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What are real numbers and are they really real?
Sebastian Hayes
What is a real number? The set-theoretic definition is

A Cauchy equivalence class of Cauchy sequences of rational
numbers.

This sounds an unnecessarily abstruse definition. And is this really (sic)
what a ‘real number’ is? Surely ‘3’ is a real number but I don’t envisage
it as being a sequence, even less as an ‘equivalence class’ with an unlimited
(‘infinite’) amount of members.

The difficulty, of course, is accommodating the irrationals.

Integers Although people like Dedekind and Russell manage to make
quite a meal of the integers there is no great mystery involved. Numbering
depends on the ability to recognize a ‘one’ when you see it, i.e. to distinguish
between ‘one’ and ‘more than one’, and, secondly, on the ability to ‘pair off’
different sets of discrete objects. These abilities are very basic indeed since
practically all adults have them and even, arguably, certain animal and
insect species.

Once you have a generally accepted object, mark or sign for a ‘one’ (a
single object) and the actual or hypothetical ability to copy or duplicate this
chosen ‘one’ you have in effect ‘all’ the natural numbers. In set-theoretic
parlance an integer is a standard set chosen from an equivalence class of
discrete objects. The test for membership of a given (numerical) equivalence
class is the possibility or not of carrying out a ‘one-one correspondence’
between the proposed set and the standard set.

All the rest, bases, cypherization, positional notation and so on is a
matter of human convenience. If ‘1’ is our chosen sign, then the symbol
‘4’ is a shorthand way of noting ‘1 1 1 1’ which is itself a standard manner
of representing the numerically equivalent amount of objects, real or imagi-
nary. ‘2 + 2 = 4’ is not a logical truth as Russell and Whitehead would have
us believe but a conventionalized representation of actual or possible states
of affairs, i.e. it tells you what happens when you combine ‘1 1’ objects with
‘1 1’ other objects—always provided the objects do not merge when placed
in close proximity. John Stuart Mill, who is always treated as an imbecile
by professional mathematicians, is quite right when he says that ‘“2 + 2 =
4” is a matter of fact.’

Fractions Practically speaking, if you have a large discrete object of
some sort and the ability to divide it up into equal portions as many times as
you wish, you have in effect ‘all’ the fractions. As discrete objects considered
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irrespective of size, the portions are integers; considered in relation to the
original whole they are ‘fractions’ (Lat. frangere, to break). As integers they
have the Archimedean property ‘forwards’ and as fractions they have the
Archimedean property ‘backwards’ for at every stage we have N objects
each of size 1/N and we can (by hypothesis) carry on breaking for ever.
Thus ‘no greatest integer or smallest fraction’.

Fractions started disappearing from higher mathematics a long time ago:
Euclid replaced them by geometric ratios while modern ‘rational numbers’
are not even ratios. Decimal notation in its perverse fashion prefers 0.125 to
1/8 and changes 1/3 into an endless series. For all that the ‘man/woman in
the street’ remains obstinately attached to his or her fractions—about the
only mathematical objects he/she actually uses on a daily basis apart from
integers—hence the entrenched opposition to metrification and a certain
instinctive distrust of mathematicians.

In set-theoretic terms, a ‘rational number’ is defined as ‘an equivalence
class of quotients a/b where a and b (b 6= 0) are integers’. Once again we
need a standard set for each class and we choose the quotient which is ‘in
its lowest possible terms’. Membership of a class is given by the double
prescription ‘If a/b with gcd(a, b) = 1 is a member, then c/d (d 6= 0) is a
member if and only if ad = cb’.

