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Sophie Germain and Fermat’s Last Theorem – II
Roger Thompson

Sophie Germain’s Theorem

Sophie Germain’s Theorem divides Fermat’s Last Theorem for any prime
exponent p into two cases:

Case 1: xp + yp + zp = 0, where none of x, y, z is divisible by p.

Case 2: xp + yp + zp = 0, where one of x, y, z is divisible by p.

Although she never actually proved Fermat’s Last Theorem for a single
exponent in both cases, she did prove it for many exponents in case 1. The
theorem contains two conditions. The second of these has two alternative
formulations, shown as 2a and 2b in the following.

Sophie Germain’s theorem Let p be an odd prime. Suppose there exists
an auxiliary prime q such that the following conditions hold.

1. np 6≡ p mod q for all integers n.

2a. q is of the form 2Np+ 1 for some integer N , and the set of distinct
values of xp mod q contains no consecutive non-zero values.

2b. There exists a prime q such that for all pairwise relatively prime a,
b and c such that ap + bp + cp ≡ 0 mod q, q is a factor of abc.

Then there are no non-zero integers x, y, z such that xp+yp+zp = 0 if none
of x, y, z is divisible by p; i.e. case 1 of Fermat’s Last Theorem is proven.

Sophie Germain’s approach to condition 2a

Instead of dealing with N values one at a time, her idea is use a fixed
(but unspecified) odd p and show that if there is a pair of pth powers mod
(2Np+1) that are consecutive, there are six algebraically distinct such pairs.
She then shows that subject to certain conditions, it is possible to derive
twelve distinct pth powers. Since there are 2Npth powers mod(2Np + 1),
this immediately shows that consecutive pth powers mod(2Np+ 1) cannot
exist for N = 1, 2, 4, 5, since these only have 2, 4, 8 or 10 pth powers
mod(2Np+ 1). The conditions she needs are:

(i) N is not a multiple of 3. We have already seen that multiples of 3
are troublesome.

(ii) np 6≡ 2 mod (2Np+ 1) for all integers n. Since p is odd, this implies
np 6≡ ±2 mod (2Np+ 1).

Since this has to hold for condition 2a to apply (for otherwise 1 and 2 would
be consecutive pth powers), it is no extra restriction; rather she is exploring
whether it is sufficient for condition 2a to apply. Finding the exceptions is
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straightforward. If np ≡ 2 mod (2Np+ 1) for some integer n, we must have
22N ≡ 1 mod (2Np+ 1) (by raising both sides to the 2Nth power). All we
need to do is factorize 22N −1 and see for what factors of the form 2Nx+1,
x is prime.

N 22N − 1 Factors Excluded p
1 3 2× 1 + 1 None
2 15 3× (4× 1 + 1) None
4 255 3× 5× (8× 2 + 1) 2
5 1023 3× (10× 1 + 1)(10× 3 + 1) 3
7 16383 3× (14× 3 + 1)(14× 9 + 1) 3
8 65535 3× 5× (16× 1 + 1)(16× 16 + 1) None

The following arguments are taken from Sophie Germain’s unpublished
manuscript ‘Remarque sur l’impossibilité de satisfaire en nombres entiers à
l’équation xp+yp = zp’. Her mathematical style here is very terse, so while
the arguments are as presented there, they have been expanded upon (at
length, in some cases).

We first show how the above conditions arise. Let v be a primitive
2Nth root of 1 modulo q, where q = 2Np + 1. Then by definition, v2N ≡
1 mod q, vN ≡ −1 mod q. Since q − 1 is divisible by 2Np, primitive 2Npth
roots of 1 modulo q exist. Let a be such a root. Then ap must be a
primitive 2Nth root of 1 modulo q, since the set {1, ap, a2p, . . . , a2N(p−1)}
consists of every pth element of {1, a, a2, . . . , a2Np−1}, which are all distinct.
We therefore have v ≡ ap mod q for some a.

Suppose condition 2a is not satisfied, so that vS ≡ vT + 1 mod q for
some S, T < 2N , with vS 6≡ 0 mod q, vT 6≡ 0 mod q. Since q is prime,
v−T exists, so we can multiply to give vS−T ≡ 1 + v−T ≡ 1 + v2N−T mod q.
Similarly, v−S exists, so 1 ≡ vT−S+v−S ≡ vT−S−vN−S mod q, i.e. vT−S ≡
vN−S + 1 mod q. Repeating with a further three similar operations gives
the six relations:

(a) 1 + vT ≡ vS mod q, (b) 1 + v2N−T ≡ vS−T mod q,
(c) 1 + vN−S ≡ vT−S mod q, (d) 1 + vN+S ≡ vN+T mod q,
(e) 1 + vN+S−T ≡ vN−T mod q, (f) 1 + vN+T−S ≡ v2N−S mod q.

We now examine the cases where these six relations can be reduced. Since
the relations are symbolic, we only have to compare (a) with (b) to (f).

1. (a) and (b) are equivalent: T ≡ 2N − T mod 2N (2N rather than q,
since we are dealing with the exponents, which run from 0 to 2N − 1), and
S ≡ S − T mod 2N , so T = 0, reducing the six relations to three:

(g) 2 ≡ vS mod q, (h) 1 + vN−S ≡ v2N−S mod q,
(i) 1 + vN+S ≡ vN mod q.
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Similarly, the equivalence of (a) and (d), or the equivalence of (a) and (f)
both lead to 2 ≡ vX mod q for a particular X. By requiring np 6≡ 2 mod q
for all integers n, these reductions cannot occur, since we have already
shown that v is a power of p.

2. (a) and (c) are equivalent: T ≡ N −S mod 2N , S ≡ T −S mod 2N ,
giving 2S ≡ T mod 2N , 3S ≡ N mod 2N . The solution T = 0, S = N is
disallowed, since this would imply vS ≡ 2 mod q, so N must be a multiple
of 3 if this reduction is allowed. The equivalence of (a) and (e) gives rise to
the same expressions.

If none of the right hand side powers of v equals one of the left hand
side powers of v, we have twelve distinct pth powers. We now need to see
what happens if one of the right hand side powers of v equals one of the
left hand side powers of v. Since the relations are symbolic, we only have
to compare the right hand side of (a), i.e. vS with the v powers on the left
hand sides of (b) to (f).

