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Multiple angle relationships in integer triangles
Chris Pile
Introduction

The (3, 4, 5) triangle is a well-known scalene triangle with integer sides hav-
ing one angle of 90◦. Other right-angled triangles can be created, also with
integer sides, giving the set of (primitive) Pythagorean triples.

Considering other integer-sided triangles leads immediately to the
(4, 5, 6) triangle. Inspection shows that this triangle has one angle (the
largest) exactly double the smallest angle.1 It is interesting to see if other
triangles have this property, or, more generally, with other angle multiples.

To list, order and compare triangles, it is convenient to specify them
in lowest terms (primitives) and
in order of side lengths.

Thus A,B,C is an integer-
sided triangle such that C > B >
A and gcd(A,B,C) = 1. Let the
angles opposite the sides A,B,C
be α, β, γ respectively.

A B

C
ΑΒ

Γ

Double angle

Three cases of double angles can occur.

(i) β = 2α. This implies 0 < α < 36◦, 0 < β < 72◦, 180◦ > γ > 72◦.
Note that if α > 30◦, then all angles are acute.

(ii) γ = 2α. This implies 36◦ < α < 45◦, 72◦ > β > 45◦, 72◦ < γ < 90◦.
In this case all angles are acute.

(iii) γ = 2β. Here, 45◦ > α > 0, 45◦ < β < 60◦, 90◦ < γ < 120◦. In
this case γ is always obtuse.

(i) β = 2α

A modest computer search re-
veals the selection on the next
page. Note that A is a square.
Also cosα is rational. Indeed,

A B

C

P

ΑΒ

cosα =
C2 +B2 −A2

2CB
, sinα =

P

B
, sinβ =

P

A
.

1The editor of this magazine is astonished to learn that he has spent most of his life
being unaware of this fact. — TF
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A B C α β cosα
9 15 16 33.5573 67.1146 5/6

16 28 33 28.955 57.91 7/8
25 45 56 25.8419 51.6839 9/10
36 66 85 23.5565 47.1129 11/12
49 84 95 31.0027 62.0054 6/7
49 91 120 21.7868 43.5736 13/14
64 104 105 35.6591 71.3182 13/16
64 120 161 20.3641 40.7283 15/16
81 144 175 27.266 54.5321 8/9
81 153 208 19.1881 38.3763 17/18

100 170 189 31.7883 63.5767 17/20
100 190 261 18.1949 36.3897 19/20

As β = 2α, sinβ = 2 sinα cosα. Hence

P

A
= 2

P

B
· C

2 +B2 −A2

2CB
.

Therefore CB2 = AC2 +AB2 −A3, which implies

B2(C −A) = A(C2 −A2) = A(C −A)(C +A),

which leads to B2 = AC +A2, or AC = B2 −A2. Therefore

cosα =
C2 +AC

2BC
=

A+ C

2B
=

B

2A
.

(ii) γ = 2α

Triangles of this type may be less common because α is restricted to a
small range. The (4, 5, 6) triangle is one example, already mentioned. Other
triangles were revealed by a computer search.

A B C α cosα
4 5 6 41.4096 3/4

25 39 40 36.8699 4/5
49 51 70 44.4153 5/7
49 72 77 38.2132 11/14
81 88 117 43.7617 13/18
81 115 126 38.9424 7/9

For this case, AB = C2 − A2 and cosα = C/(2A). Again, side A is a
square and cosα is rational. Also A < B < φA, where φ = 1.618 . . . is the
golden ratio.
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(iii) γ = 2β

The range of γ is between 90◦ and 120◦. In this case B is a square,

AB = C2 −B2 and cosβ =
C

2B
.

A B C β cosβ
7 9 12 48.1897 2/3
9 16 20 51.3178 5/8

11 25 30 53.1301 3/5
13 36 42 54.3147 7/12
15 49 56 55.1501 4/7
17 64 72 55.7711 9/16
19 81 90 56.251 5/9
21 100 110 56.633 11/20
23 121 132 56.9443 6/11
24 25 35 45.573 7/10
25 144 156 57.2028 13/24

A B C β cosβ
27 169 182 57.421 7/13
29 196 210 57.6076 15/28
32 49 63 49.9948 9/14
40 81 99 52.3301 11/18
48 121 143 53.7785 13/22
56 169 195 54.7656 15/26
57 64 88 46.5675 11/16
69 100 130 49.4584 13/20
75 121 154 50.4788 7/11
87 169 208 52.0201 8/13
93 196 238 52.6168 17/28

Triple angle

Again, three cases can occur.

(i) β = 3α: 0 < α / 25.71◦, 0 < β / 77.14◦, 180◦ > γ ' 77.14◦.

(ii) γ = 3α: 25.71◦ / α < 36◦, 77.14◦ ' β > 36◦, 77.14◦ / γ < 108◦.

(iii) γ = 3β: 36◦ > α > 0, 36◦ < β < 45◦, 108◦ < γ < 135◦.

A

A

B

C

B'

Α2Α

3Α

3Α
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A triple-angle triangle can be constructed from a double-angle triangle
as one external angle will be the triple.

From β = 2α, 30◦ < α < 36◦, as in the diagram at the bottom of the
previous page, we have, for example, (A,B,C) = (9, 15, 16) with α ≈ 33.56.
The new triangle has B′ = 35/3 or, in integers, (A,B′, C) = (27, 35, 48).