Why the rule ‘a/b = c/d iff ad = cb’? Ask a mathematician and he or
she will say, ‘Because of the axioms for fields’. Yes, I am aware of that but
why do we have these particular axioms and not other ones? The answer
is, of course, that we have this rule because it is indeed the case that, if
the equation holds, a given object can be divided up in two completely
different ways without increasing or decreasing the amount of material in
the designated part or in the whole. Moreover, if ad is not numerically
equivalent to cb, it will not be possible to transform a (equal) portions out
of b into c (equal) portions out of d without increasing or decreasing material
somewhere—though this is a bit more tricky to prove. Any algebraic system
which did not include this criterion as an axiom or valid theorem might be
of extreme interest but would be completely useless for calculation purposes
because it would not square with the facts. It is distressing that this needs
to be said.

Pythagoras and Pythagoreans Pythagoras, a shadowy figure who
does seem to have nonetheless existed, is supposed to have taught that ‘all
is number’. What did he mean by this? Not that the solar system and
our very existence in it depend on the precise values of certain constants
such as the constant of gravitation or the fine structure constant—in this
respect we are a good deal more ‘number-orientated’ than Pythagoras ever
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was. He seems to have meant that all phenomena could be interpreted
in terms of simple whole number ratios. This wild conjecture has in part
been brilliantly confirmed by modern physical discoveries (atomic number,
periodic table &c.) but at the time the only real evidence came from the
theory of sound.

The frequency of vibration of a stretched string is inversely proportional
to its length, so if you halve the length you get the ‘same note’ at a higher
pitch, i.e. the base note or tonic an octave higher. If you take the harmonic
mean, 2ab/(a + b), of the two lengths so far defined, a and b, and pluck
it you obtain the second most important musical interval, the fifth and if
you take the take the arithmetic mean, (a+ b)/2, you have the third most
important musical interval, the fourth. Thus, for an original string of unit
length, we have a length of 1/2 for the octave, 2/3 for the fifth, and 3/4 for
the fourth. These are all simple whole number ratios, none simpler, and the
strings, when plucked together, give a pleasing sound, i.e. they harmonize,
whereas if the ratio of lengths was say 15 to 27, the result would be much
less agreeable—so it is claimed at any rate.

Pythagoras realized that it was not the actual lengths that mattered so
much as the ratio of the lengths and this naturally led on to the investiga-
tion of pleasing visual—as opposed to vocal—rapports which were likewise
independent of change of scale, i.e. to the study of proportion. In archi-
tecture and design generally, it is the so-called geometric mean rather than
the arithmetic or harmonic mean that is crucial. But the geometric mean
proved to be the serpent in the Garden of Reason. In the drawing below if
we call AF a and AB b, AO turns out to be the arithmetic mean of a and
b and (using the theorem about the tangent squared) AC is the geometric
mean since (AC)2 = ab.

A BDF

C

a b
O
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If we now set a at unity and b = 2a, the ratio AC/AF or AC/AB is
clearly not expressible in simple whole numbers. This makes for a certain
untidiness but the real blow comes with the realization that this simple
geometric rapport cannot be represented as a ratio between whole numbers
at all.

The famous reductio ad absurdum proof (not given in Euclid) that the
side and diagonal of a unit square are incommensurable—or, as we would
put it, that 21/2 is irrational—is a strictly numerical proof. It rests on the
argument that if a and c are in their lowest terms, a cannot be even—
and yet we can show that it must be. But line segments are not ‘odd’ or
‘even’—the very language belongs to arithmetic.

All this was a lot more puzzling to Greek eyes than to ours. In the
isosceles right-angled triangle we generally take the side to be of unit size
so the diagonal becomes root 2, an ‘irrational’. But from a geometric point
of view the diagonal is just as ‘good’ a line segment as the side and can just
as well be set at unit length: it is not a matter of one line segment being
‘normal’ and the other ‘peculiar’. The ratio is thus perfectly reversible

Daniel Shanks in his magnificent book Solved and Unsolved Problems in
Number Theory suggests plausibly that the original ‘proof’ of Pythagoras’
theorem was by way of the geometric mean—and to this day it is the proof
given in elementary French textbooks.