If S ≡ N − S mod 2N (from (c)), we get (1 + vT )2 ≡ 1 + 2vT + v2T ≡
v2S ≡ vN ≡ −1 mod q, so −v2T ≡ 2(1 + vT ) ≡ 2vS mod q, using 1 + vT ≡
vS mod q from (a). Multiplying by v2N−S , we get 2 ≡ −v2T+2N−S ≡
v2T+N−S mod q. Since we have already excluded 2 as a pth power, we
cannot have S ≡ N − S mod 2N .

If S ≡ N + S mod 2N (from (d)), we get N ≡ 0 mod 2N , which is
impossible.

If S ≡ N+S−T mod 2N (from (e)), we get N ≡ T mod 2N , leading to
1+vT ≡ 1−1 ≡ 0 mod 2N , but from (a), this would imply vS ≡ 0 mod 2N ,
which is not allowed.

If S ≡ 2N − T mod 2N (from (b)), the six relations become:

(a1) 1 + v2N−S ≡ vS mod q, (b1) 1 + vS ≡ v2S mod q,
(c1) 1 + vN−S ≡ v2N−2S mod q, (d1) 1 + vN+S ≡ vN−S mod q,
(e1) 1 + vN+2S ≡ vN+S mod q, (f1) 1 + vN−2S ≡ v2N−S mod q.

From (e1), (d1), (c1), vN+2S , vN+S , vN−S , v2N−2S are consecutive integers
modulo q, x to x+ 3 say. From (f1), (a1), (b1), vN−2S , v2N−S , vS , v2S are
consecutive integers modulo q, y to y + 3 say.

If S ≡ N + T − S mod 2N (from (f)), the six relations become:

(a2) 1 + vN+2S ≡ vS mod q, (b2) 1 + vN−2S ≡ vN−S mod q,
(c2) 1 + vN−S ≡ vN+S mod q, (d2) 1 + vN+S ≡ v2S mod q,
(e2) 1 + v2N−S ≡ v2N−2S mod q, (f2) 1 + vS ≡ v2N−S mod q.

From (a2), (f2), (e2), vN+2S , vS , v2N−S , v2N−2S are consecutive integers
modulo q, y to y+3 say. From (b2), (c2), (d2), vN−2S , vN−S , vN+S , v2S are
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consecutive integers modulo q, x to x + 3 say. In the x cases for both the
above sets of relations, we have (x+ 1)(x+ 2) ≡ v2N ≡ 1 mod q, x(x+ 3) ≡
−1 mod q. Similarly, (y + 1)(y + 2) ≡ 1 mod q, y(y + 3) ≡ −1 mod q, so in
further analysis, we can treat x, y similarly.

Let z ≡ x + 1 mod q. Then x + 2 ≡ z−1 mod q, and 2x + 3 ≡ z +
z−1 mod q. So (2x+3)2 ≡ (z+z−1)2 ≡ z2+z−2+2 ≡ (x+1)2+(x+2)2+2 ≡
2x2 + 6x + 7 mod q. Now 2(x + 1)(x + 2) ≡ 2 ≡ 2x2 + 6x + 4 mod q, so
(2x+ 3)2 ≡ 5 mod q. Similarly, (2y + 3)2 ≡ 5 mod q, so either x ≡ y mod q
(impossible, since (a) to (f) are distinct), or 2x + 3 ≡ −(2y + 3) mod q,
giving y ≡ −x− 3 mod q, since q is odd.

The elements which are powers of v in (a1) to (f1), (a2) to (f2), which
are all pth powers, are therefore ±x, ±(x + 1), ±(x + 2), ±(x + 3) (Note
that Laubenbacher and Pengelley (2010) p. 28 assumes that six distinct
pairs implies twelve distinct elements—not so, there are only eight).

Rearranging (x + 1)(x + 2) ≡ 1 mod q, we get x(x + 1) ≡ −(2x +
1) mod q. Since x, x+ 1 and −1 are pth powers, so is 2x+ 1. If we assume
2x + 1 ≡ x + k mod q, 0 ≤ k ≤ 3, then x + 3 − k ≡ 2 mod q, so one of
x, x + 1, x + 2, x + 3 is excluded, so the assumption is invalid. We assume
2x + 1 ≡ −(x + k) mod q, 0 ≤ k ≤ 3, and use the identity x(x + 3) ≡
x2 + 3x ≡ −1 mod q, i.e. 3x ≡ −x2 − 1 mod q.

If 2x + 1 ≡ −x mod q, x2 ≡ 0 mod q, impossible. If 2x + 1 ≡ −(x +
1) mod q, x2 ≡ 1 mod q, giving x ≡ ±1 mod q, with x + 1 ≡ 2 mod q, or
x+3 ≡ 2 mod q, both forbidden (this corrects a mistake in the manuscript).
If 2x + 1 ≡ −(x + 2) mod q, 3x ≡ −3 mod q, i.e. x ≡ −1 mod q, since
q 6= 3. But then x+ 3 ≡ 2 mod q, forbidden (this corrects a mistake in the
manuscript). If 2x+ 1 ≡ −(x+ 3) mod q, 3x ≡ −4 mod q ≡ −x2 − 1 mod q
from above, giving x2 ≡ 3 mod q. We therefore have x2 + 2(3x + 4) ≡
3 mod q, or (x+ 3)2 ≡ 4 mod q, giving x+ 3 ≡ ±2 mod q, both of which are
forbidden.

Since ±1 are pth powers, we have (at least) the following twelve distinct
elements: ±1, ±x, ±(x+1), ±(x+2), ±(x+3), ±(2x+1). We have therefore
shown that consecutive pth powers modulo 2Np+1 cannot exist for N = 1,
2, 4, 5, since each of these has less than twelve distinct pth powers, so we
have proved case 1 of Fermat’s Last Theorem for (at least) all p < 197 apart
from p = 47, 59, 61, 167.

Sophie Germain’s proofs for N = 7, 8, only found in unpublished
manuscripts, were independently rediscovered in 1908 by Dickson (see
Laubenbacher and Pengelley (2010) section 3.3.2). While they have much
in common, some arguments are sufficiently different to warrant separate
sections for the proofs.
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Sophie Germain’s proof for N = 7

The techniques and use of variables from the previous section are also used
here. We will also need the following:

(1− v)

2N−1∑
k=0

vk ≡
2N−1∑
k=0

vk − v
2N−1∑
k=0

vk ≡ 1− v2N ≡ 0 mod q.

