
* ISSN 1350-8539

M500 274



The M500 Society and Officers

The M500 Society is a mathematical society for students, staff and friends of the
Open University. By publishing M500 and by organizing residential weekends, the
Society aims to promote a better understanding of mathematics, its applications
and its teaching. Web address: m500.org.uk.

The magazine M500 is published by the M500 Society six times a year. It
provides a forum for its readers’ mathematical interests. Neither the editors nor
the Open University necessarily agree with the contents.

The Revision Weekend is a residential Friday to Sunday event providing re-
vision and examination preparation for both undergraduate and postgraduate
students. For details, please go to the Society’s web site.

The Winter Weekend is a residential Friday to Sunday event held each January
for mathematical recreation. For details, please go to the Society’s web site.

Editor – Tony Forbes

Editorial Board – Eddie Kent

Editorial Board – Jeremy Humphries

Advice to authors We welcome contributions to M500 on virtually anything
related to mathematics and at any level from trivia to serious research. Please
send material for publication to the Editor, above. We prefer an informal style
and we usually edit articles for clarity and mathematical presentation. For more
information, go to m500.org.uk/magazine/ from where a LaTeX template may be
downloaded.



M500 274 Page 1

Resistance
Tommy Moorhouse
This set of investigations is concerned with resistance and, in particular,
combinations of resistors.

The Y−∆ formula There is a formula for converting an arrangement of
resistors as three legs (Y) into an equivalent set of resistors arranged as the
edges of a triangle (∆). The resistance across each of the edges of the ∆ is
the same as that between the corresponding ends of the legs of Y.

Find the general formula for the resistances of the ∆ in terms of those of
the Y using the series and parallel resistance formulae. Apply the formula to
find the resistances between any two vertices of a tetrahedron where all the
resistors forming the edges have the same value. It is possible to generalize
to the case where the resistors have different values, if you have the energy.

Generalized Y −∆ rules? One might wonder whether there is a higher
dimensional Y−∆ rule relating the tetrahedron to four resistors branching
from a common point? For the general case the answer is no and it is
interesting to understand why.

To get an idea of the difficulty consider a set of four resistors arranged
as the edges of a square, and a second set of four resistors branching from a
point to form an X. What is wrong with this argument: both arrangements
have four resistors and four vertices, so there must be a unique correspon-
dence between the values in each arrangement. [Hint—how many ways are
there of connecting two vertices, and how many independent conditions does
this impose on the resistor values?]

Cube Consider a cubic net of resistors; that is, a set of twelve equal resistors
(resistance R) forming the edges of a cube, with three resistors meeting at
each vertex. If we connect the positive pole of a cell to a given vertex then
there are three inequivalent locations for the negative pole. What is the
resistance of each of these three configurations in terms of R?

Further resistance Consider the same problem with the cube replaced
by another regular solid, such as a tetrahedron, octahedron and so on. How
many configurations are possible for the relative locations of the two poles,
and what is the resistance of each? Are there any useful tricks for finding
the resistance of a sub-network of resistors? Try the simplest cases and see
where they lead.

Q: What is a proof? A: 0.5 per cent alcohol.
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The Winter Weekend Hat Problems
Hat puzzles are logic problems that date back to as early as 1961. A number
of players are each wearing a hat, which may be of various specified colours.
Players can see the colours of at least some other players’ hats, but not
that of their own. As a promotional exercise we offered generous discounts
for the 2017 M500 Winter Weekend to newcomers who correctly answered
either (or both) of the following problems.

Puzzle 1 The simplest hat problem involves two players who
can see each other’s hats but not their own. Each hat may be ei-
ther red or green. The task is for both players to simultaneously
announce the colour of their hat (which of course they cannot
see). What strategy should they adopt to ensure at least one of
them gets the answer right?

Puzzle 2 Ten players stand in a line where they can see only
the colours of the hats of the people standing in front of them.
Once again each player is wearing either a red or green hat. The
person at the back, who can see all the hats apart from his1 own,
announces his hat colour first. The person in front of him is the
next to announce his hat colour and so on down the line until
the player at the front, who can see no hats, calls last. If they
adopt the optimum strategy, what is the percentage of correct
guesses they will make?