A

B

C D

a b

d c - d

Since triangles CBD, CBA are similar we have d/a = a/c. Thus a2 =
cd. Likewise from triangles CAD, CAB we have (c − d)/b = b/c giving
b2 = c(c− d). Adding, we obtain a2 + b2 = cd+ c(c− d) = c2.

What is wrong with this proof? Not much. To keep to the style of
Greek mathematics we would have to speak in terms of ratios and areas,
not numbers, i.e. a2 becomes ‘the square on side BC’ and so on. But the
only questionable step is when we ‘cross-multiply’, i.e. move from the con-
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sideration of relative lengths to the direct evaluation of areas. The missing
part is ‘a2 : 1 = cd : 1’. But here’s the rub: we are assuming there is
necessarily a possible unit measure common to sides BC and CA, in other
words that BC and AB are commensurable.

Now, prior to the development of geometry as the Greek science par
excellence, there existed a figurative number theory which used counters
(originally pebbles); hence the terms we still use today, squares, cubes, tri-
angular numbers and so on. This was number given form but it differed from
true geometry in that its methods and results were exact and empirically
testable since it dealt only with the discrete. At first this older tradition
did not clash with the development of geometry proper but the problem of
incommensurables marked the parting of the ways.

From an empiricist atomic perspective—atomism was already a well-
established theory in ancient Greece—the problem of incommensurables
does not arise. All line segments are made up of so many atoms, so the hy-
potenuse of any right-angled triangle is bound to be ‘commensurable’ with
the side and that is that. Which means that an isosceles right-angled trian-
gle cannot exist—this seems to be a secret that has been more successfully
guarded than the root 2 proof itself which supposedly cost a Pythagorean
his life for divulging it.

The Gnomon: scientific and mathematical instrument A
gnomon was originally a small set-square used to measure the lengths of
shadows—present-day sundials have a ‘gnomon’ on the top though the shape
is more complicated. Thales is supposed to have used a gnomon to estimate
the height of the Great Pyramid by employing properties of similar tri-
angles: the gnomon was perhaps the first precision instrument of physical
science.

Sets of gnomons put together—or drawings of them—become a kind of
calculator once they are marked with regularly spaced dots
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A marked gnomon always represents an odd number and the Pythagore-
ans realized that adding on a gnomon ‘preserves the square form’. So the
difference between two successive squares is the relevant odd number. Since
a gnomon is twice the side of the preceding square plus a unit, if this gnomon
is itself a square, we have a Pythagorean triple, i.e. a2 + (2a+ 1) = (a+ 1)2

where a is even and (2a + 1) = m2. And to find out what odd numbers
are in fact squares you just have to consult an extended set of gnomons.
The first case is (2a + 1) = 9 giving us the original triple 3, 4, 5 (which
the Egyptians only seem to have used to get a good right angle, not for the
calculation of areas).

The procedure can be generalized if we allow a gnomon to be made up
of more than one set square.

That is, we investigate c2 − a2 = 2ra+ r2, where 2ra+ r2 is a square.

The root 2 problem turns out to be a special case of the above, namely
where the ‘gnomon’ is exactly equal to the original square or 2ra+ r2 = a2

with r = 1, 2, 3 . . . .

By trial and inspection it would have immediately been obvious that for
small values of r this is impossible, e.g. for (2a+ 1), (4a+ 4) &c. But all is
not lost numerically speaking since we can get very close to the Gorgon root
2 either by keeping the sides of a triangle equal with an angle slightly less
than a right angle, 2a2 > c2, or by keeping them equal with an angle slightly
greater than a right angle, 2a2 < c2. As a sort of number-theoretic riposte
to the root 2 débacle, Theon of Smyrna hit upon a method of providing any
amount of integer ‘solutions’—all possible ones in fact. He almost certainly
derived it by examining the gnomon diagram and considering the case where
the relevant gnomon is very nearly equal to the inner square, either falling
short by a counter or exceeding it by a counter.
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In numbers the first cases are 2·12−12 = 1, 32−2·22 = 1, 2·52−72 = 1.

odd terms 1 2 5 12 29 70 169 . . .

even terms 1 3 7 17 41 99 239 . . .