Since v 6≡ 1 mod q, we have

2N−1∑
k=0

vk ≡ 0 mod q. If d > 1 is a factor of 2N ,

2N−1∑
k=0

vk ≡ (1 + v + v2 + · · ·+ vd−1)(1 + vd + v2d + · · ·+ v2N−d) mod q

≡ (vd − 1)(v − 1)−1(1 + vd + v2d + · · ·+ v2N−d) mod q.

Since v is a primitive 2Nth root of 1 modulo q, and 1 < d < 2N , we have

vd 6≡ 1 mod q, and v 6≡ 1 mod q; so
∑2N/d−1
k=0 vdk ≡ 0 mod q. If d is even

= 2e say, we have
∑N/e−1
k=0 v2ek ≡ 0 mod q, giving

∑N−1
k=0 (v2f )k ≡ 0 mod q

for any f , regardless of whether vf is or is not a primitive 2Nth root of 1
modulo q.

She examines the combinations of odd and even values of S and T in
the powers of v for the six relations explored earlier:

(a) 1 + vT ≡ vS mod q, (b) 1 + v2N−T ≡ vS−T mod q,
(c) 1 + vN−S ≡ vT−S mod q, (d) 1 + vN+S ≡ vN+T mod q,
(e) 1 + vN+S−T ≡ vN−T mod q, (f) 1 + vN+T−S ≡ v2N−S mod q.

She first examines the case where none of the right hand side powers of v
equals one of the left hand side powers of v. In what follows, exp-even/odd
means the exponent of v is even/odd. In the table below summarizing these
combinations, the two entries represent the left and right hand sides of each
equivalence. For N = 7, this gives the following.

S even, T even S even, T odd S odd, T even S odd, T odd

(a) exp-even, exp-even exp-odd, exp-even exp-even, exp-odd exp-odd, exp-odd
(b) exp-even, exp-even exp-odd, exp-odd exp-even, exp-odd exp-odd, exp-even
(c) exp-odd, exp-even exp-odd, exp-odd exp-even, exp-odd exp-even, exp-even
(d) exp-odd, exp-odd exp-odd, exp-even exp-even, exp-odd exp-even, exp-even
(e) exp-odd, exp-odd exp-even, exp-even exp-even, exp-odd exp-odd, exp-even
(f) exp-odd, exp-even exp-even, exp-even exp-even, exp-odd exp-odd, exp-odd

In each S, T combination, there are six even exponent entries, which to-
gether with 1 = v0 gives seven even exponents. Because the relations are
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symbolic, we may choose any of the four combinations of S, T . She chooses
S, T both even and using the relation 1 + vT ≡ vS mod q, applies it to the
sum of all the even terms, which we have required to be distinct. These
sum to zero modulo q from the above result, so we have

1 + vT + vS + v2N−S + v2N−T + vS−T + vT−S ≡ 0 mod q.

Multiplying by vS+T gives

vS+T + v2T+S + v2S+T + vT + vS + v2T+S ≡ 0 mod q,

which factorizes to give (1+vT )vS(1+vS+vT ) ≡ 0 mod q ≡ 2vSvSvS mod q
since 1 + vT ≡ vS mod q. Since 2 is not a pth power, but the other terms
are, this cannot occur, so the terms cannot all be distinct.

She next examines the case where one of the right hand side powers of v
equals one of the left hand side powers of v, and apply the same techniques
as above. Firstly for the list (a1) to (f1) from the previous section:

(a1) 1 + v2N−S ≡ vS mod q, (b1) 1 + vS ≡ v2S mod q,
(c1) 1 + vN−S ≡ v2N−2S mod q, (d1) 1 + vN+S ≡ vN−S mod q,
(e1) 1 + vN+2S ≡ vN+S mod q, (f1) 1 + vN−2S ≡ v2N−S mod q.

We construct a summary similar to that above, also including their x rep-
resentation derived in the previous section:

S even S odd x representation
(a1) exp-even, exp-even exp-odd, exp-odd −(x+ 2), −(x+ 1)
(b1) exp-even, exp-even exp-odd, exp-even −(x+ 1), −x
(c1) exp-odd, exp-even exp-even, exp-even x+ 2, x+ 3
(d1) exp-odd, exp-odd exp-even, exp-even x+ 1, x+ 2
(e1) exp-odd, exp-odd exp-odd, exp-even x, x+ 1
(f1) exp-odd, exp-even exp-odd, exp-odd −(x+ 3), −(x+ 2)

For the list (a2) to (f2) we have:

(a2) 1 + vN+2S ≡ vS mod q, (b2) 1 + vN−2S ≡ vN−S mod q,
(c2) 1 + vN−S ≡ vN+S mod q, (d2) 1 + vN+S ≡ v2S mod q,
(e2) 1 + v2N−S ≡ v2N−2S mod q, (f2) 1 + vS ≡ v2N−S mod q.

with the following summary table.

S even S odd x representation
(a1) exp-odd, exp-even exp-odd, exp-odd −(x+ 3), −(x+ 2)
(b2) exp-odd, exp-odd exp-odd, exp-even x, x+ 1
(c2) exp-odd, exp-odd exp-even, exp-even x+ 1, x+ 2
(d2) exp-odd, exp-even exp-even, exp-even x+ 2, x+ 3
(e2) exp-even, exp-even exp-odd, exp-even −(x+ 1), −x
(f2) exp-even, exp-even exp-odd, exp-odd −(x+ 2), −(x+ 1)
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By inspection x, x + 1, x + 2 are all exp-odd or all exp-even in either
table. If they are exp-even, we define w ≡ x + 1 ≡ u2 mod q, where u is
some pth power. This gives w6 + w5 + w4 + w3 + w2 + w + 1 ≡ 0 mod q,
regardless of whether or not w is a primitive Nth root of 1 modulo q, as the
analysis at the start of this section shows.

Now w2 +w ≡ x2 +2x+1+x+1 ≡ (x+1)(x+2) ≡ 1 mod q (recall the
last equivalence from the previous section). We can apply this repeatedly:
2w4+w3+w2+w+1 ≡ 0 mod q; −w3+3w2+w+1 ≡ 0 mod q; w3+w2−w ≡
0 mod q; 4w2 + 1 ≡ 0 mod q.

