
r := r − 1
t := t+ 1
s := s+ 1
goto State13 • B

end if
else

goto State11 • S
end if

end procedure
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Kilminster’s fractions

Here is another set of fractions with identifying letters.

A B C D E F G H I
3

11

847

45

143

6

7

3

10

91

3

7

36

325

1

2

36

5
These fractions can also generate all the primes as follows. Start with
x = 10. Scan the set of fractions from left to right until the first fraction
f is found such that x is divisible by its denominator. Replace x by xf . If
x = 10n for some integer n, then n is prime. Do this repeatedly.

The eleventh value of x is 102, the 47th value is 103, the 197th is 105,
the 501st is 107, the 1429th is 1011, and so on. Examining the factors of
the fractions:

A B C D E F G H I
3

11

7 · 112

32 · 5
11 · 13

2 · 3
7

3

2 · 5
7 · 13

3

7

22 · 32

52 · 13

1

2

22 · 32

5
we immediately see several differences from Conway’s fractions. The first
difference is that prime power exponents of up to 2 are present. The second
is that the exponents of powers of 2 and 5 do not stay in step. When we
examine the fractions in operation, we find that divisor d values start from
2 and increase, and that machine states are implicit, depending on which
register combinations are zero. As we will see later, the 3- and 11- registers
are used as counters in certain repetitive operations independent of n and
d. We will therefore adopt a slightly different representation for x, namely
(u, t, s, r, q, p), where u is the contents of the 2-register, . . . , p is the contents
of the 13-register. The equivalent overall flow is as follows.

n := 1
(n, 0, n, 0, 0, 0)
loop

HnI • n has been incremented
(2, 2, n− 2, 0, 0, 0)
d := 1 • d is incremented below,
b := 0 • so the first divisor is 2
repeat

(b+ 2, 2, n− 2, 0, 0, d− b− 1) • d, b from the previous iteration
(BAA)n−2(CA)b+2D
(0, 1, 0, n− 1, 0, d) • d has been incremented to the

• value for this iteration
if d < n then

[DEdF (CA)d]a−1DEd • a, b determined from d
(d, 0, ad, b, 0, 0)
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if b 6= 0 then
F (CA)dDEbG
(b+ 2, 2, n− 2, 0, 0, d− b− 1)

else
DEd

(d, 0, n, 0, 0, 0)
end if

else
DEn

(n, 0, n, 0, 0, 0) • n is prime
end if

until b = 0
end loop

The transformation (BAA)n−2(CA)b+2D from (b+ 2, 2, n− 2, 0, 0, d−
b−1) to (0, 1, 0, n−1, 0, d) is purely mechanical, using the 3- and 11-registers
to achieve a BAA cycle, terminating the repetition of BAA cycles when the
5-register reaches zero. The value of d at this point is held in the 13-register,
so the Cb+2 operations transform d − b − 1 to d + 1, the new value of d.
The various operations after (d, 0, ad, b, 0, 0) are also purely mechanical, so
won’t be considered further.

We will now consider how [DEdF (CA)d]a−1DEd derives a, b, and how
the transformation (0, 1, 0, n − 1, 0, d) to (d, 0, ad, b, 0, 0) is accomplished.
With the 2-, 5- and 11-registers all zero, i.e. u = s = q = 0, fractions
A,B,C cannot be invoked. With the 3-register t = 1, D is invoked, setting
r = n, and allowing E to decrement r and p repeatedly, counting iterations
in u, s. If d = n, both r and p reach zero together, in which case we get the
power of 10 from u = s = n, indicating a prime. If d < n, p will reach zero
with r 6= 0 and u = d.

At this point, the registers are (d, 0,md, n − md, 0, 0), where m = 1.
F is invoked since p = 0, setting r = n − d − 1, and invoking C and A
alternately d times until u is reduced to zero again, and with t− 1 from the
last invocation of A. Another round of DEd starts with r −md, where m
is the number of times we’ve been round this loop. If n is divisible by r,
then p and r will reach zero together when m = a− 1. If n = ad+ b is not
divisible by d, the registers after a iterations of (DE)d and a− 1 iterations
of F (CA)d will therefore be (d, 0, ad, n− ad, 0, 0) = (d, 0, ad, b, 0, 0).