Using the following diagram, which applies when 25.71◦ / α < 30◦, we
have, for example, (A,B,C) = (16, 28, 33) with α ≈ 28.96. Then the new
triangle has B′ = 119/4 or, in integers, (A,B′, C) = (64, 119, 132). In each
case the new side is still mid-length; so γ = 3α.

A

A

B

C

B'

Α2Α

3Α

When 0 < α / 25.71◦ we have, for example, α ≈ 23.56◦ and
(A,B,C) = (36, 66, 85), as in the next diagram. Now B has to be ex-
tended by 143/6, the new triangle being (36, 539/6, 85) and so B′ > C.
After scaling to integers, rearranging and renaming the sides and angles,
the triangle becomes (A,B,C) = (216, 510, 539) with β = 3α.

A

A

B

C

B'

Α2Α

3Α

3Α
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From γ = 2α, we use (A,B,C) = (4, 5, 6) with α ≈ 41.41◦, as in the
next diagram. In this case the new side is C ′ = 3/2, which becomes the
smallest side: (A,B,C ′) = (4, 5, 3/2). Rearranging, the new triangle in
integers is (3, 8, 10) and γ = 3β.

A A
B

C C'
Α

2Α

3Α 3Α

Quadruple angles

In a similar manner we can use a triple-angle triangle to construct one with
a quadruple angle. In each of the following examples one side is a fourth
power. [TF — To make your life a little more challenging and mine a lot
easier, I decided not to reproduce every detail of the author’s drawings. You
should have no difficulty annotating the pictures on the front cover.]

From triangle (A,B,C) = (27, 35, 48) with cosα = 5/6, α ≈ 33.56◦, the
external angle is 4α and C ′ = 48 − 2 · 113/6 = 31/3. Therefore the new
triangle is (27, 35, 31/3) or, rearranging, (31, 81, 105) with γ = 4β.

From triangle (A,B,C) = (64, 119, 132) with cosα = 7/8, α ≈ 28.955◦,
the external angle is 4α and C ′ = 132 − 2 · 223/8 = 305/4. Therefore the
new triangle is (64, 119, 305/4) or, rearranging, (256, 305, 476) and γ = 4α.

From triangle (A,B,C) = (125, 279, 280) with cosα = 9/10, α ≈ 25.84◦,
C ′ = 280 − 2 · 289/10 = 1111/5. The new triangle is (125, 279, 1111/5) or,
rearranging, (625, 1111, 1395) with γ = 4α.

From triangle (A,B,C) = (216, 510, 539) with cosα = 11/12, α ≈
23.56◦, B′ = 510 − 2 · 191/12 = 2869/6. The new triangle is (216, 2869/6,
539) or, rescaling, (1296, 2869, 3234) and γ = 4α.

From triangle (A,B,C) = (343, 840, 923) with cosα = 13/14, α ≈
21.787◦, B′ = 840 + 2 · 239/14 = 6119/7. The new triangle is (343, 6119/7,
923) or, rescaling, (2401, 6119, 6461) with γ = 4α.
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Sophie Germain and Fermat’s Last Theorem – I
Roger Thompson
Introduction

M500 211 briefly mentions Sophie Germain and her contribution to Fer-
mat’s Last Theorem. This article goes into some of the mathematical de-
tails.

Sophie Germain (1776–1831) was perhaps the first world-class female
mathematician. A summary of all her work and her life is given in

http://en.wikipedia.org/wiki/Sophie Germain,
which also has many links to further reference material. Such status is all
the more remarkable because she was self-taught—a consequence of women
not being admitted to French universities. Although she was forced to
correspond with the great mathematicians Lagrange and Gauss under the
pseudonym Antoine-Auguste LeBlanc, it is heartening to note that when
her true identity was revealed, both mathematicians continued to encourage
her work. This situation has some similarities with that of a hundred years
later, when G. H. Hardy recognised the genius of the self-taught Srinivasa
Ramanujan.

Laubenbacher and Pengelly (2010) provides more biographical infor-
mation, and examines her work on Fermat’s Last Theorem from original
manuscripts and letters, none of which she published. Legendre expounds
some of this work in his paper of 1823, and credits Sophie Germain with
a theorem that now bears her name. However, the manuscripts and let-
ters reveal a much larger ‘grand plan’ to attack Fermat’s Last Theorem.
Even though this was ultimately flawed, it is the first attempt to tackle
Fermat’s Last Theorem as a whole, rather than just for single exponent
values. Del Centina (2008) contains commentaries and mostly untranslated
text of many of Sophie Germain’s unpublished manuscripts, and provides
more mathematical detail than Laubenbacher and Pengelly (2010). This
reference shows how ambitious her plan was; it includes results which were
lost, and only rediscovered 70 or more years later, and shows how some of
her proofs were far more extensive in scope than the published proofs of
Legendre. This situation is somewhat similar to that of the discovery in
Riemann’s unpublished manuscripts of the Riemann–Siegel formula.

Sophie Germain’s work considers xp + yp = zp for odd primes p. Since
(−z)p = −zp, it is equivalent to consider xp+yp+zp = 0, the form we shall
use from now on.

Part II will appear in M500 273
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Sophie Germain’s Theorem

Sophie Germain’s Theorem divides Fermat’s Last Theorem for any prime
exponent p into two cases:

Case 1: xp + yp + zp = 0, where none of x, y, z is divisible by p.

Case 2: xp + yp + zp = 0, where one of x, y, z is divisible by p.