If x, x + 1, x + 2 are all exp-odd, −(x + 2) is exp-even by inspection.
Defining z ≡ −(x+ 2) ≡ u2 mod q, where u is some pth power, we have

z6 + z5 + z4 + z3 + z2 + z + 1 ≡ 0 mod q.

Let w = x + 2 = −z. Then w6 − w5 + w4 − w3 + w2 − w + 1 ≡ 0 mod q.
Now

w2 − w = x2 + 4x+ 4− x− 2 = (x+ 1)(x+ 2) ≡ 1 mod q,

which we can apply repeatedly: 2w4 − w3 + w2 − w + 1 ≡ 0 mod q; w3 +
3w2 − w + 1 ≡ 0 mod q; w3 − w2 − w ≡ 0 mod q; 4w2 + 1 ≡ 0 mod q

So whether or not x+1 is exp-even or exp-odd, we get 4w2 ≡ −1 mod q
for some pth power w. We have already ruled out 2 as a pth power, so 4
must be a pth power which is also an odd power of w, since w2 is an even
power, and −1 ≡ wN mod q is an odd power.

Since w2N ≡ 1 mod q, we just need to check the factors of

414 − 1 = 5× 3× (14× 2 + 1)(14× 8 + 1)(14× 3 + 1)(14× 9 + 1).

Since p must be a prime, we need to examine p = 2, q = 29 and p = 3,
q = 43. We have 323 ≡ 2 mod 43, so p = 3, q = 43 is excluded. This
exclusion of p = 3 was also predicted from the table on page 2. The squares
modulo 29, sorted into order, are 1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28,
and we have 4, 5, 6, 7 and −7, −6, −5, −4 as the eight consecutive entries
predicted. We have therefore proved case 1 of Fermat’s Last Theorem for
(at least) p = 47, 59, 167.

Interestingly, Legendre recognizes the case of p = 3, q = 43 arising from
vj ≡ ±2 mod q, with 0 < j < 7, and it happens that 32 is a primitive 14th
root modulo 43. He defines his way round this by only considering p > 3,
rather than introducing the condition np 6≡ 2 mod q (see Ribenboim (1991),
section IV.1 1E case 5, pp. 116–117).



Page 8 M500 273

Sophie Germain’s proof for N = 8

Note that the introductory part of the summary of the proof in Del Centina
(2008) p. 369 is wrong: ‘Let P = 16p + 1. We already know that there
are no pairs of consecutive residues for primes of the form 8p+ 1, therefore
two even integers t, s do not exist such that 1 + rt ≡ rs mod P ’. This
conclusion comes from a different argument given below, but not spelt out
in the manuscript.

Since N = 8 is even the lists (a) to (f), (a1) to (f1), and (a2) to (f2) are
different from those for N = 7:
Recall that list (a) to (f) applies when all the powers of v are distinct.

S even, T even S even, T odd S odd, T even S odd, T odd

(a) exp-even, exp-even exp-odd, exp-even exp-even, exp-odd exp-odd, exp-odd
(b) exp-even, exp-even exp-odd, exp-odd exp-even, exp-odd exp-odd, exp-even
(c) exp-even, exp-even exp-even, exp-odd exp-odd, exp-odd exp-odd, exp-even
(d) exp-even, exp-even exp-even, exp-odd exp-odd, exp-even exp-odd, exp-odd
(e) exp-even, exp-even exp-odd, exp-odd exp-odd, exp-even exp-even, exp-odd
(f) exp-even, exp-even exp-odd, exp-even exp-odd, exp-odd exp-even, exp-odd

Since N = 8, we must have eight exp-even and eight exp-odd entries. For
S, T both even, we have twelve exp-even entries, and for all other cases, we
have eight exp-odd entries, which together with −1 would make nine, so in
all cases, the entries cannot all be distinct. Recall that lists (a1) to (f1),
and (a2) to (f2) apply when a left hand side power of v equals one on the
right hand side:

(a1) 1 + v2N−S ≡ vS mod q, (b1) 1 + vS ≡ v2S mod q,
(c1) 1 + vN−S ≡ v2N−2S mod q, (d1) 1 + vN+S ≡ vN−S mod q,
(e1) 1 + vN+2S ≡ vN+S mod q, (f1) 1 + vN−2S ≡ v2N−S mod q.

The summary table is as follows.

S even S odd x representation
(a1) exp-even, exp-even exp-odd, exp-odd −(x+ 2), −(x+ 1)
(b1) exp-even, exp-even exp-odd, exp-even −(x+ 1), −x
(c1) exp-even, exp-even exp-odd, exp-even x+ 2, x+ 3
(d1) exp-even, exp-even exp-odd, exp-odd x+ 1, x+ 2
(e1) exp-even, exp-even exp-even, exp-odd x, x+ 1
(f1) exp-even, exp-even exp-even, exp-odd −(x+ 3), −(x+ 2)

For the list (a2) to (f2) we have:

(a2) 1 + vN+2S ≡ vS mod q, (b2) 1 + vN−2S ≡ vN−S mod q,
(c2) 1 + vN−S ≡ vN+S mod q, (d2) 1 + vN+S ≡ v2S mod q,
(e2) 1 + v2N−S ≡ v2N−2S mod q, (f2) 1 + vS ≡ v2N−S mod q.
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with the following summary table.

S even S odd x representation
(a1) exp-even, exp-even exp-even, exp-odd −(x+ 3), −(x+ 2)
(b2) exp-even, exp-even exp-even, exp-odd x, x+ 1
(c2) exp-even, exp-even exp-odd, exp-odd x+ 1, x+ 2
(d2) exp-even, exp-even exp-odd, exp-even x+ 2, x+ 3
(e2) exp-even, exp-even exp-odd, exp-even −(x+ 1), −x
(f2) exp-even, exp-even exp-odd, exp-odd −(x+ 2), −(x+ 1)

This time, we only have eight distinct entries. For S even, we still have too
many, since 1 is an exp-even, so we need to consider the case where S is
odd, where we have four exp-odd and four exp-even entries. From previous
analysis, we have(x + 1)(x + 2) ≡ 1 mod q, giving x2 + 3x + 1 ≡ 1 mod q,
whence x4 ≡ 9x2 + 6x+ 1 mod q and (x+ 1)2 ≡ −x mod q.