Reference

R. K. Guy, Conway’s prime producing machine, Mathematics Magazine,
Vol. 56, No. 1 (1983), 26–33.
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Charged particles close to a modestly charged
black hole
Tommy Moorhouse
In a previous article we set up the metric of a uniformly accelerated observer,
the Rindler metric. Here we will show that the metric of the Schwarzschild
black hole close to the event horizon can be approximated by the Rindler
metric. We will generalize to a charged black hole metric and consider the
motion of a charged particle initially at rest close to the event horizon,
finding its energy and its speed when it is nudged away from the hole and
accelerates towards infinity.

Approximating the Schwarzschild metric close to the horizon We
will write the Schwarzschild metric, the metric of the space–time outside a
spherical black hole, as

ds2 = c2K(r)dt2 −K(r)−1dr2 − r2dΩ2.

Here K(r) = 1 − 2GM/(rc2) where G is the gravitational constant, M is
the mass of the black hole, c is the speed of light, and dΩ2 is the volume
element of a unit sphere, dΩ2 = dθ2 + sin2 θdφ2.

To analyse the situation close to the event horizon (following [1]) we set

r = rS(1 + y),

where rS is the Schwarzschild radius 2GM/c2 and y � 1. Then dr2 =
r2Sdy

2,K(r) ≈ y. Writing

ρ =

∫ r

rS

dr√
K(r)

≈ rS

∫ y

0

dy
√
y

we find the metric becomes

ds2 ≈ κ2ρ2dt2 − ρ2 − ρ2dΩ2.

This is the Rindler metric we derived for a uniformly accelerated observer,
and we see that close to the event horizon an observer feeling the grav-
itational pull of the black hole sees the same physics as if she were in a
uniformly accelerated frame. Here κ = c/2rS is the ‘surface gravity’ of the
black hole.

Introducing charge Next consider a charged particle in the gravitational
field approximated by the Rindler metric. As we found in a previous article
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(or see [1, Chapter 2]) to the observer fixed in this frame the particle remains
at rest, with its field lines penetrating the horizon at right angles. What is
accelerating the charged particle (that is, how is it remaining at the same
value of ρ)? Of course, this is an artificial question because we have simply
postulated the existence of the accelerated particle, but suppose we give it
meaning by requiring that a physical force is acting: the natural force in
this case is due to an electric field. The field would have to be repulsive and
strong enough to overcome the gravitational attraction. In contrast to the
Newtonian model there is no combination of mass and charge such that the
force on the charged ‘test’ particle cancels out everywhere (exercise for the
reader—consider the Newtonian case and confirm that the forces balance
everywhere for the right values of the masses and charges).

The Reissner–Nordstrom metric for a charged black hole There
is a natural metric describing a charged black hole. This is the Reissner–
Nordstrom metric (see, for example, [3] or [4]). Since gravity is so much
weaker than the electromagnetic force (far from a black hole at least) we
might be able to find a solution in which the charged particle is actually at
rest outside the event horizon. Then our Rindler space analogy will have a
natural home, although the field lines will no longer penetrate the horizon
(they will be bent away by the electric field of the black hole).

The form of the Reissner–Nordstrom metric that we will use is

ds2 =
c2∆(r)

r2
dt2 − r2

∆(r)
dr2 − r2dΩ2.

Here

∆(r) = r2 − 2GMr

c2
+
GQ2

c4

and Q is the electric charge of the black hole, with the other constants
keeping the units right. This is often written

∆(r) = r2 − 2Mr +Q2

in units (‘geometric units’), such that c = G = 1, to streamline the notation.
In these units both electric charge and mass have the dimensions of length.
There are two ‘horizons’, at r± = M±

√
M2 −Q2, and details can be found

in [3] and [4].