Dick Boardman
The solution to the hat problems are as follows.

(1) Let the two people be A and B. There are two possibilities: The
hats are the same, or the hats are different.

The prior agreed strategy is that A will assume that the two hats are
the same. He will therefore say that his hat is the same colour as the one he
can see. Player B will assume that the two are different. He will therefore
say that his hat is the opposite colour to the one he can see. One of the two
must be right.

(2) We assume that the players 2 through 10 can hear what is announced
but not see whether it is right or wrong. Amazingly, with the correct strat-
egy at least nine will be correct and ten will be correct half the time. The
strategy is as follows.

1Women are usually barred from this version of the game.
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There will be n red hats and 10− n green hats. Here, n may be either
odd or even. Player 1 will announce that his hat is either red or green, so
as to make the total number of red hats even. If player 2 hears red and can
see an odd number of red hats, he will know his hat is green. If he hears red
and can see an even number of red hats, his hat must be red. Either way
his announcement is correct. Similarly, players 3 through 10 can correctly
identify their own hat colours. Thus at least nine answers must be right. If
player 1 is correct, all ten answers will be right; otherwise nine will be right.

Since I have been before, I can’t claim a discount on the cost of the
Winter Weekend.

M337, or not M337, that is the question
Dave Wild
If you are thinking of studying the OU’s Complex Analysis module then
there is a MOOC (Massive Open Online Course) which may help you decide
whether to do so. On Coursera, the Wesleyan University runs a course
entitled ‘An Introduction to Complex Analysis’. This course requires eight
weeks of study and their estimate is 6–12 hours of study per week. The
course covers many of the same topics as M337 but in much less depth. If
you do not like proofs then you will like this course. The course is free;
so, if you are on broadband, it is worth a look. About 90 percent of the
students drop out of these free courses; so nobody will care if you bale out.
The videos should be watched online as they contain problems which you
are expected to answer. If you download the videos then the problems do
not appear.

Problem 274.1 – Two dice
Tony Forbes
I offer you the chance to play the following game, which is repeated until
one of us becomes bankrupt.

I throw two dice.
If no 6 appears, nothing happens.
If precisely one 6 appears, you pay me £1.
If double-6 appears, I pay you £9.

Excellent odds, you agree. Since we have eliminated the no-sixes case, the
probability of getting the second 6 surely can’t be less than 1/6. Well?
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Solution 267.2 – Hanoi revisited
There are three vertical pegs lined up in a row and n discs. The
discs have holes in their centres so that they can be threaded on
to the pegs. Initially, all n discs are placed on the left-hand peg
in non-increasing order of radius to form a tower. The object of
the game is to transfer the entire tower to the right-hand peg by
moving discs from peg to peg, one at a time, according to the
rules: (1) only a disc at the top of a tower may be moved; (2)
you must never put a disc on top of a smaller disc.

(i) How many moves are needed?
(ii) How many distinct types of starting position are there?

(iii) Depending on the distribution of the radii, the number
of moves varies from n (when all discs have the same radius)
to 2n − 1 (all different). Which numbers in this interval are
represented?

Tony Forbes
Our original version of the solution to this problem ended up with one of
M500’s rivals! However, the problem was stated in M500. So is appropriate
that we should at the very least give brief answers to questions (i)–(iii) here.

Assume there are t distinct radii, 1, 2, . . . , t, and that radius i occurs ri
times, so that n = r1 + r2 + · · ·+ rt. As is well known, the number of moves
required to transfer a tower of t distinct discs is 2t − 1, and after a bit of
thought one can see that the kth disc, numbering from the top of the tower,
gets moved 2t−k times.

(i) When there are two identical discs at the top of a tower it is clearly1

never a good idea to move them on to separate pegs. We can therefore treat
a pile of ri discs of radius i as if it were a single disc except that we count its
moves with weight ri. Hence, given a starting position R = (r1, r2, . . . , rt),

1The word ‘clearly’ is there to avoid the difficult task of trying to justify the rest of
the sentence. In [3] we adopt a different approach, where the stated assertion follows
naturally and without the need for any explanation.
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the number of moves is

N(R) = N((r1, r2, . . . , rt)) =

t∑
k=1

rk2t−k.