In both cases, x is exp-even = v2a say, and v2N ≡ 1 mod q, so xN =
x8 ≡ 1 mod q. In the case x4 ≡ 1 mod q, we have x4 ≡ 1 ≡ 9x2 + 6x + 1,
so 3x(x + 2) ≡ 0 mod q. By stipulation q is not a multiple of 3, and x 6≡
0 mod q, so 3x + 2 ≡ 0 mod q. But −(3x + 1) ≡ x2 mod q, so adding,
we get x2 ≡ 1 mod q, impossible. In the case x4 ≡ −1 mod q, we have
x4 ≡ −1 ≡ 9x2 + 6x+ 1, so

9x2 + 6x+ 2 ≡ 0 ≡ 9x2 − 2x2 ≡ 7x2 mod q,

using −(3x+1) ≡ x2 mod q again. Since q is prime, and of the form 16p+1,
we get x2 ≡ 0 mod q, impossible.

We have therefore proved case 1 of Fermat’s Last Theorem for (at least)
p = 61. While it is clear she is trying to invent an inductive method for
tackling N = 10 and beyond, this is very much ‘work in progress’, so is not
pursued further here.
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Solution 235.4 – Matrix
Construct an n × n matrix as follows. Partition n into n1 and
n2, n1, n2 ≥ 2, and divide the matrix into four parts. The top
left part is an n1 × n1 matrix with a on the diagonal and c
everywhere else. The bottom right part is an n2 × n2 matrix
with b on the diagonal and d everywhere else. The rest of the
matrix elements are e. Also we insist that a, b, c, d and e are
integers satisfying a 6= b, a 6= c and b 6= d.

In every example I (TF) have created I have observed that the
rank of the matrix is either n or n− 1. So here is the problem:
Either prove that the matrix has rank at least n − 1, or find a
counter-example. Also it would be nice to know exactly when
rank n− 1 occurs.

Dave Wild
The rank of a matrix can be determined by finding the number of linearly
independent rows of the matrix. Adding two columns which contain zeros
to the end of each row gives another matrix with the same rank. Add row
n + 1, which contains c in the first n1 columns, e in the next n2 columns,
and 0 and 1 in the last two columns. Add row n + 2, which contains e in
the first n1 columns, d in the next n2 columns, and 1 and 0 in the last two
columns. As these additional rows are linearly independent of all the other
rows in the matrix it follows that the new (n + 2) × (n + 2) matrix has a
rank 2 more than the original matrix. Now subtract row n+1 from the first
n1 rows and row n+ 2 from the following n2 rows.

For example, when n1 = 3 and n2 = 4 the initial and resultant (n +
2)× (n+ 2) matrices are

a c c e e e e 0 0
c a c e e e e 0 0
c c a e e e e 0 0
e e e b d d d 0 0
e e e d b d d 0 0
e e e d d b d 0 0
e e e d d d b 0 0

c c c e e e e 0 1
e e e d d d d 1 0


and



f 0 0 0 0 0 0 0 −1
0 f 0 0 0 0 0 0 −1
0 0 f 0 0 0 0 0 −1
0 0 0 g 0 0 0 −1 0
0 0 0 0 g 0 0 −1 0
0 0 0 0 0 g 0 −1 0
0 0 0 0 0 0 g −1 0

c c c e e e e 0 1
e e e d d d d 1 0


,

where f = a− c and g = b− d.
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As a 6= c and b 6= d, both f and g are non-zero. Therefore the first n
rows are linearly independent and the rank of the (n+ 2)× (n+ 2) matrix
is at least n. From row n + 1 subtract c/f times the first n1 rows and
e/g times the following n2 rows so that the first n columns of this row are
zero. From row n + 2 subtract e/f times the first n1 rows and d/g times
the following n2 rows so the first n columns of this row are also zero. The
bottom right hand corner of the matrix becomes

n2e

g
1 +

n1c

f

1 +
n2d

g

n1e

f

 =


n2e

b− d
1 +

n1c

a− c

1 +
n2d

b− d
n1e

a− c



=


n2e

b− d
a+ (n1 − 1)c

a− c
b+ (n2 − 1)d

b− d
n1e

a− c

 .
If all of these elements are zero then the original matrix has rank n − 2.
This occurs when

e = a+ (n1 − 1)c = b+ (n2 − 1)d = 0.

If not all the elements are zero but the determinant of the 2 × 2 matrix is
zero then the rank of the original matrix will be n− 1. This occurs when

n1 n2 e
2 = (a+ (n1 − 1)c) (b+ (n2 − 1)d) .

In other cases the rank of the original matrix is n. These criteria agree with
the examples of matrices given in the problem.

Problem 273.1 – Hair
When you visit your hairdresser within 30 days of your previous appoint-
ment the cost is £30. Thereafter she adds a premium of 30 d5/4 pence,
where d is the number of further days you delay your next appointment.
For example, if you leave it for 42 days, the cost will be £36.70035. . . , which
we assume she will round to £36.70. Obviously, in her view the surcharge
is justified as compensation for additional work created by excessive hair
growth.

If you get your hair cut at regular finite intervals to maintain a neat
and tidy appearance at minimum cost, how often should you go?
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Cattle
Tony Forbes
Farm animals have often featured significantly in M500—as one can see by
looking at past issues. But recently, perhaps inspired by an episode of The
Archers, I became interested in that most famous cow conundrum of ancient
times, Archimedes’ Cattle Problem. A brief search on the Web failed to
produce a complete solution that I could readily understand; so I decided
to work it out for myself. And having done so I feel obliged to share the
results of my labours with readers of this magazine.

According to Recreations in the Theory of Numbers by Albert Beiler,
Archimedes begins (in English), ‘Compute, O friend, the host of the cattle of
the Sun, giving thy mind thereto, if thou hast a share of wisdom. Compute
the number which once grazed on the fields of the Thrinacian isle of Sicily,
. . . ’ In modern terminology he asks for (presumably the smallest) positive
integers W , X, Y , Z, w, x, y, z that satisfy

W =

(
1

2
+

1

3

)
X + Z, X =

(
1

4
+

1

5

)
Y + Z,

Y =

(
1

6
+

1

7

)
W + Z,

w =

(
1

3
+

1

4

)
(X + x), x =

(
1

4
+

1

5

)
(Y + y),

y =

(
1

5
+

1

6

)
(Z + z), z =

(
1

6
+

1

7

)
(W + w),

W +X is a square and Y + Z is a triangular number.