Chandrasekhar’s study [4] of the motion of charged particles in the
Reissner–Nordstrom metric (also to be found in a slightly different form in
[3]) centres on the Lagrangian (where e stands for the charge per unit mass
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of the test particle),

2L = 2Lg + 2
eQ

r

dt

dτ

(where Lg is essentially the usual Lagrangian for the metric) because a
charged particle does not fall freely (i.e. does not follow a geodesic). Defin-
ing the constant E, the energy per unit mass of the test particle, and con-
sidering only radial motion so that θ and φ are constant, we have

∆(r)

r2
ṫ+

eQ

r
= E,

ṙ2 =

(
E − eQ

r

)2

− ∆(r)

r2
≡ f(r, E),

r̈ =
1

2

df(r, E)

dr
.

Here ṫ = dt/dτ and the last line follows by differentiating the line above
with respect to the parameter τ . If an observer travelling with the particle
measures a time interval dτ , an observer far from the black hole will measure
a time interval dt. The specific energy E of the test particle need not be
equal to c2, because, as we will see, the particle could be accelerated away
from the black hole and have a non-zero speed ‘at infinity’. In this case
E represents the specific relativistic energy γc2: more on this later. We
note that if the particle is an electron, then e is very large, around 1021

in geometric units, while the mass of a solar mass black hole is around
M = 1.5×103m). We will also take Q�M. This simplifies the calculations
while allowing a realistic non-extreme model to be developed. We would
like to arrange that the particle is at rest just outside the outer horizon
(r+ = M +

√
M2 −Q2) by fixing Q to a suitable value. Let us parametrize

Q in terms of M and e by setting Q = αM/e where α is a dimensionless
parameter (note that e and E are also dimensionless in geometric units).

The electron at rest We will find values of E and r0 such that f(r0, E) =
0 and f ′(r0, E) = 0, for at these values the electron is at rest feeling no net
acceleration. We can write

ṙ2 =

(
E − αM

r

)2

− 1 +
2M

r
.

Here we have used the fact that Q will be much smaller than M , and in fact
we will have Q ≈ 10−18m for a solar mass black hole. The electron’s charge
is around 10−36m, so Q represents around 1018 electrons or 0.1 coulomb.
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This is a fairly modest charge for a black hole. Now, in this approximation
we can solve for E and r to get the location and energy of the electron at
rest (ṙ2 = 0), and we find (exercise for the reader)

r0 =
2Mα2

α2 − 1
, E =

α2 + 1

2α
.

Observe that α must be greater than 1, and that for large α the rest point
is close to the horizon. The rest point is an unstable point, and any slight
disturbance of the electron will result in it accelerating either into the black
hole or towards infinity. If the electron is pushed gently away from the
hole it will accelerate to the speed (another exercise—use the fact that the
constant E can be written as E = γ at large distances, and γ = 1/

√
(1− v2)

in geometric units)

v = c
α2 − 1

α2 + 1

far away from the black hole. The higher the charge Q the closer the rest
point to the horizon and the greater the final radial speed of the electron.
The interested reader can check that while the electron is at its rest position
its clock runs slowly, with dt = αdτ (one second on the particle’s clock lasts
α seconds according to the distant observer).

Reissner–Nordstrom near-horizon coordinates The Rindler coordi-
nates can be set up just outside the Reissner–Nordstrom outer horizon in
a similar way to the Schwarzschild case, the main change being that the
charge of the hole Q contributes to the surface gravity as well as to the
electric field. The reader is invited to work out the details and find an ex-
pression for the surface gravity of the Reissner–Nordstrom black hole. In
the foregoing approximation the contribution of Q can be neglected.

Energy extraction If an electron–positron pair is created (by vac-
uum fluctuations) in the region between the outer horizon and the radius
2Mα2/(α2 − 1) such that the electron reaches the rest point with energy
E ≥ (α2 + 1)/2α then the electron can be accelerated to great distances
from the black hole where its energy can be harvested. The positron would
fall into the black hole with, in effect, negative energy, and energy would
have been extracted from the black hole.