For example, starting with 15 discs of radii 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5,
we have t = 5 and

N((5, 4, 3, 2, 1)) = 5 · 24 + 4 · 23 + 3 · 22 + 2 · 2 + 1 = 129.

(ii) The number of starting positions for n discs is 2n−1, the same as
the number of ordered partitions of n.

(iii) Let Mn denote the set of distinct values of N(R) as R ranges over
all ordered partitions of n, and let m(n) = |Mn|, the cardinality of Mn. In
[3] we show that

M1 = {1}, Mn = {x+ 1 : x ∈Mn−1} ∪ {2x+ 1 : x ∈Mn−1}, n > 1,

and by direct computation we get these values for m(n):

m(n) = 1, 2, 4, 8, 15, 27, 47, 80, 134, 222, . . . , n = 1, 2, . . . .

The first thing to do with an unfamiliar sequence is look it up in [2], and,
indeed, we find that our calculated values of m(n) are the first ten terms of
entry A000126. But [2, A000126] is actually L(n, 4), where

L(n, r) =

r−1∑
i=0

(
n− 1

i

)
+

b(n−r)/2c∑
j=1

(
n− j − 1

j + r − 1

)
,

described in [1] as a generalization of the Fibonacci sequence

Fn = 1, 1, 2, 3, 5, 8, 13, 21, . . . , n = 1, 2, . . . .

Moreover, it is proved in [1] that L(n, 4) = Fn+3 − n− 1. So we appear to
have the following interesting and remarkable result.

m(n) = Fn+3 − n− 1, n = 1, 2, . . . .

This is proved in [3].

References
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Solution 272.1 – Finite integral
Show that∫ 2π

0

(cosx)
(

sin
x

2

)(
tan

x

3

)
dx =

−18
√

3

5
.

Bruce Roth
I look forward to seeing your elegant three-line solution. But until then here
is my attempt. Let x = 6θ. Then the integral is

6

∫ π/3

0

(cos 6θ) (sin 3θ) (tan 2θ) dθ.

Using the identities

tan 2θ ≡ 2 sin θ cos θ

cos2 θ − sin2 θ
, sin 3θ ≡ 3 sin θ − 4 sin3 θ

and, from de Moivre,

cos 6θ ≡ cos6 θ − 15 cos4 θ sin2 θ + 15 cos2 θ sin4 θ − sin6 θ,

which factorizes nicely as

cos 6θ ≡ (cos2 θ − sin2 θ)(cos4 θ − 14 cos2 θ sin2 θ + sin4 θ),

gives us (letting s = sin θ and c = cos θ)

6

∫ π/3

0

(
c4 − 14c2s2 + s4)(3s− 4s3

)
(2sc) dθ,

which multiplies out to

12

∫ π/3

0

(
3c5s2 − 42c3s4 + 3cs6 − 4c5s4 + 56c3s6 − 4cs8

)
dθ.

Using s2 + c2 ≡ 1 we get

c5s2 ≡ cs2 − 2cs4 + cs6, c3s4 ≡ cs4 − cs6,
c5s4 ≡ cs4 − 2cs6 + cs8, c3s6 ≡ cs6 − cs8,

which gives us

12

∫ π/3

0

(
3cs2 − 52cs4 + 112cs6 − 64cs8

)
dθ

= 12

[
s3 − 52s5

5
+ 16s7 − 64s9

9

]π/3
0

=
−18
√

3

5
.
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Tony Forbes
I have no hand-made solution, let alone one that can be delivered in three
lines. If you have suitable mathematical software, one of the things you can
do to make your life slightly more exciting is compute

T (a, b, c) =

∫ 2π

0

(
cos

x

a

)(
sin

x

b

)(
tan

x

c

)
dx

for three distinct, smallish positive integers a, b and c chosen more or less
at random. Amongst the various types of behaviour T (a, b, c) can exhibit I
can identify the following.