The variables are actually the sizes of eight herds of cattle. Upper and
lower case letters represent bulls and cows respectively, and these are further
divided into four colours: W,w white, X,x black, Y, y dappled, Z, z yellow.
However, these details need not concern us, and anyway, once you see the
numbers it will be obvious that the herds must be imaginary. Otherwise
the animals would have been very small.

The first seven equations form a linear system, which is solved to give

W =
3455494 z

1813071
, X =

828946 z

604357
, Y =

7358060 z

5439213
, Z =

461043 z

604357
,

w =
2402120 z

1813071
, x =

543694 z

604357
, y =

1171940 z

1813071
,
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and we put z = 5439213 s to clear the denominators:

W = 10366482 s, X = 7460514 s, Y = 7358060 s, Z = 4149387 s,

w = 7206360 s, x = 4893246 s, y = 3515820 s, z = 5439213 s.

Of anyone who gets this far Archimedes says, ‘If thou canst give, O friend,
the number of bulls and cows in each herd, thou art not unknowing nor
unskilled in numbers, but still not yet to be counted among the wise.’

To comply with the eighth condition, W +X = 17826996 s is a square,
all we need to do is replace s by 17826996/4 t2 = 4456749 t2 :

W = 46200808287018 t2, X = 33249638308986 t2,

Y = 32793026546940 t2, Z = 18492776362863 t2,

w = 32116937723640 t2, x = 21807969217254 t2,

y = 15669127269180 t2, z = 24241207098537 t2.

Well, that’s the easy stuff out of the way—and already the herds are
beginning to get quite large, even when t = 1. But if you wish to be counted
among the wise and to ‘go forth as conqueror, and rest assured that thou
art proved most skilled in the science of numbers,’ it is necessary to deal
with the last condition, which says that

Y + Z = 51285802909803 t2 =
n(n+ 1)

2

for some positive integer n, or, after multiplying by 8 and adding 1,

8(Y + Z) + 1 = 4729494 · (9314 t)2 + 1 = (2n+ 1)2. (1)

If we put u = 2n+ 1 and v = 9314 t, then (1) becomes

u2 − 4729494 v2 = 1. (2)

The procedure for solving equations like (2) is well known. Ignoring (u, v) =
(1, 0), we want the smallest positive solution (u0, v0), and we obtain it by
computing (with a little help from Mathematica) convergents u/v of the
continued fraction for

√
4729494 until we find one which works. We succeed

with
√

4729494 ≈ [2174; 1, 2, 1, 5, 2, 25, 3, 1, 1, 1, 1, 1, 1, 15, 1, 2, 16, 1, 2, 1, 1, 8, 6,

1, 21, 1, 1, 3, 1, 1, 1, 2, 2, 6, 1, 1, 5, 1, 17, 1, 1, 47, 3, 1, 1, 6, 1, 1,

3, 47, 1, 1, 17, 1, 5, 1, 1, 6, 2, 2, 1, 1, 1, 3, 1, 1, 21, 1, 6, 8, 1, 1, 2,

1, 16, 2, 1, 15, 1, 1, 1, 1, 1, 1, 3, 25, 2, 5, 1, 2, 1],
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and this gives the convergent u0/v0, where

u0 = 109931986732829734979866232821433543901088049,

v0 = 50549485234315033074477819735540408986340.

However, we are not done yet because, although (u, v) = (u0, v0) satisfies
(2), we have agreed that v must also be a multiple of 9314. So from (u0, v0)
we generate further solutions of (2) by computing[

u
v

]
=

[
u0 4729494 v0
v0 u0

]j [
u0
v0

]
, j = 1, 2, . . . ,

until we find one where 9314 divides v. We succeed when j = 2328. Then

u = 37653445023472058840 . . . 84777023371728320049 (103273 digits),

v = 17313998589517710564 . . . 02891212883491745860 (103270 digits),

where for brevity we have omitted some of the digits. Observe that u is odd
and you can take my word for it that t = v/9314 is an integer. Thus we
have the smallest solution to Archimedes’ problem:

t2 = 34555906354559370506 . . . 82492556252058980100 (206531 digits),

W = 15965108046711445314 . . . 25054629385150341800 (206545 digits),

X = 11489713877282899997 . . . 42829072899825178600 (206545 digits),

Y = 11331927544386380771 . . . 11404453921175894000 (206545 digits),

Z = 63903464823090286500 . . . 22697068635296026300 (206544 digits),

w = 11098298923733190397 . . . 47790395914059564000 (206545 digits),

x = 75359414205454263981 . . . 96240177238562645400 (206544 digits),

y = 54146089457145667802 . . . 02462606608963318000 (206544 digits),

z = 83767688241852443869 . . . 74928222116422113700 (206544 digits),

total : 77602714064868182695 . . . 23406626719455081800 (206545 digits).

Curiously, if we interchange squareness and triangularity in the last two
conditions—that is, make W+X a triangular number and Y +Z a square—
the solution is very similar. This time we put s = 11507447 t2 and we end
up solving 4729494 (2 · 9314t)2 + 1 = (2n+ 1)2, which also leads to equation
(2). Moreover, the same v applies and we obtain the same numbers as before
but multiplied by 11507447/17826996 = 2471/3828. The new total will be

50093079011047356175 . . . 35459188773190571350 (206545 digits).
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Problem 273.2 – Square, split and add
Tony Forbes
Let b and d be integers greater than 1. Let n be an integer such that

bd−1 ≤ n ≤ bd − 1 and

⌊
n2

bd

⌋
+ (n2 mod bd) = n. (1)

Here is what we are really doing: take a d-digit number n in base b, square
it, split n2 into two numbers at the dth digit from the right and add the two
parts. We get excited if n is unchanged by this process. Some examples will
make things clear(er), and you can verify that the tabulated numbers really
do have have the stated property. For instance, 703 = 494+209 =

√
494209.