Although she never actually proved Fermat’s Last Theorem for a single
exponent in both cases, she did prove it for many exponents in case 1.

The theorem contains two conditions. The second of these has two
alternative formulations, shown as 2a and 2b in the following.

Sophie Germain’s theorem Let p be an odd prime. Suppose there exists
an auxiliary prime q such that the following conditions hold.

1. np 6≡ p mod q for all integers n.

2a. q is of the form 2Np + 1 for some integer N , and the set
of distinct values of xp mod q contains no consecutive non-zero
values.

2b. There exists a prime q such that for all pairwise relatively
prime a, b and c such that ap + bp + cp ≡ 0 mod q, q is a factor
of abc.

Then there are no non-zero integers x, y, z such that xp+yp+zp = 0 if none
of x, y, z is divisible by p, i.e. case 1 of Fermat’s Last Theorem is proven.

Sophie Germain stated her theorem with the 2a condition, and to this
day, primes p for which 2p + 1 is also prime are known as Sophie Ger-
main primes. Legendre used and acknowledged Sophie Germain’s work,
but stated it with the 2b condition. Implicit in 2a is the assumption that
only primes of the form 2Np+1 satisfy the condition. This was only proved
in 1894. More startling is that if it could be shown that an infinite number
of auxiliary primes q = 2Np+ 1 existed for a particular N , then xyz would
have to be infinite, hence proving Fermat’s Last Theorem, not just case 1.
This is because condition 2b implies that if xp + yp + zp = 0, xyz must be
divisible by q. Lastly, her version of the proof showed that for case 2, one
of x, y, z is divisible by p2, not just p. We will return to this later.

She proved case 1 of Fermat’s Last Theorem for the primes between 3
and 193 (her manuscripts only claim up to 97), finding suitable q values by
trial and error. With N = 1, 2, 4, 5, 7 or 8, the lowest such values are as in
the following table.



Page 8 M500 272

p,N, q p,N, q p,N, q p,N, q p,N, q p,N, q p,N, q p,N, q p,N, q

3,1,7 17,4,137 37,2,149 59,7,827 79,2,317 103,5,1031 131,1,263 157,5,1571 181,5,1811
5,1,11 19,5,191 41,1,83 61,8,977 83,1,167 107,4,857 137,4,1097 163,2,653 191,1,383
7,2,29 23,1,47 43,2,173 67,2,269 89,1,179 109,5,1091 139,2,557 167,7,2339 193,2,773
11,1,23 29,1,59 47,7,659 71,4,569 97,2,389 113,1,227 149,4,1193 173,1,347
13,2,53 31,5,311 53,1,107 73,2,293 101,4,809 127,2,509 151,5,1511 179,1,359

We will see why multiples of 3 are excluded from the list of N values later.

As an example of a q that satisfies both conditions for a particular p,
we will consider p = 5, N = 1, i.e. q = 11. The table of fifth powers for
q = 11 is as follows.

n mod 11 0 1 2 3 4 5 6 7 8 9 10
n5 mod 11 0 1 10 1 1 1 10 10 10 1 10

None of the n5 mod 11 values is 5, so condition 1 is satisfied. Since 11 =
2×5+1, and the set of values of n5 mod 11 contains no consecutive non-zero
values, condition 2a is satisfied. Since the only values in the set are 0, 1 and
10, we can easily tabulate all x5, y5, z5, x5+y5+z5 mod 11 values, relabelling
x, y, z if necessary so that (x5 mod 11) ≤ (y5 mod 11) ≤ (z5 mod 11):

x5 mod 11 0 0 0 0 0 0 1 1 1 10
y5 mod 11 0 0 0 1 1 10 1 1 10 10
z5 mod 11 0 1 10 1 10 10 1 10 10 10
x5 + y5 + z5 mod 11 0 1 10 2 0 9 3 1 10 8

The two cases where x5 + y5 + z5 ≡ 0 mod 11 are 0, 0, 0 and 0, 1, 10. In
the first case, each of x, y, z must be divisible by 10, so x, y and z are not
relatively prime, so we can ignore this. In the second case, x is divisible by
10, so condition 2b is satisfied.

The equivalence of conditions 2a and 2b

Before we start on the proof of Sophie Germain’s theorem, we need to look
at what equivalence there is between the various elements of conditions 2a
and 2b. In particular, we look at the negation of those conditions (slightly
weakened), and show that these conditions are equivalent. In the following,
q is a prime, but n is any odd integer greater than 1, not necessarily prime.

Condition A: There exist a, b and c with abc not divisible by q, such
that an + bn + cn ≡ 0 mod q (the negation of 2b).

Condition B: There exist integers d, e, neither of which is divisible by q,
such that dn ≡ (en + 1) mod q.

Condition C: If q = 2Nn+1, there exist solutions u, v of x2N ≡ 1 mod q
such that v ≡ (u+ 1) mod q (a stronger version of the negation of 2a).

Proof that A⇒B: Since c is not divisible by q, there are integers d and e,
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neither of which is divisible by q, such that cd+a ≡ 0 mod q, ce ≡ b mod q.
So −(cd)n + (ec)n + cn ≡ 0 mod q. Since c is not divisible by q, we can
divide out cn to give dn ≡ (en + 1) mod q.

Proof that B⇒A: This follows immediately since (−d)n + en + 1n ≡
0 mod q.