Conclusion It is possible to have a charged particle at rest and feeling
no net force close to the horizon of a charged black hole, but the particle
will be in a precarious state: a push outward and it will race off to infinity;
inward and it will plunge into the black hole. Energy can be extracted from
the black hole by this mechanism.
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Solution 267.3 – Floor and ceiling
Show that for integer n > 0, these two functions are identical:

f(n) = 2k
(
n− k(k − 1)

2
− 1

)
, where k =

⌊√
8n+ 1− 1

2

⌋
,

c(n) = 2r
(
n− r(r − 1)

2
− 1

)
, where r =

⌈√
8n+ 1− 3

2

⌉
.

Tony Forbes
This came about while I was trying to obtain

T4(n) = c(n) + 1, (1)

the conjectured number of moves required to solve the Tower of Saigon
puzzle (recall that this is like the Tower of Hanoi except that it has four
pegs instead of three [M500 267, 8–13]). I got as far as f(n) + 1 but could
not immediately see how it would lead to (1). Most likely I had made a
mathematical deviation on the way. Eventually I became enlightened; f(n)
is indeed equal to c(n).

It is clear that r = k except possibly when 8n + 1 is an odd square,
in which case the thing being floored or ceilinged will be an integer. So
let us assume r = (

√
8n+ 1 − 3)/2 is an integer. Then k = r + 1 and

n = k(k + 1)/2 = (r + 1)(r + 2)/2. Consequently f(n) = c(n).
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Problem 271.1 – Complex exponential sums
Tony Forbes

Consider the functions

f(t) =
1

2
e−18it − 2i

3
e11it,

g(t) = ie23it − 5

6
e−14it and

h(t) =

(
1

3
+ i

)
e−17it +

i

2
e44it.

In the left-hand picture, below, f(t) is plotted on the complex plane for
0 ≤ t ≤ 2π. As you can see, the result is a nice, symmetric, floral pattern
with 29 petals. Show that the graph really does have 29-fold rotational
symmetry.

Similarly, show that the graphs of g(t) (right-hand picture) and h(t)
(front cover) have 37-fold and 61-fold rotational symmetry respectively. I
did not include the axes in any of the diagrams because I was of the opinion
that they would interfere excessively with the overall prettiness of the things.

The inspiration for this problem came from Sarah Hart’s review in the
London Mathematical Society Newsletter, issue 455, of Creating Symmetry
by Frank Farris. The functions presented here are the results of an idle
afternoon spent experimenting with Mathematica.
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Solution 269.5 – Coins
Simplify

n∑
i=0

|n− 2i|
(
n

i

)
,

where n is a positive integer. Hence or otherwise determine

lim
n→∞

1√
n
E[∆(n)], where E[∆(n)] =

1

2n

n∑
i=0

|n− 2i|
(
n

i

)
.

Coin tossers might recognize E[∆(n)] as the expected value of
the discrepancy (i.e. |(number of heads)−(number of tails)|) re-
sulting from randomizing the orientations of n coins.

Tommy Moorhouse

Outline

We will use a kind of accounting trick to show that

Sn =

n∑
k=0

|n− 2k|
(
n

k

)
= n

(
n

n/2

)
when n is even, and

Sn =

n∑
k=0

|n− 2k|
(
n

k

)
= 2n

(
n− 1

(n− 1)/2

)
when n is odd. We will then use Stirling’s identity for the gamma function
to show that

lim
n→∞

1√
n
E[∆(n)] =

√
2

π
.

A trick

The ‘trick’ we will use is to consider the expression

P (x, θ) = (1 + xθ)n =

n∑
k=0

xkθk
(
n

k

)
,

where θm = 0 for some m to be determined. We are not too concerned
what kind of object θ may be (for our purposes it will simply be assigned the
properties we need to simplify the work), just with the fact that it truncates
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the expansion of our expression. If we set x = 1 then (1 + x)n = 2n. We
will use this below.

Two cases

Now we reduce the sum to something we can work with without having to
worry about the modulus sign. A little trial suggests that taking the n odd
and n even cases separately will simplify things. First we take n to be even:
the case of n odd is simpler and will be left to the reader. We take θn/2 = 0,
and the sum Sn becomes

Sn = 2

n/2−1∑
k=0

n

(
n

k

)
− 4

n/2−1∑
k=0

k

(
n

k

)
.