When b = 10 they are known as Kaprekar numbers.

b = 2 3 7 10 15 31 36 63 127 136 171
3 8 13 14 26 65 80 121 122 242 273
4 6 10 15 28 36 63 85 120 136 171
5 9 16 24 32 93 124 144 208 273 352
6 15 21 35 86 130 215 260 371 630 666
7 16 33 48 153 171 172 190 324 342 576
8 28 36 63 147 365 511 820 910 1170 1261
9 16 65 80 105 169 273 456 560 624 728

10 45 55 99 297 703 999 2223 2728 4950 5050
11 16 25 40 81 96 105 120 190 210 266
12 66 78 143 628 1100 1727 2146 2640 3510 4785
13 49 57 64 105 112 120 168 244 549 793
14 40 66 91 105 130 156 195 845 1899 2743
15 64 161 224 483 1205 1687 1688 2170 2892 3374
16 51 85 120 136 171 205 255 351 820 910

There are five primes in the table, namely 3, 7, 31, 127 and 13, and,
remarkably, when they are represented in the relevant bases they look like
this: 112, 1112, 111112, 11111112 and 1113 respectively. If you are prepared
to extend the table a little (actually quite a lot) further, you will find more
primes with a similar structure; for example, 305175781 = 11111111111115,
16148168401 = 11111111111117, 111111111111111111110 and the same pat-
tern in base 19 (this is a coincidence, surely), 109912203092239643840221
= 111111111111111111119.

So here is the problem. Show that if n is a prime satisfying (1) for some
integer b > 1, then n = 111 . . . 111b. Or find a counter-example.
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Solution 271.1 – Complex exponential sums
Consider the functions

f(t) =
1

2
e−18it − 2i

3
e11it, g(t) = ie23it − 5

6
e−14it,

and h(t) =

(
1

3
+ i

)
e−17it +

i

2
e44it.

Show that the graphs of f(t), g(t) and h(t) have 29-fold, 37-fold
and 61-fold rotational symmetry respectively.

Dick Boardman
We have

f

(
t+

2π

29

)
=

1

2
e−18it−36πi/29 − 2i

3
e11it+22πi/29

= e22πi/29
(

1

2
e−18it−36πi/29−22πi/29 − 2i

3
e11it

)
= e−36πi/29f(t).

This relation shows that for all points t, the ratio f(t + 2π/29)/f(t) is a
constant complex number. Moreover, the constant has absolute value 1 and
represents a rotation by an angle of 22π/29 (approximately 136.55 degrees),
producing the 29-fold symmetry. This is illustrated on the next page. Here
we have split the graph of f(t), 0 ≤ t < 2π, into two parts: t in the even
intervals [2πj/29, 2π(j + 1)/29), j = 0, 2, 4, . . . , 26, left, and t in the
odd intervals [2πj/29, 2π(j + 1)/29), j = 1, 3, . . . , 27, right. Evidently
the right-hand graph is obtained by rotating the left-hand graph by about
136.55 degrees.

Similarly,

g

(
t+

2π

37

)
= e−28πi/37g(t) and h

(
t+

2π

61

)
= e−34πi/61h(t).
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With three terms in the sum we can construct more complicated shapes.

e15it − i

2
e−2it +

i

3
e−19it i

3
e−6it − e11it − i

2
e−23it i

3
e2it + ie−11it − 1

2
e15it

i

3
e23it − ie10it − 1

2
e−16it eit +

i

3
e8it +

(
1

2
+

i

5

)
e−20it eit +

i

2
e6it +

i

3
e−14it
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Referendum pie

Mike Grannell

It was 2025 when the trouble really began. There had been some muttering
prior to this, but in July 2025, Microsoft introduced Windows 25. Every
time users of Office-Infinity entered the consecutive characters pi, the
system automatically started to produce the decimal digits of π to unlimited
accuracy. Previous versions had a similar bug, but this could be turned off
with a simple expletive to the voice-recognition system. Windows 25 was
different—it had a mind of its own and would shout back in highly offensive
terms.

At this point, demand began to grow for a referendum on the true value
of π. Older people seemed to prefer 22/7, but there were vigorous arguments
in support of alternative values. The Sun newspaper was strongly in favour
of taking the value to be 3 on grounds of simplicity, and it didn’t care
for the symbol π either, decrying it to be a foreign import. The Daily
Mail and the Daily Express felt that their readers had had enough of so-
called experts, particularly mathematicians and the like. Many of these
people, it was alleged, were wasting a fortune computing π to billions of
decimal places—in fact over 350 million digits per week on some reckoning.
Overseas mathematicians were especially vilified as corrupting the innate
simplicity of the English character by their slavish addiction to spurious
accuracy. The public were informed that many foreign symbols had been
imported into mathematics and the expense of dealing with these became a
key issue. The president of the London Mathematical Society inadvertently
let slip that many numbers in common use were irrational, and some even
transcendental! Papers were uncovered relating to surreal numbers and
even to imaginary numbers. The prime minister eventually conceded that
a referendum would be held on 14th March 2026.

A close colleague of the London Mathematical Society president, a per-
son with ambition for this post, suddenly switched sides and wrote extensive
articles to the effect that a few decimal places would suffice, including one
for The Times entitled ‘Cutting π down to size’. He confessed that he had
secretly felt this way for years, but had been unwilling to offend his erst-
while friend. Televised debates followed between the ‘Pi is finite’ and the
‘Hands off π’ camps. Foreign mathematicians were aghast. The ‘Pi is finite’
camp vigorously pushed the concept of simplicity and promised to replace
π by p (to be pronounced pee). They were challenged to specify how many
decimal places they would use, but their answers were evasive and varied



M500 273 Page 19

considerably. It was also pointed out that although π was a foreign (Greek)
letter, p itself was a Roman import. But none of this seemed to stick. The
Star ran a leader with the headline ‘Pee off pi’. The ‘Hands off π’ group
promised catastrophic disaster if π were to be redefined. They were por-
trayed in most of the media as elitist snobs and know-alls. Probably this
was not helped by articles in the Guardian with headlines such as ‘Why
π will affect future generations and why its redefinition will lead to untold
economic disasters in the distant future’.