Proof that B⇒C: Let u ≡ en mod q, v ≡ dn mod q. Then u2N ≡ eq−1 ≡
1 mod q by Fermat’s Little Theorem. Similarly, v2N ≡ dq−1 ≡ 1 mod q.

Proof that C⇒B: Let f be a primitive root of q, i.e. fh ≡ 1 mod q for
h = q−1, but for no smaller positive value of h. Let u ≡ fm mod q, so that
f2Nm ≡ u2N ≡ 1 mod q by definition. Since f is a primitive root of the
prime q, fh ≡ 1 mod q for h = q−1 = 2Nn, but for no smaller positive value
of h; so m must be a multiple of n = mg, say. So u ≡ (fg)n ≡ en mod q, say.
Similarly, v ≡ dn mod q, say. But v ≡ (u+1) mod q, so dn ≡ (en+1) mod q.

Since we have proved that A ⇔ B ⇔ C, we have also proved that
Ā⇔ B̄⇔ C̄, showing that conditions 2a and 2b are equivalent.

Clearly, the 2a condition has a direct connection to the prime p for which
we are attempting to prove case 1. However, the 2b condition provides a
relatively simple proof of Sophie Germain’s theorem, which we finally get
round to doing in the next section.

Legendre’s proof of Sophie Germain’s theorem, using condition
2b

We consider xp + yp + zp = 0, allowing x, y and z to be interchanged
freely when required. We require that x, y and z have been reduced so that
gcd(x, y) = gcd(x, z) = gcd(y, z) = 1. We will show that if conditions 1 and
2b apply, then if none of x, y, z are divisible by p, xp + yp + zp = 0 has no
non-zero integer solutions.

We have (−x)p = yp+zp = (y+z)(yp−1−yp−2z+yp−3z2−· · ·+zp−1) =
ab, say, where a = (y + z), b = (yp−1 − yp−2z + yp−3z2 − · · · + zp−1). If q
was a prime factor of both a and b (and so also a factor of x), we would get
y+ z ≡ 0 mod q from a. Applying this to b, we would get pyp−1 ≡ 0 mod q,
giving p ≡ 0 mod q, or y ≡ 0 mod q. The first case implies p = q, since
both are primes, but this would imply p was a factor of x. The second case
implies z ≡ 0 mod q, which would imply gcd(y, z) > 1, a contradiction. We
have therefore shown gcd(a, b) = 1. Since ab = (−x)p, both a and b must
be pth powers (a, b must each be the product of pth powers of primes, none
of which are common to both a and b). Applying similar arguments for
(−y)p = xp + zp, (−z)p = xp + yp, there must be integers a, b, c, d, e, f such
that
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A: y + z = ap, yp−1 − yp−2z + yp−3z2 − · · ·+ zp−1 = bp, x = −ab,
B: z + x = cp, zp−1 − zp−2x+ zp−3x2 − · · ·+ xp−1 = dp, y = −cd,
C: x+ y = ep, xp−1 − xp−2y + xp−3y2 − · · ·+ yp−1 = fp, z = −ef.

Condition 2b requires that one of x, y, z is divisible by q. Relabel if necessary
so that x ≡ 0 mod q. Then 2x = (x + z) + (y + x) − (y + z) = cp + ep +
(−a)p ≡ 0 mod q. Applying condition 2b again, one of a, c, e is divisible
by q. If c or e were divisible by q, we would have y = −cd ≡ 0 mod q, or
z = −ef ≡ 0 mod q, but we already have x ≡ 0 mod q, so gcd(x, y) > 1 or
gcd(x, z) > 1, contradicting our requirement.

If, instead, a were divisible by q, we would get y ≡ −z mod q, bp ≡
pyp−1 from A. From C, yp−1 = fp mod q, so pbp ≡ fp mod q. Since b 6≡
0 mod q, there is an integer g such that bg ≡ 1 mod q, so that p(bg)p ≡ p ≡
(fg)p mod q, contradicting condition 1, hence no solution exists.

The p2 result from Sophie Germain’s own proof

Sophie Germain did not identify the theorem that bears her name as an
entity in its own right. Rather, her proof emerges during paragraphs that
aim to demonstrate the huge size of any possible solutions to Fermat’s Last
Theorem. Unfortunately, there is a flaw in her proof, which unpublished
manuscripts suggest she recognized and was trying to correct (details can
be found in Laubenbacher and Pengelley (2010) sections 4.1.1 to 4.1.3).
However, she did show that if conditions 1 and 2a are satisfied, then if any
solutions of xp+yp+ zp = 0 exist, one of x, y, z must be divisible by p2, not
just p. The following is an adaptation of her proof of this, using the scheme
set out in Legendre’s proof in the previous section.

Without loss of generality, we assume that x is divisible by p. Since
gcd(x, y) = gcd(x, z) = 1, neither y nor z can be divisible by p. By Fermat’s
Little Theorem, yp−1 ≡ 1 mod p, so y(yp−1 − 1) = yp − y is divisible by p.
Similarly, zp−z is divisible by p, so adding, we get (yp+zp) ≡ (y+z) mod p.
But yp + zp ≡ −xp ≡ 0 mod p, so y + z is divisible by p. We have

(−x)p = yp + zp = (y + z)(yp−1 − yp−2z + yp−3z2 − · · ·+ zp−1) = ab,

say, where a = (y + z), b = (yp−1 − yp−2z + yp−3z2 − · · ·+ zp−1). So

b =
yp + (a− y)p

a
= ap−1−

(
p

1

)
ap−2y+· · ·−

(
p

p− 2

)
ayp−2+

(
p

p− 1

)
yp−1.