The first part of the sum does not require any tricks, and is

2n

(
2n −

(
n

n/2

))
1

2
= n

(
2n −

(
n

n/2

))
.

For the second sum we note that

d

dx
(1 + xθ)n =

n/2−1∑
k=1

kxk−1θk
(
n

k

)
,

which will give the sum we want if we set the terms xaθb equal to 1. The
derivative can also be expressed as

nθ(1 + xθ)n−1 = n

n/2−2∑
k=0

(
n− 1

k

)
xkθk+1.

Here we have used the fact that θn/2 = 0, and as above we will continue
our analysis by setting all the terms xaθb to 1. In this way we see that the
second part of the sum is

2n

(
2n−1 − 2

(
n− 1

n/2

))
,

using the fact that (
n− 1

n/2

)
=

(
n− 1

n/2− 1

)
.

Putting this all together we have

Sn = n

(
2n −

(
n

n/2

)
− 2n + 4

(
n− 1

n/2

))
= n

(
4

(
n− 1

n/2

)
−
(
n

n/2

))
.
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This expression simplifies (a good exercise in combinatorial arithmetic) to
give, for even n,

Sn = n

(
n

n/2

)
.

The result for odd n is

Sn = 2n

(
n− 1

(n− 1)/2

)
.

Stirling’s asymptotic expression for Γ(z)

We use the fact that, for large n, when we can treat odd and even cases as
essentially the same,(

n

n/2

)
=

4

n

Γ(n)

Γ(n/2)2
for even n, 2

(
n− 1

(n− 1)/2

)
∼ 4

n

Γ(n)

Γ(n/2)2
for odd n,

to allow us to use Stirling’s formula

Γ(z) ∼ zze−z
√

2π/z,

1√
n
E[∆(n)] ∼ n

2n
√
n

4

n

nne−nn
√

2π

2(n/2)ne−n(2π
√
n)
.

The n-dependent terms cancel in this limit to give

lim
n→∞

1√
n
E[∆(n)] =

√
2

π
.

Reference

[1] John W. Dettman, Applied Complex Variables, Dover, 1965. Includes
a derivation of Stirling’s asymptotic formula for Γ(z), as do many other
standard texts.

Problem 271.2 – Two-digit squares
(i) Squares which are composed of only two distinct digits seem to be very
common: 16, 25, 36, 49, 64, 81, 100, 121, 144, 225, 400, 441, 484, . . . . Show
how to construct infinitely many.

(ii) Squares which are composed of only two distinct non-zero digits are
somewhat rarer. Here they are up to 1014: 16, 25, 36, 49, 64, 81, 121, 144,
225, 441, 484, 676, 1444, 7744, 11881, 29929, 44944, 55225, 69696, 9696996,
6661661161. Are there infinitely many?
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Reversed cheque
Andrew Pettit

Problem

[Martin Gardner, My Best Mathematical and Logic Puzzles] Mr Brown
cashes a cheque but the clerk reverses the dollars and cents. After spending
5 cents (on a newspaper) Mr Brown has twice the amount of his cheque.
How much was the cheque for?

Solution

Let Mr Brown’s cheque be for $d.c = (100d+ c) cents. Hence Mr Brown is
given $c.d by the teller = (100c+ d) cents. After buying the newspaper he
has (100c+ d− 5) cents which is twice (100d+ c) cents; i.e. 98c− 199d = 5.

Applying the Euclidean Algorithm to find gcd(199, 98),

98 = 32 · 3 + 2, 3 = 2 · 1 + 1.

Hence 199 and 98 are co-prime. Reversing the process:

1 = 3− 2, 2 = 98− 32 · 3, 3 = 199− 98 · 2.

Hence

1 = 3−(98−32 ·3) = 33 ·3−98 = 33(199−2 ·98)−98 = 33 ·199−67 ·98

⇒ 165 · 199− 335 · 98 = 5

is a particular solution to the equation ac+bd = 5. Let a = 98 and b = 199;
then 98c− 199d = 5 with c = −355 and d = 165. By Theorem 2.9 in M381,

98(−335 + 199t) + 199(165− 98t) = 5, t ∈ Z,

is a general solution to the same equation.