The series reminds one of the Fibonacci series—the difference comes
with the ‘doubling’. Note that all the even terms are odd and the odd
terms alternately odd and even.

We can treat the series as a sum of two series each defined recursively
but with a slightly different starting point, i.e.

Sodd: t1 = 1, t2 = 2, tn+1 = 2tn + tn−1,

Seven: t1 = 1, t2 = 3, tn+1 = 2tn + tn−1,

though it is more usual to employ two variables, a and c. Then an+1 =
an + cn, cn+1 = 2an + cn and a1 = 1, c1 = 1. Thus, c2n − 2a2n = (−1)n with
proof by induction since a2n − 2c2n = −1 and c2n+1 − 2a2n+1 = −(c2n − 2a2n).

The algebra gives no indication of the reason for the alternating sign but
if we refer back to the original problem we can visualize what is happening:
the sum of the squares is either falling a unit short of the square on the
‘hypotenuse’, or exceeding it by a unit, and we are continually diminishing
the size of the unit.

2 units

3

5 units

7
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The ratios even term / odd term give better and better attempts at (not
approximations to!) 21/2 namely 1/1, 3/2, 7/5, 17/12, . . . . They are, of
course, the convergents of the continued fraction

1 +
1

2 +
1

2 +
1

2 + . . .

.

Rather nicely, if we take the alternative approach and consider a right-
angled triangle with sides very nearly equal, i.e. c2 = a2 + (a+ 1)2, we get
returned to the same set, since 2c2 − (2a + 1)2 = 1, so we are looking for
odd ‘hypotenuse’ squares (2a + 1)2 and side squares c2, thus reversing the
role of the variables a and c.

In both these cases, we approach closer and closer to equality as we
divide up the line segments into smaller and smaller units permitting a
‘closer fit’, i.e. we take c2 − 2a2 = 1/N instead of 1. In our terminology
N →∞, c2 → 2a2.

And so, as a limit—in the precise modern sense of the term—
Pythagoras’ theorem is always true. This is typical of Euclidian geometry
generally—viewed from a numerical perspective.

Number theory vs geometry The relation of the side of an isosceles
triangle to the hypotenuse has a perfectly good geometrical existence but
a numerical non-existence. So which does one choose? As we know, Greek
mathematics decided in favour of geometric truth.

It is often stated that Eudoxus, who is considered responsible for the
substance of Euclid’s Book V, tidied up the earlier proofs (such as the
‘French textbook’ proof of Pythagoras) and developed a wholly rigorous
theory. This is not entirely true.

Essentially what Eudoxus does is to enable one to sidestep the problem
with a reasonably good conscience. Firstly, he extends the concept of ratio
to cover the case of magnitudes of the same kind which do not have a base
unit in common but which ‘are capable, when multiplied, of exceeding one
another’ (Euclid, Book V). This is sensible enough but Eudoxus does not
always distinguish clearly between the two types of ratios, those between
commensurables and those between incommensurables.

Secondly, whenever possible, Eudoxus speaks of equality of ratios rather
than equality of areas. Thus he will say that ‘similar and similarly described
figures will be to each other as their bases’ which leaves it open as to whether
the bases are commensurable or not.
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But this, however, will not do in the case of Pythagoras’ theorem be-
cause it is a theorem about equality of areas, not about similitude, and thus
presupposes the existence of a base unit as all calculation must do. Eudoxus’
improved version of the French textbook proof appears as Proposition 31
in Book V. It is a more carefully worded proof, also a more extensive one
since it applies to any similar figures, not just rectangles, erected on the
three sides. But it remains open to the same fatal objection. All Eudoxus
manages to prove is that, referring back to the earlier diagram,

d+ (c− d) : c = (figure on a) + (figure on b) : (figure on c).