Since p is prime,

(
p

n

)
is divisible by p for 1 ≤ n ≤ p−1, and since a = y+z

is divisible by p, all the terms in the expression for b above are divisible by



M500 272 Page 11

p2 apart from

(
p

p− 1

)
yp−1 = pyp−1, so b is divisible by p, but not divisible

by any higher power of p.

From the previous section, we had

A: y + z = ap, yp−1 − yp−2z + yp−3z2 − · · ·+ zp−1 = bp, x = −ab,
B: z + x = cp, zp−1 − zp−2x+ zp−3x2 − · · ·+ xp−1 = dp, y = −cd,
C: x+ y = ep, xp−1 − xp−2y + xp−3y2 − · · ·+ yp−1 = fp, z = −ef.

Adding B and C, we get 2x+(y+z) = cp+ep. Since x and (y+z) are both
divisible by p, cp + ep is divisible by p. Since neither y nor z is divisible
by p, neither cp = z + x nor ep = x + y is divisible by p, so by the same
argument used for y, z above, we have c+ e is divisible by p. So c = Kp− e
for some K. Then

cp = (−e+Kp)p = − ep +

(
p

1

)
pK(−e)p−1 +

(
p

2

)
p2K2(−e)p−2 + . . . ,

with all additional terms divisible by p2, so cp+ep is divisible by p2. Since x
is divisible by p, ab = (−x)p = yp + zp is divisible by pp. Since b is divisible
by p but not by any higher power of p, a is divisible by pp−1, hence ap is
divisible by pp(p−1). Since p(p − 1) > 2 for all p > 2, ap is divisible by p2.
Adding B and C above, then subtracting A, we get 2x = (cp + ep)− ap, so
x is divisible by p2 for p > 2.

Legendre’s approach to generalization

Since we have shown that conditions 2a and 2b are equivalent, and Legen-
dre’s proof is valid for condition 2b, it follows that if q is an auxiliary prime
of the form 2Np + 1, and conditions 1 and 2a apply, then the theorem is
proved for p. A suitable q could be found by trial and error for a particular
p. It would be far better if we can show for particular values of N whether
the conditions are always satisfied, sometimes satisfied, or never satisfied.
We now show that the conditions are always satisfied for N = 1, 2, 4, 5, 7
and 8 (these are the lowest N values that cover all the primes up to 193—see
the table on page 8 for details).

Before proceeding further, we need some conditions which are equivalent
to condition 1 for q of the form 2Np+ 1:

A np 6≡ p mod q for all integers n (condition 1 itself),

B (2N)2N 6≡ 1 mod q,

C p2N 6≡ 1 mod q.

Proof that B̄⇒ Ā: Let f be a primitive root of q, and let p ≡ fR mod q.
If (2N)2N ≡ 1 mod q, then fNR ≡ p2N ≡ (2Np)2N ≡ (q−1)2N ≡ (−1)2N ≡
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1 mod q. Since q is prime, 2NR must be a multiple of (q − 1) = 2Np by
Fermat’s Little Theorem, so R must be a multiple of p. Denoting a ≡
fR/p mod q, we have ap ≡ fR ≡ p mod q.

Proof that Ā ⇒ C̄: If there is an a such that ap ≡ p mod q, then
p2N ≡ a2Np ≡ aq−1 ≡ 1 mod q.

Proof that C̄ ⇒ B̄: If p2N ≡ 1 mod q, then (2N)2N ≡ (2N)2Np2N ≡
(q − 1)2N ≡ 1 mod q.

We have shown B̄ ⇒ Ā ⇒ C̄ ⇒ B̄, so A ⇔ B ⇔ C. We need another
definition before starting on the proofs: a is a primitive nth root of 1 modulo
p if an ≡ 1 mod p, and the set {1, a, a2, . . . , an−1 mod p} are all distinct.
Primitive nth roots only exist if n is a factor of (p − 1). We also need the
following: If w is a primitive nth root of 1 modulo p, and c is such that
gcd(c, p− 1) = 1, then wc mod p is also a primitive nth root (since its set is
formed by picking every cth element of {1, a, a2, . . . , an−1 mod p}, cycling
round if necessary).

The following proofs are due to Legendre. His approach is to tackle
one value of N at a time. We will then have a look at Sophie Germain’s
approach, which is more radical.

N = 1 : q = 2p + 1

If condition 1 is not satisfied, ap ≡ p mod q for some a. From B above, we
have shown that this is equivalent to (2N)2N ≡ 1 mod q, i.e. 4 ≡ 1 mod q.
Since q is prime, q = 3, giving p = 1, which is excluded, so condition 1 is
always satisfied. Since q is a prime, we have aq−1 ≡ 1 mod q for any 0 < a <
q. This means a(q−1)/2 ≡ ap ≡ ±1 mod q. If condition 2b does not apply,
there are a, b, c with abc not divisible by q, such that ap+bp+cp ≡ 0 mod q,
but we know ap + bp + cp ≡ ±1± 1± 1 6≡ 0 mod q, since q > 3, so condition
2b is always satisfied. We have therefore proved case 1 of Fermat’s Last
Theorem for p = 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, . . . .