The result of the referendum was narrow but, nevertheless, there was a
clear victory for the ‘Pi is finite’ campaign, now renamed the ‘P is finite’
group. Media pundits analysing the result opined that the great English
public had finally taken revenge for the mathematics that they had been
forced to endure at school. The president of the London Mathematical
Society resigned and there was a considerable revolt at the Institute of
Mathematics and its Applications, whose president was regarded as having
been insufficiently supportive of the ‘Hands off π’ campaign. Some back-
trackers demanded a second vote, while others reluctantly agreed to settle
for 355/113.

By 2040 we still don’t have a definitive value for π, or p as it is now
called. However, it is now illegal hate-speech to claim that it has infinitely
many decimal places. A popular choice is p = 22/7, and the ‘P is finite’
team are constantly assuring people that things like wheels not being com-
pletely circular are merely transitional problems. England was forced out of
the World Cup in 2038 for using a ball judged insufficiently spherical, and
was beaten in the Mathematical Olympiad by the Vatican City youth team.
Most international scientific societies expelled the English representatives,
although this was hailed as a triumph by the English press. The Univer-
sity Research Excellence Framework was revised to promote the National
Excellence category above the International Excellence category.

Meanwhile, at Heysham nuclear power station, and unknown to ev-
eryone, the non-circular reactor containment vessel has just developed the
tiniest of cracks.

It was the kind of night I had never known. This was night to the power of
night to the power of night. This was night cubed.

— M. Haig, The Humans

Exercise for reader: What is the value of night?
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The allure of magic squares
Eddie Kent
In M500 we frequently talk about magic squares. In fact I once offered a
prize of $100 for a particular one, which no one has bothered to claim yet.
However, here is an astonishing result I just read about. The smallest pos-
sible magic square of 7th powers (it is said) was recently (2013) constructed
by Toshihiro Shirakawa. Its size is 144× 144 and its magic sum is

3141592653589793238462643383279502884197169399375105

and these are the first 52 digits of π. Clearly this gives an elegant way
of producing π on request, rather than having to learn all those tedious
mnemonics; just knock up the correct magic square and read it off. Also of
course this proves that π is not random at all but contains magical proper-
ties. Or might if it weren’t that with a big enough ‘magic’ square you can
stuff nearly anything into it with a bit of ingenuity. Look what Dürer did.

He keeps bob bob bobbin’ along
Dave Wild
Oxford University Press have published over 200 books in a series of Very
Short Introductions to a variety of subjects. A recent addition is one on
Combinatorics by Robin Wilson, Emeritus Professor at the OU. It men-
tions that parts of the book follow the general approach of TM361, Graphs,
Networks and Design, which ran from 1981 to 1994. If you look on Amazon
then the table of contents and index will give you a good idea of the scope
of the book.

I found the parts of the book I have read to be well written. In the chap-
ter on Permutations and Combinations, ‘Another important result Combi-
nation rule 2’ was the same as Combination rule 1.

This proves the book was based on an OU course. Robin’s An Into-
duction to Graph Theory which was first published in 1972 reached its 5th
edition in 2010. He is to be congratulated on its longevity.

Problem 273.3 – Rational integral
Show that ∫ 2π

0

(cosx)
(

sin
x

2

)
(

cos
x

3

)(
sin

x

4

) dx = − 368

55
.
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Problem 273.4 – Sums of reciprocals of primes

It is clear (TF thinks) that a sum of reciprocals of distinct primes can never
add up to 1. If not 1, what about something that is nearly 1? Can you find
sets of distinct primes {p1, p2, . . . , pr} such that

1

p1
+

1

p2
+ · · ·+ 1

pr
=

a± 1

a

for some integer a, as, for example, 1/2 + 1/3 + 1/7 = 41/42? Are there
infinitely many examples?

M500 Mathematics Revision Weekend 2017

The forty-third M500 Revision Weekend will be held at

Kents Hill Park Training and Conference Centre,

Milton Keynes, MK7 6BZ

from Friday 12th to Sunday 14th May 2017.

The standard cost, including accommodation (with en suite facilities) and
all meals from dinner on Friday evening to lunch on Sunday is £285. The
standard cost for non-residents, including Saturday and Sunday lunch, is
£170. There will be an early booking period up to 11th April with a discount
of £20 for both members and non-members.

Members may make a reservation with a £25 deposit, with the balance
payable at the end of February. Non-members must pay in full at the time
of application and all applications received after 28th February 2017 must
be paid in full before the booking is confirmed. Members will be entitled to
a discount of £15 for all applications.

There is free on-site parking for those travelling by private transport.
For full details and an application form see the Society’s web site at

www.m500.org.uk.

The Weekend is open to all Open University students, and is designed
to help with revision and exam preparation. We expect to offer tutorials for
most undergraduate and postgraduate mathematics OU modules, subject
to the availability of tutors and sufficient applications.

Please note that the venue is not the same as last year.



Contents M500 273 – December 2016

Sophie Germain and Fermat’s Last Theorem – II

Roger Thompson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Solution 235.4 – Matrix

Dave Wild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Problem 273.1 – Hair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Cattle

Tony Forbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Problem 273.2 – Square, split and add

Tony Forbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Solution 271.1 – Complex exponential sums

Dick Boardman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

Referendum pie

Mike Grannell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

The allure of magic squares

Eddie Kent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

He keeps bob bob bobbin’ along

Dave Wild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Problem 273.3 – Rational integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Problem 273.4 – Sums of reciprocals of primes . . . . . . . . . . . . . .21

M500 Mathematics Revision Weekend 2017 . . . . . . . . . . . . . . . . . 21

Problem 273.5 – Twisted prisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
04.00

Problem 273.5 – Twisted prisms
The edge chromatic number, χ′(G), of a graph G is the minimum number of
colours required to colour the edges of G such that any two edges meeting
at a vertex have distinct colours.

Let n ≥ 3 and d < n/2 be positive integers and construct a 3-regular
graph Pn,d as follows. There are 2n vertices, Ai and Bi, i = 0, 1, . . . , n− 1.
The edges are {Ai, Ai+1 mod n}, {Bi, Bi+d mod n} and {Ai, Bi}, i = 0, 1,
. . . , n− 1. Some examples are on the front cover.

Show that χ′(Pn,d) = 3, with precisely one exception: n = 5, d = 2,
also known as the Petersen graph, where χ′(P5,2) = 4.

Front cover Twisted prisms