The cents must clearly be positive and less than 100; so the only valid
value of c is 63, which has t = 2. From this d can be deduced as 31 to give
an answer of $31.63. But why does d not come out of the general solution
to the Diophantine equation?

Erratum

In M500 270 the expression for log(n/b(n)) on page 8 should read

log
n

b(n)
= log(2πe)− 1

2n
log(8πn) +O

(
1

n2

)
.
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Solution 269.8 – Integral
Show that

I0 =

∫ ∞
−∞

cosx

1 + x4
dx =

π
(
cos(1/

√
2) + sin(1/

√
2)
)

√
2 e1/

√
2

≈ 1.54428.

Just in case it might be relevant, recall that in Problem 242.1
we asked you for a proof that

∫∞
−∞ (cosx)/(1 + x2) dx = π/e.

Tommy Moorhouse
We wish to find the integral I0. The most straightforward way, discussed in
standard texts such as [1], seems to be to integrate

I =

∫
C

eiz

1 + z4
dz

over a semicircular contour C in the complex z-plane, noting that the poles
of the integral occur at the zeros of z4 + 1 and are

ρ = exp(iπ/4), − ρ, ω = exp(3πi/4) and − ω,

and the denominator can be written as (z − ρ)(z + ρ)(z − ω)(z + ω). The
real part of I will be the solution we seek.

We close the contour, which runs from −R to R along the real axis, in
the upper half-plane, so that the integral over the semicircle tends to zero
as R goes to infinity. The value of the integral is then 2πi times the sum of
the residues of the integrand at the poles in the upper half plane, namely ρ
and ω. To calculate the residues we use the cover-up rule to find that

I = 2πi

(
eiρ

2ρ(ρ2 − ω2)
+

eiω

2ω(ω2 − ρ2)

)
.

Using ρω = −1, ρ2 = i and ω2 = −i we find I = π/2 (ρeiω − ωeiρ). Using

ρ =
1√
2

(1 + i), ω =
1√
2

(−1 + i)

we arrive at

I =
πe−1/

√
2

√
2

(
cos

1√
2

+ sin
1√
2

)
.

Since I is real we have also calculated I0.

Reference

[1] M. J. Ablowitz and A. S. Fokas, Complex Variables, Cambridge, 2003.
The essentials of complex variable theory can be found here, clearly ex-
plained.
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Problem 271.3 – Truncation

Ralph Hancock
M500 244 had a truncated truncated
truncated truncated truncated cube on
the cover, which suggests a problem.

Vlad the Truncator presented each
of his courtiers with a perfect cube of
sardonyx weighing 100 vrk and a small
file, and gave them this order.

‘You are to truncate this cube ac-
cording to the rule that the first cuts
shall turn the square sides into regular
octagons, and subsequent ones shall maintain these sides as regular poly-
gons. I require you to answer these questions in advance.

1. What weight of sardonyx will be left after 5 such truncations?

2. If the truncation is continued infinitely, towards what figure will the
decreasing weights converge?

If the weight of your piece does not conform to your prediction, you will
incur the attentions of the Court Truncator.’

One courtier survived the test unscathed. What were his answers?

Tony Forbes writes. As there is quite a lot at stake I had better clarify
the truncation methodology. Let t(E) denote the proportion of polyhedron
edge E that is removed from each end of E. We assume always that the
same amount is taken from both ends to leave a reduced edge of length
|E|(1− 2 t(E)). Looking at the Mathematica code what I wrote to create
the picture on the cover of M500 244, I appear to have set

t(E) =
2

4 +
√

2 + 2 cos(2π/pE) +
√

2 + 2 cos(2π/qE)
,

where pE and qE are the numbers of sides of the two polygons that have
edge E in common. Unfortunately that doesn’t satisfy the requirements of
Vlad the Truncator. So instead I suggest you work with

t(E) =
1

2 +
√

2 + 2 cos(2π/max{pE , qE})
.