(i) If x/c includes π/2 or 3π/2 as x goes from 0 to 2π, there will be
trouble with tan(x/c) and the integral won’t converge unless one of the
other two trigonometric functions is zero at the same place. Thus, for
example, the integral

Tε(4, 8, 3) =

∫ 3π/2−ε

0

+

∫ 2π

3π/2+ε

(
cos

x

4

)(
sin

x

8

)(
tan

x

3

)
dx

does not converge when ε tends to zero.

(ii) The integral is computable but you would probably have to be insane
if you even begin to think about doing it by hand. The result is usually a
monstrous expression possibly involving hundreds of terms some of which
can be quite complex. In a fairly typical case with small a, b, c, we have

T (3, 4, 7) =
88

7
+

154

25
(−1)2/21 + 112(−1)1/7 − 112(−1)4/21

− 112

25
(−1)5/21 − 64

7
(−1)1/3 − 112

25
(−1)3/7 − 154(−1)10/21

+ 154(−1)11/21 +
112

25
(−1)4/7 +

64

7
(−1)2/3 +

112

25
(−1)16/21

+ 112(−1)17/21 − 112(−1)6/7 − 154

25
(−1)19/21

+
35

4
(−1)7/24 arctan

sin(π/42)

(−1)1/24 − cos(π/42)

+ · · ·+ 7

8
(−1)3/8

√
3 log

(
(−1)11/12 − 1 + 2(−1)23/24 cos(π/42)

)
with 244 terms omitted. The expression (−1)α should be treated as short-
hand for eπiα.
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(iii) The integral comes out to a nice expression that is not too irrational,
as in our example. Here’s another, this time with a π in it:

T (3, 1, 6) =
63
√

3

16
− 2π ≈ 0.536765.

And a few more:

T (3, 1, 8) =
3096

455
− 297

√
3

80
≈ 0.374157,

T (3, 1, 9) =
9

80

(
−5
√

3 + 18 sin
2π

9

)
≈ 0.327366,

T (3, 1, 12) =
2109

√
3

560
− 2π ≈ 0.239842,

T (3, 1, 24) =
301328

15015
− 4419

√
3

560
− 2π ≈ 0.117543,

T (2, 1, 4) = 2π.

Note that the integrand in T (2, 1, 4) is finite at x = 2π.

(iv) Even better, the integral is actually rational:

T (1, 2, 8) = − 8

15
,

T (1, 4, 3) = − 832

105
.

(v) The integral might be doable by hand but is not as nice as (iii):

T (7, 1, 6) =
343

48
cos

3π

14
− 441

110
sin

π

21
− 441

68
cos

5π

42
≈ − 1.04768,

T (1, 4, 7) = − 16

15
+

672

95
cos

π

7
− 1120

351
sin

π

14
− 224

33
sin

3π

14
≈ 0.364291.

(vi) If c = 2b, the sin and tan factors combine to simplify the integral:

T (a, b, 2b) = 2

∫ 2π

0

(
cos

x

a

)(
sin2 x

2b

)
dx = a sin

2π

a
+ U(a, b) + U(b, a),

where

U(a, b) =
ab2 cos(2π/b) sin(2π/a)

a2 − b2
.
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Fermat’s Last Theorem: a possible explanation
Peter L. Griffiths
We assume p and q are positive integers with p greater than or equal to q,
and n is an integer greater than 2. The binomial expansion of (p + q)n −
(p− q)n equals(

n

0

)
pnq0 +

(
n

1

)
pn−1q1 +

(
n

2

)
pn−2q2 +

(
n

3

)
pn−3q3 + . . .

−
(
n

0

)
pnq0 +

(
n

1

)
pn−1q1 −

(
n

2

)
pn−2q2 +

(
n

3

)
pn−3q3 − . . .

= 2

(
n

1

)
pn−1q1 + 2

(
n

3

)
pn−3q3 + . . . .

Let q = p/r so that r is greater than 1 and is rational; then(
p+

p

r

)n
−
(
p− p

r

)n
= 2pn

((
n

1

)
1

r
+

(
n

3

)
1

r3
+ . . .

)
.