But the LHS is a ratio of commensurable magnitudes—since every line
segment is commensurable with itself—whereas the RHS is, in the unit
square case, a ratio of incommensurable magnitudes and, although we may
admit with Eudoxus that incommensurable magnitudes can have a ‘ratio’
in the new sense of the word, this ratio cannot properly be equated to a
ratio in the old sense.

Euclid/Eudoxus could very easily have treated incommensurable ‘quan-
tities’ as limits lying between two endless series, and if they did not do so
it was probably because they viewed such an expedient as representing too
much of a concession to the numerical opponent. Instead later Greek math-
ematics tried to expel number from geometry altogether, making number
theory (the substance of Euclid, Books VII–IX) a mere appendage to the
Theory of Proportion. Many people, flipping through Heath’s translation,
do not even realize Euclid is referring to numbers since he presents them
as line segments (and not as arrays of dots) and even gives the formula for
summing a geometric series in the form of a static ratio (Book IX, Prop.
35) which makes it useless for calculation purposes.

Now Euclidian geometry is an idealization: you will look in vain for
the standard forms of circle, rectangle and even straight line in nature.
Whole number theory is, however, not an idealization but a representation
of fact. The decision to raise geometric truth above the level of arithmetic
‘calculation’ led straight on to Plato’s transcendental realism which has so
strongly affected mathematical and philosophical thought ever since. The
irony of the situation, of course, is that Euclidian geometry itself eventually
got swept away as being too ‘this world’ orientated. Not only do we get,
in modern abstract geometry, theorems which are not strictly true if put
to the test (such as Pythagoras’ theorem for the unit square) but theorems
which are completely fantastic and ridiculous such as the Banach-Tarski two
sphere theorem which states that a sphere can be dissected in such a way
as to be reassembled to give two spheres, each the size of the original one.
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The legalization of irrational numbers Although engineers and
practical people have been using rough values for 21/2 and π from the time
of the Babylonians, it was only in the late nineteenth century that root 2
and its companions acquired a truly respectable arithmetical (as opposed to
geometrical) existence. The first person to have tackled the problem head
on seems to have been Dedekind. His solution was to introduce a completely
new axiom into number theory which a contemporary textbook (Burkill’s
First Course in Analysis) summarizes as follows.

Dedekind’s Axiom. Suppose that the system of all real numbers
is divided into two classes, L, R, every member l of L being
less than every member r of R (and neither class being empty ).
Then there is a dividing number ζ with the properties that every
number less than ζ belongs to L and every number greater than
ζ belongs to R. The number ζ itself may belong either to L or
to R. If it is in L, it is the greatest member of L; if it is in R,
it is the least member of R.

This is all very well up to a point, but treating the constructed intermediary
‘number’ as ‘a member of either class’ is very inelegant and betrays a certain
indecision as to the real nature of the rogue number. But the real trouble is
of course that all Dedekind’s procedure actually defines is not a ‘quantity’
as such but a gap. Instead of talking about ‘Dedekind’s cut’ we should
talk about Dedekind’s gap—but this sounds rather less impressive already
and we have not acquired any new knowledge since we knew the ‘number
line was gapped’ already, or the Greeks did anyway. Contemporary math-
ematicians endlessly repeat and even seem to believe that the number line
is ‘everywhere dense’ but if it really were ‘everywhere dense’ our ‘numbers’
would be an indistinguishable mass of mud. The ‘everywhere dense’ optic
conceals a ‘Platonic’ prejudice: the real numbers, all of them, are somehow
‘already there’, independently of our discovery of them. If on the other
hand we adopt a ‘constructive’ approach to mathematics, the ‘number line’
starts off as everywhere gapped, gets gradually filled up as mathematicians
define or calculate with specific numbers, but is never completely full.