The (truncated)5 cube so constructed is illustrated above. Initially we have

pE = qE = 4; hence t(E) = 1/(2+
√

2), the correct value for the six octagons
and eight triangles of the Archimedean truncated cube.
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Problems for Metagrobologists
A Collection of Puzzles with Real Mathematical, Logical or
Scientific Content

by David Singmaster
World Scientific, 2016, ISBN 9789814663649, £18.00 (soft cover)

TF writes. The book is a collection of 221 problems collected by the au-
thor since 1987. Some have already appeared in various publications, but
in his book David usually manages to add a wealth of further interesting
material. Many problems have not been published previously. Although
the chatty style might suggest that the intended reader is the person in the
street, most of the problems actually have a significantly non-trivial math-
ematical or scientific content. Indeed, a fairly tricky conundrum involving
Diophantine equations begins ‘Jessica and Sophie were playing together with
matchsticks.’ Anyway, I am sure Problems for Metagrobologists will appeal
to readers of this magazine.

The thirteen chapters group the problems under headings covering arith-
metic (including base 10 puzzles), geometry, logic, the subtle interplay be-
tween numbers and (English) words, combinatorics, and various forms of
applied mathematics such as physics and geography.

An important feature is the provision of complete solutions. This is
really useful. Some of the problems I found truly baffling and I have to
admit that I gained a great deal of enlightenment by cheating. And to
save you the trouble of looking up that long word, David explains all in his
Introduction.

Problem 271.4 – Fractions
I (TF) have been told that a surprising (i.e. positive) number of undergrad-
uates doing mathematics courses confuse the Farey mean, (a + c)/(b + d),
of two fractions, a/b and c/d, with their sum, a/b + c/d. Of course if
a = −b2c/d2, the two are the same. However, when a, b, c and d are
positive they are nothing like each other.

On the other hand, if we compare the Farey mean with the ordinary
mean, the two are usually much closer. How close? For example, if the
fractions are 3/4 and 6/5, the means are respectively 1 and 39/40. Is there
a simple criterion to indicate when one mean is greater than, less than or
equal to the other?
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Problem 271.5 – Fibonacci’s geese
Ralph Hancock
A pair of Egyptian geese arrived in Kensington Gardens twelve years ago.
There are now just over 100 of them, numbers fluctuating as early chicks
are hatched and mostly eaten by gulls. They are long-lived birds, and the
original pair are still alive.

Suppose there were no casualties. We start with two adults. Egyptian
geese take two years to reach breeding age. Then they breed twice a year, at
any time of year, and have six chicks per brood. If there are equal numbers
of male and female offspring and all pair up as soon as they can, how many
will there be after twelve years?

Roots and the division of angles
Peter L. Griffiths
To obtain the two square roots of i. From the Cotes Formula cos 90◦ +
i sin 90◦ = 0 + i = i, for the first square root, divide the angle 90◦ by 2:

cos(90◦/2) + i sin(90◦/2) = i1/2,

which is the first square root.

For the second square root, you add 360◦ to the first angle, 90◦, and then
divide the sum by 2: (90 + 360)/2 = 225. This gives cos 225◦ + i sin 225◦ =
i1/2 as the second square root.

For investigating the possibility of a third square root, (90 + 720)/2
exceeds 360; so there will be no third square root. The excess over 360 is
45, which is a return to the angle of the first square root.

I can repeat this exercise for cube roots as follows. For the first cube
root divide angle 90◦ by 3.

cos(90◦/3) + i sin(90◦/3) = i1/3,

which is the first cube root. For the second cube root you add 360 to
the first angle 90, and then divide by 3: (90 + 360)/3 = 150. This gives
cos 150◦+ i sin 150◦ = i1/3 as the second cube root. For the third cube root,
you add 720 to the first angle 90, and then divide by 3: (90 + 720)/3 =
270. This gives cos 270◦ + i sin 270◦ = i1/3 as the third cube root. For
investigating the possibility of a fourth cube root, (90 + 1080)/3 exceeds
360, so there will be no fourth cube root. The excess over 360 is 30 which
is a return to the angle of the first cube root.
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