Divide both sides by pn,(
1 +

1

r

)n
−
(

1− 1

r

)n
= 2

((
n

1

)
1

r
+

(
n

3

)
1

r3
+ . . .

)
.

Take the nth root of both sides((
1 +

1

r

)n
−
(

1− 1

r

)n)1/n

= 21/n
((

n

1

)
1

r
+

(
n

3

)
1

r3
+ . . .

)1/n

.

Let r equal 1, so that p equals q, and the equation is at its maximum of 2,
also so that p equalling q deliberately converts the three term assumption of
FLT into two terms. This equality with maximum 2 can only occur if there
are two terms not the three terms assumed in Fermat’s Last Theorem.

This deliberate conversion of three terms into two terms takes the form

(2n − 0)
1/n

= 2 = 21/n
((

n

1

)
+

(
n

3

)
+ . . .

)1/n

.

Hence when r = 1 and p = q there are just two terms,((
n

1

)
+

(
n

3

)
+ . . .

)1/n

= 21−1/n.
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It also follows that provided n > 2 the Pythagorean triple power, and
provided the three term assumption is restored, the equation with r > 1,

21/n
((

n

1

)
1

r
+

(
n

3

)
1

r
+ . . .

)1/n

=

((
(1 +

1

r

)n
−
(

1− 1

r

)n)1/n

will be less than 2. There can only be integer equality with two terms not
the three terms assumed in Fermat’s Last Theorem.

Problem 274.2 – Holey cube
Tony Forbes
A (2h+ 1)× (2h+ 1)× (2h+ 1) cube has three orthogonal h× h arrays of
1×1 holes running through it. Find a formula for c(h), the number of little
cubes used in its construction, and f(h), the number of exposed facelets.
Hence or otherwise compute the limit of f(h)/c(h) as h tends to infinity.

For small h, we have the following values.

h 0 1 2 3
c(h) 1 20 81 208
f(h) 6 72 quite a lot many more
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Solution 269.4 – Three-sided dice
Is it possible to make a three-sided die. Can it be done for any
odd number of sides?

We leave it for your imagination to decide exactly what con-
stitutes a valid die. However, we insist that the probabilities of
landing on the various sides must be calculable. And to save
time, let us rule out blatant forms of cheating—such as a cube
with the faces numbered in pairs.

Tony Forbes
Taking the wording of the question at face
value, the answer has surely got to be ‘no’,
unless the die is allowed to have faces that
are not flat.

So we bend the rules, but only slightly.
We now require the die to be a polyhedron
where the probabilities of landing on its vari-
ous faces can be calculated to have the values
1/3 for three of them and 0 for the others.

Now the problem is easily solved. Take
a prism based on an equilateral triangle and
stick a regular tetrahedron on each end. If
the prism is sufficiently long, the probability
of the thing landing on a triangular face will
be zero.

This leads to an interesting question, which we formally state as Prob-
lem 274.3. How long is sufficiently long? For example, in the illustration all
the edges have the same length, and you can confirm, perhaps by building
a model, that it will never land on a triangle.

Problem 274.3 – A nine-sided die
A 9-sided die is made using stuff of uniform density by sticking a regular
tetrahedron of side 1 on to each end of a prism based on an equilateral
triangle of side 1. How long must the prism be for the die to have zero
probability of landing on a triangular face?

Also solve the problem for 12-sided and 15-sided dice constructed in a
similar manner from equilateral triangles and a 4- or 5-sided prism.
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Solution 268.2 – Induction
What’s wrong with this argument? We wish to prove that

n∑
k=1

k = O(n). (∗)

Clearly
∑1
k=1 k = 1 = O(1). Using induction, we assume (∗) is

true for some n ≥ 1. Then we have

n+1∑
k=1

k = O(n) + n+ 1 = O(n+ 1).

Hence (∗) is true for all n ≥ 1. �

A nice result except that it is actually false. On the other hand,
it is true that

∑n
k=1 k = O(n2).