N = 2 : q = 4p + 1

If condition 1 is not satisfied, ap ≡ p mod q for some a. From B above, we
have shown that this is equivalent to (2N)2N ≡ 1 mod q, i.e. 44 = 256 ≡
1 mod q, i.e. q is a factor of 255 = 3× (4× 1 + 1)× (4× 4 + 1), for which p
would have to be 1 or 4, an impossibility, so condition 1 is always satisfied.

Let w be a primitive fourth root of 1 modulo q, i.e. w4 ≡ 1 mod q,
w2 ≡ −1 mod q, w3 = −w mod q. If condition 2a does not apply, there
must be u, v such that u2N ≡ v2N ≡ 1 mod q, v ≡ (u + 1) mod q (see
condition C on page 8). We therefore have to check which combinations of
roots can give rise to such u, v:
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1, w : w ≡ 2 mod q.

1, w2 : Since w2 ≡ −1 mod q, this cannot apply.

1, w3 : w3 = −w mod q, so this is equivalent to w ≡ −2 mod q.

w,w2 : w2 = −1 mod q, so this is equivalent to w ≡ −2 mod q.

w,w3 : w3 = −w mod q, so this is equivalent to w ≡ −w± 1 mod q, i.e.
2w ≡ ±1 mod q.

w2, w3 : This is equivalent to −1,−w, giving w ≡ 2 mod q.

So we have either w ≡ ±2 mod q, or 2w ≡ ±1 mod q. Squaring the first
alternative gives w2 ≡ 4 mod q, but w2 ≡ −1 mod q. Squaring the second
alternative gives 4w2 ≡ 1 mod q, but 4w2 ≡ −4 mod q. In either case, this
implies q = 5, giving p = 1. We have therefore proved case 1 of Fermat’s
Last Theorem for p = 7, 13, 37, 43, 67, 73, 79, 97, 127, 139, 163, 193, . . . .
The cases N = 4, 5, 7, 8 are covered in Ribenboim (1991) section IV.1 1E.
In these cases, condition 1 is satisfied for all p. This is not always true
(probably not too surprisingly), as the next example shows.

N = 3 : q = 6p + 1 – a cautionary tale

If condition 1 is not satisfied, ap ≡ p mod q for some a. From B above, we
have shown that this is equivalent to (2N)2N ≡ 1 mod q, i.e. 66 = 46656 ≡
1 mod q, i.e. q is a factor of 46655 = 5 × 7 × 31 × 43. Of these factors,
31 = 6×5+1, 43 = 6×7+1, so condition 1 is not satisfied for p = 5, p = 7.

If condition 2a is not satisfied, we check as before which combinations
of roots give rise to u, v such that u2N ≡ v2N ≡ 1 mod q, v ≡ (u+1) mod q.
One such combination requires w2 ≡ w − 1 mod q, where w is a primitive
sixth root of 1 modulo q. Multiplying by w gives w3 ≡ w2−w ≡ −1 mod q,
so providing no constraints on q; so we cannot use N = 3 (or indeed any
multiple of 3) to prove case 1 of Fermat’s Last Theorem for any p.
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Solution 269.2 – Two rectangles
Two rectangles are packed inside a circle
of radius 1. What is the largest area they
can occupy?

Tony Forbes

Strictly speaking, this might not be a solution to the stated problem because
I make the assumption that there is a big rectangle, whose vertices are on
the circle, together with a small rectangle sitting on top—as in the diagram.
My reason is simply that I cannot see how any other way of arranging the
rectangles would work better.

Mike Shaw sent a solution based on the big rectangle being a
√

2×
√

2
square and obtained

2 +
1

8

(√
46− 2

√
17− 2

√
14− 2

√
17

)
≈ 2.168375 (1)

for the largest enclosed area. However, I find that by squashing the square
a little we can increase the total area to about 2.195184. I would be very
interested if anyone can improve on this last value with some imaginative
arrangement of the rectangles.

Denote the height of the big rectangle by 2b. Then its width is 2
√

1− b2
and its area is 4b

√
1− b2. Denote the width of the small rectangle by 2x so

that it has height
√

1− x2 − b and area 2x(
√

1− x2 − b).
Let us fix b for now and concentrate on getting a function xmax(b) of

b ∈ [0, 1] for the half-width of the small rectangle of largest area. Consider
the equation

∂

∂x

(
area of small rectangle

)
=

∂

∂x
2x
(√

1− x2 − b
)

= 0,

or 1− 2x2 = b
√

1− x2, which on squaring becomes

4x4 + (b2 − 4)x2 + 1− b2 = 0. (2)

Solving (2) we have x = ±
√

4− b2 ± b
√

8 + b2/(2
√

2), and of these four
solutions the only one we really want is

xmax(b) =

√
4− b2 − b

√
8 + b2

2
√

2
.
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When we substitute xmax(b) for x in 2x
(√

1− x2 − b
)

we obtain

amax(b) =
1

4

√
4− b2 − b

√
8 + b2

(√
4 + b2 + b

√
8 + b2 −

√
8 b

)
for the maximum area of the small rectangle given that the big rectangle
has height 2b. You can also check that 2 + amax(

√
2/2) reproduces the

expression in (1).

We want to find bmax, the value of b that maximizes the total area,

A(b) = 4b
√

1− b2 + amax(b).

By plotting A(b) we see several interesting things. The graph ends at A(1) =
0, where our ‘big’ rectangle has become very thin, and starts at A(0) = 1,
where it degenerates into a horizontal line and the best we can do is place
a ‘small’

√
2×
√

2/2 rectangle on top of it. The first vertical line indicates
where A(b) is at its maximum and the second line, slightly away from the
true maximum, marks the spot where b =

√
2/2 and the big rectangle is a

square.

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

amaxHbL

AHbL
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Now for the messy part. We solve dA(b)/db = 0 for b. This is obviously
a task for Mathematica and so the details are omitted. The result is that
the optimum area occurs at

bmax =
1

12

√
539 + ρ2q + ρp

7
= 0.64089199521794561146 . . . ,

where

ρ = − 1

2
+

√
3 i

2
, a cube root of 1,

p =
(

7
(
−25627 + 144

√
43827 i

))1/3
≈ 47.317635 + 44.833486 i and

q =
(

7
(
−25627− 144

√
43827 i

))1/3
≈ 47.317635− 44.833486 i

with the cube roots chosen such that p and q have the stated approximate
values. Observe that p and q are conjugates; therefore bmax is real, as it
should be. Also the product is an integer, pq = 7 · 607.

To get the maximum area, all we do is compute A(bmax). Let

r = ρ2q + ρp ≈ − 124.971510,

u =
√

539 + r ≈ 20.347690,

v =
√

469− r ≈ 24.371531,

w = r +
√

8603 + r u ≈ 1748.566676,

and notice that all four numbers are real. Then

A(bmax) =
uv

252
+

√
3493− w
16 · 252

(
−2
√

2u+
√

4571 + w
)

= 2.19518381298757987668 . . . ,

which breaks down as follows.

width height area

big rectangle 1.5352621280. . . 1.2817839904. . . 1.9678744168. . .
small rectangle 0.9302119692. . . 0.2443630093. . . 0.2273093961. . .

I put this rather complicated maximization problem in M500 because I was
very surprised to find that the big rectangle is not square. However, I can’t
make up my mind whether or not I should have been.
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Solution 270.5 – Binomial coefficient sum
Integers n and k satisfy k > n ≥ 0. Show that

k∑
j=0

(−1)j
(
k

j

)
jn = 0.

One way of getting this result is via the recursion formula for
Stirling numbers of the second kind. However, we are really
interested in a simple, direct proof.

Dave Wild
Using the Binomial Theorem we have

(1− ex)k =

k∑
j=0

(−1)j
(
k

j

)
ejx.

Using the power series for the exponential function gives(
−
∞∑
i=1

xi

i!

)k
=

k∑
j=0

(−1)j
(
k

j

) ∞∑
i=0

(jx)i

i!
.

Defining 00 = 1 and equating powers of xn, where 0 ≤ n < k, gives

0 =

k∑
j=0

(−1)j
(
k

j

)
jn

n!
.

Multiplying both sides by n! gives the required result.

Letter
Dear Eddie,

I thought your piece on Man Ray [M500 270] was interesting, and I
hadn’t known about his photographs of mathematical models. Found some
on the web, and there is more to them than I had supposed. On the other
hand, Man Ray’s response to them was the kind of thing you would expect
from a fluff-headed artist, surrealist or otherwise: just photograph or draw
them, then give them silly names. New Scientist sometimes has reviews of
art exhibitions inspired by science, and tries to present them as meaningful,
culturally significant and so on, but they always seem to be the same thing,
artists playing rather feebly with things they don’t understand.

Ralph Hancock
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Napier’s logarithms are hyperbolic after all
Peter L. Griffiths
Napier recognized that the formula for the hyperbola,

1

1 + x
= 1− x+ x2 − x3 + . . . ,

could be converted into measuring the area under the hyperbola by integra-
tion similar to the conversion of the circumference of a circle, 2πr, into the
area of the circle, πr2:∫

dx

1 + x
= x− x2

2
+
x3

3
− x4

4
+ . . . .

Multiplying both sides by 1/2 gives

1

2

∫
dx

1 + x
=

x

2
− x2

4
+
x3

6
− x4

8
+ . . . .

Napier very cleverly recognised that
∫
dx/(1 + x) could be represented as

log(1 + x), so that 1/2
∫
dx/(1 + x) could be represented as 1/2 log(1 + x)

or log(1 + x)1/2. In this way, with x = 1,

log 2 = 1− 1

2
+

1

3
− 1

4
+ . . . = 0.693147,

and log 21/2 = 1/2 − 1/4 + 1/6 − 1/8 + · · · = 0.346574. Napier mentions
amounts close to 0.693147 and 0.346574 in paragraphs 46–53 of the Con-
structio. He also refers to 0.9999999346574 = 0.965936288, which is approx-
imately sine 75 degrees, in the formula in paragraph 44.

Problem 272.1 – Finite integral
Show that ∫ 2π

0

(cosx)
(

sin
x

2

)(
tan

x

3

)
dx =

−18
√

3

5
.

Problem 272.2 – Infinite integral
Show that ∫ ∞

0

e−x(log x) dx = − γ = − 0.5772156649 . . . .
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Problem 272.3 – Stamps
Tony Forbes
Every week a publisher posts that week’s issue of a magazine to each of its
subscribers. In week 1 there is just one subscriber. But the Post Office sells
stamps only in sheets of 100. So 100 stamps are bought, one is used and 99
are left over for future weeks. In week 2 another subscriber joins; so there
are two magazines to post and 97 stamps remain. In week 3 . . . I expect
you can guess what happens.

In week n there are n magazines to post and 100 s(n) stamps need
to be purchased. Show that s(n + 200) = s(n) + 2 for n ≥ 1 and that
s(200− n) = 2− s(n) for 1 ≤ n < 200.