Reinhardt Messerschmidt

The statement (∗) is shorthand for

there exist C > 0 and an integer N

such that

n∑
k=1

k ≤ Cn for every n ≥ N . (∗∗)

Suppose we have chosen values for C, N for which we want to attempt a
proof of (∗∗) by induction on n. We have

∑N
k=1 k = N(N + 1)/2, therefore

the base case holds if and only if C ≥ N(N + 1)/2. For the inductive case,
suppose n is such that

∑n
k=1 k ≤ Cn; then

n+1∑
k=1

k =

n∑
k=1

k + (n+ 1) ≤ Cn+ n+ 1 = C(n+ 1) + (n− C + 1).

This is where the suggested proof goes wrong: it effectively throws away the
n− C + 1 term and concludes that

∑n+1
k=1 k ≤ C(n+ 1). There is of course

no way of fixing the proof, because no matter how C, N have been chosen,
if n is such that n ≥ N and (n+ 2)/2 > C, then

n+1∑
k=1

k = (n+ 1)(n+ 2)/2 > C(n+ 1).
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Solution 269.2 – Two rectangles

Two rectangles are
packed inside a circle
of radius 1. What is
the largest area they
can occupy?

Ted Gore
I took a slightly different tack but
got the same result as Tony Forbes
[M500 272].

Let α and θ denote the angles
indicated in the diagram. Let A
be the total area of the rectangles.
Then

Α
Θ

A = 4 sinα cosα+ 2 sin θ(cos θ − sinα),

∂A

∂θ
= 2 cos2 θ − 2 sin2 θ − 2 sinα cos θ,

and A is at a maximum when ∂A/∂θ = 0; that is, when

sinα =
cos2 θ − sin2 θ

cos θ
. (1)

Moreover,

∂A

∂α
= 4(cos2 α− sin2 α)− 2 sin θ cosα

= 8 cos2 α− 2 sin θ cosα− 4,

and A is at a maximum when ∂A/∂α = 0; that is, when

cosα =
sin θ ±

√
sin2 θ + 32

8
. (2)

Now sin2 α+ cos2 α = 1. So (1) and (2) gives us

cos2 θ
(

sin θ +
√

sin2 θ + 32
)2

+ 64(cos2 θ − sin2 θ)2 − 64 cos2 θ = 0.

Solving this numerically gives

θ ≈ 0.4837543, α ≈ 0.6956597, A ≈ 2.195184.
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Solution 272.2 – Infinite integral
Show that∫ ∞

0

e−x(log x) dx = − γ = − 0.5772156649 . . . .

Bruce Roth
From the integral definition of the gamma function,

Γ(z) =

∫ ∞
0

xz−1e−x dx.

Differentiating with respect to z,

Γ′(z) =

∫ ∞
0

xz−1(lnx)e−x dx,

because
y = xz−1 ⇒ ln y = (z − 1)(lnx),

and differentiating this last expression with respect to z,

1

y

dy

dz
= lnx ⇒ dy

dz
= y(lnx) = xz−1(lnx).

Hence

Γ′(1) =

∫ ∞
0

(lnx)e−x dx.

From Advanced Mathematical Methods with Maple by Derek Richards, the
set book for M833, page 835, we have this equation for the digamma func-
tion:

ψ(z) =
Γ′(z)

Γ(z)
.

Now, as Γ(1) = 1, we have

ψ(1) = Γ′(1), or

∫ ∞
0

e−x(lnx) dx = ψ(1),

and at the bottom of page 835 some special values of ψ(z) are given, in-
cluding ψ(1) = −γ. Therefore∫ ∞

0

e−x(log x) dx = − γ.
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Problem 274.4 – Cocktail party decomposition

Tony Forbes
The cocktail party graph K2,2,2,2,2,2

has twelve vertices partitioned into six
pairs. Two vertices are adjacent if and
only if they belong to distinct pairs. So
the graph has 60 edges. We wish to par-
tition K2,2,2,2,2,2 into two edge-disjoint
isomorphic copies of a specified graph G
that has 12 vertices and 30 edges. We
also insist that G is regular, meaning
that each vertex has the same number
of neighbours.

q qq

q

qq
q

q
qq q

q
As is well known, this can be done if G is the icosahedron. Take the

icosahedron graph, above, and add an edge {x, y} whenever vertices x and
y are at distance 2. Then (i) the 30 new edges form another icosahedron
and (ii) the old edges together with the new edges form a K2,2,2,2,2,2.