In case it helps, here is what s(n) looks like for n ≤ 32 and for n ≤ 400.

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, . . .

100 200 300 400

1

2

3

4

Problem 272.4 – Pseudoprimes
Tony Forbes
A pseudoprime is a composite number n that satisfies 2n ≡ 2 (mod n).
Odd pseudoprimes are not common, but also they are not particularly rare.
Even pseudoprimes are somewhat rarer—only 20 less than 109 . . .

161038 215326 2568226 3020626 7866046
9115426 49699666 143742226 161292286 196116194

209665666 213388066 293974066 336408382 377994926
410857426 665387746 667363522 672655726 760569694

. . . and you will note that they are all congruent to 2 modulo 4. Why?
More generally, find a pseudoprime that is divisible by p2 for some prime p,
or prove than none exist.



Page 20 M500 272

M500 Winter Weekend 2017
The thirty-sixth M500 Society Winter Weekend will be held at

Florence Boot Hall, Nottingham University

Friday 6th – Sunday 8th January 2017.

Cost: £210 to M500 members, £215 to non-members. This includes accom-
modation and all meals from dinner on Friday to lunch on Sunday. You can
obtain a booking form either from the M500 web site,

http://www.m500.org.uk,

or by emailing the Winter Weekend Organizer at winter@m500.org.uk.

The Winter Weekend provides you with an opportunity to do some
non-module-based, recreational maths with a friendly group of like-minded
people. The relaxed and social approach delivers maths for fun. And as well
as a complete programme of mathematical entertainments, on Saturday we
will be running a pub quiz with Valuable Prizes.

M500 Mathematics Revision Weekend 2017
The M500 Revision Weekend 2017 will be held at

Kents Hill Park Training and Conference Centre,

Milton Keynes, MK7 6BZ

from Friday 12th to Sunday 14th May 2017.

We expect to offer tutorials for most undergraduate and postgraduate math-
ematics Open University modules, subject to the availability of tutors and
sufficient applications. Application forms will be sent via email to all mem-
bers who included an email address with their membership application or
renewal form, and are included with this magazine mailing for those who
did not.

Contact the Revision Weekend Organizer, Judith Furner, at email
address weekend@m500.org.uk if you have any queries about this event.

Problem 272.5 – Sums of digits of powers
Given an integer n, can you always find integers b, 2 ≤ b < n and k ≥ 2
such that n is equal to the sum of the base-b digits of nk?

If we fix the base to b = 10, this doesn’t always work. For example, 1827
is the sum of the digits of 1827121, 1828 is the sum of the digits of 1828123

and 1829 is the sum of the digits of 1829121, but there is no corresponding
relation for 1830.
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Advice for authors
Over the next few months I (TF) am likely to be busier than usual. I shall
therefore attempt to reduce my workload by offering some helpful guidelines
for contributors to M500.

Please read recent issues of the magazine and please conform
to its style. Please also note that M500 is printed using only black ink and
that the text block is only 115 mm wide.

Plain English is preferred. Avoid unreasonable use of symbols. So write
‘for all positive integers n’ rather than ‘∀n ∈ Z+’, ‘therefore’ instead of
‘∴’, etc. Do not start a sentence with a symbol, or a word like ‘calorie’.
Do not use theorems, pictures, tables, etc. as nouns. Try to avoid more
than one level of subscripting or superscripting. Avoid redundant brack-
ets, non-standard fonts for variables and bizarre deviations from standard
mathematical presentation. Avoid spoon-feeding.

LaTeX This is the preferred option. I suggest you download the TeX
file for these notes from the M500 web site (or ask me for it) and adapt it
for your own use. Here are a few rules. Please comply with them.

Ensure there is extra space on both sides of the main symbol in displayed
mathematics. For example, write ‘∼=∼ 1’ rather than ‘ = 1’ in

cos2 θ + sin2 θ = 1.

Ensure that mathematical items are properly separated. Remember that in
math mode a comma is not followed by any space; so, for example, write
‘$a=1$, $b=2$, $c=3$’ rather than ‘$a=1, b=2, c=3$’. Use ‘\dots’ rather
than ‘...’. Use ‘\cdot’ or ‘\times’ for explicit multiplication. A decimal
point is an ordinary full stop. Reset the appropriate counters if you are
automatically numbering equations, etc. Ensure that LaTeX commands
you define won’t clash with existing commands.

Other word processors The existence of non-LaTeX word processors
is an unfortunate complication because I usually have to convert mathemat-
ical constructs by hand. This might explain to some authors why their con-
tributions get held up. So I have to ask: Please try to avoid symbols
that are not on the keyboard. Fortunately, plain English requires
hardly any additional work and is very much preferred.

Remember to send me the PDF file of your article as well as the word
processor document. A warning: I cannot deal with a long article where
much of the text is inaccessible to copy-and-paste; I would have to ask you
to get it converted to LaTeX.
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Problem 272.6 – Irreducible polynomials
Tony Forbes
Suppose a and b > a are positive integers with gcd(a, b) = 1. Observe that
xa+b − 2xb + 1 is divisible by x− 1. Observe also that

x7 − 2x5 + 1 = (x− 1)(x3 − x− 1)(x3 + x2 + 1).

Either show that this is the only case where (xa+b−2xb+1)/(x−1) factorizes
into polynomials with integer coefficients, or find another example.

Front cover Five triangles (page 5).