Is there another way to partition the edges of K2,2,2,2,2,2 into two 12-
vertex, 5-regular graphs?

Soon after setting this problem I discovered that the answer is indeed
‘yes’. All I did was use my graph-decomposition program to check all of
the 7849 5-regular 12-vertex graphs. The result is that exactly 321 of them
(including the icosahedron) work. Nevertheless, we would be interested if
you can find a suitable construction by hand. If we drop the regularity
condition, we can answer the question with the following, a K6 with some
extra bits added.

I have to admit that I have never been to a cocktail party. Moreover, I
cannot recall ever being invited to one. So I really don’t know what goes on
at these events. However, I understand that (i) only married couples may
attend, and (ii) one must talk to everybody at the gathering except one’s
spouse.
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Problem 274.5 – 27 cubes
There are 27 cubes each face of which is coloured either red, blue or green.
Moreover, the 27 cubes can be assembled in three ways to form either a red,
blue or green 3×3×3 cube. Interestingly, this can be achieved in essentially
only one way. How?

Thanks to Carrie Rutherford for suggesting the problem.

Problem 274.6 – Tan integral
Show that ∫ π

0

tan(t/6) tan(t/3)

tan(t/2)
dt = log

36

29
.

Problem 274.7 – Double-sided printing
Suppose you want to print two copies of a document. In the interests of
the Environment one should try to use both sides of the paper. So, if your
printer doesn’t naturally do this, try the following procedure.

(i) Print the document normally (using only one side of the paper).

(ii) Place the printed result upside-down in the paper tray.

(iii) Print it again.

This works fine—so long as the original has precisely two pages. What’s so
special about 2? Why doesn’t it work for one, or three or more pages?

Problem 274.8 – Binomial coefficients
Let n1, n2, . . . , nr be r ≥ 0 numbers. Show that

r∑
i=1

(
ni
2

)
+

r−1∑
i=1

r∑
j=i+1

ninj =

(
n1 + n2 + · · ·+ nr

2

)
.

Problem 274.9 – Even planar graphs
Suppose each face of a planar graph is a polygon with an even number of
sides. Prove that the graph must be bipartite. Or find a counter-example.
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M500 Mathematics Revision Weekend 2017

The forty-third M500 Revision Weekend will be held at

Kents Hill Park Training and Conference Centre,

Milton Keynes, MK7 6BZ

from Friday 12th to Sunday 14th May 2017.

The standard cost, including accommodation (with en suite facilities) and
all meals from dinner on Friday evening to lunch on Sunday is £265 for
single occupancy, or £230 per person for two students sharing in either a
double or twin bedded room. The standard cost for non-residents, including
Saturday and Sunday lunch, is £150.

Members may make a reservation with a £25 deposit, with the balance
payable at the end of February. Non-members must pay in full at the time
of application and all applications received after 28th February 2017 must
be paid in full before the booking is confirmed. Members will be entitled to
a discount of £15 for all applications received before 11th April 2017. The
Late Booking Fee for applications received after 11th April 2017 is £20,
with no membership discount applicable.

There is free on-site parking for those travelling by private transport.
For full details and an application form please go to the Society’s web site
at www.m500.org.uk.

The Weekend is open to all Open University students, and is designed
to help with revision and exam preparation. We expect to offer tutorials for
most undergraduate and postgraduate mathematics OU modules, subject
to the availability of tutors and sufficient applications.

Please note that the venue differs from last year.

WANTED: more contributions It is possible we might be in some small
danger of running out of suitable material. In the pipeline there is something by
me about dissecting trapeziums as well as a detailed discussion of the Number
Field Sieve by Roger Thompson. After that it could be a little bleak.

As usual, we are always interested in articles of, say, 2–6 (or even 7, 8 or

9) pages on mathematical topics, preferably stuff that can be readily understood

by first-year mathematics undergraduates. We are also keen on problems and

the solutions thereof, short mathematical notes, personal reminiscences, etc. And

don’t forget that there is no time limit for submitting an answer to an M500

Problem. — TF
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