To me there is a world of difference between a positive rational num-
ber and an irrational. A rational number represents, or at any rate can
represent, a specific length or other quantity which, within acceptable lim-
its of technical exactitude, actually does exist, while the second represents
something which not only does not exist in the real world, but cannot exist
there. For there are no irrational quantities in the real world and all cal-
culations that are, have been or ever will be made, employ only rationals.
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There are other ways of creating irrationals but all depend on a similar parti
pris backed up by a similar sleight of hand. ‘Every increasing sequence of
rational numbers converges to a limit’—the axiom of completeness. Who
says it does? The author of the textbook and behind him/her the entire
mathematical establishment. But if I ask to see, hear, read, calculate with,
this ‘limit’ I find I am fobbed off with something which it is not, namely a
so-called rational ‘approximation’.

It is possible to sidestep the issue in much the same way as Eudoxus
sidestepped the issue of incommensurable ratios. We can say that an ir-
rational number is ‘given’ by (1) a mathematical formula or procedure (of
a certain type) and (2) an initial ‘store of numbers’—domain if you like—
to which the formula is to be applied. Thus φ is ‘given’ by ‘tn+1/tn with
t1 = 1, t2 = 1, tn+1 = tn + tn−1’. This tells us what to do while making no
explicit commitment to the existence or not of the implied limit. However,
it is really a coward’s way out: I want to know not only what ‘gives’ φ but
what φ actually ‘is’.

Set theoretic vs analytical definition What is a Cauchy sequence?
A sequence of rational numbers {x} is Cauchy iff given some positive rational
number ε we can find a positive integer N such that for all m,n > N ,
xm − xn < ε.

In other words, the tail of the sequence (assumed to be indefinitely
extendable) dwindles away towards nothing (though in most cases remaining
a positive quantity).

To speak the language of traditional analysis for the moment, all Cauchy
series converge and it can be proved that every convergent series must be
Cauchy. In point of fact the Cauchy criterion is a good deal more basic
than ‘convergence’ and was in effect used by the Greeks while ‘convergence
to a limit’ never was. Also, the man or woman in the street accepts quite
readily the idea behind the Cauchy criterion. Why are we quite happy to
use 3.14159 as a value for π even though π has been taken to hundreds of
thousands of places? Because, as mathematical students, we have learned
that ‘every increasing set of real numbers that is bounded above has a least
upper bound’? I think not. We are not bothered because we believe that
what follows 3.14159 is of little account since it can at most affect a decimal
place no matter how long we carry on taking partial sums—in other words
that 3 + 1/10 + 4/100 + 1/1000 + 5/10000 + 9/100000 + . . . is Cauchy.

The set-theoretic definition speaks of an ‘equivalence class’. I was for a
long time puzzled as to why we need to have such a large assembly. Then
I recalled that there are, for example, a multitude of different formulae
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leading to such a ‘number’ as π, as David Singmaster reminds us in M500
168, ‘A history of π’. We have for example Leibnitz’s beautiful

4(1/1− 1/3 + 1/5− 1/7 + . . . ) (*)

or Wallis’s

2(2/1 · 2/3 · 4/3 · 4/5 · . . . )
and many other bizarre concoctions from celebrated mathematicians. All
such formulae give Cauchy sequences which may for a considerable number
of terms differ appreciably but which are ‘Cauchy equivalent’, i.e. we can
find an N such that the difference between tm and tn for any m,n > N
from each of the two sequences is less than any specified positive quantity.

(The most dramatic example of the ‘all paths lead to Rome’ syndrome
is φ since it has been proved that the ratio of successive terms in a Fibonacci
series converges to φ no matter what starting points, t1, t2, are used. (**))

The devastation caused by the forcible introduction of irrationals into
our numeric system is considerable: it is a case of ‘Jack’s the only boy in
step’. We find we have to transform integers and fractions into ‘infinite
series’ with constant terms before they qualify as ‘real numbers’; 1 itself,
a ‘one’ if ever there were such a thing, becomes 1, 1, 1, 1, 1, . . . and so on
for ever—and even then 1 is no more than a chosen representative of the
unimaginably huge class of Cauchy series which includes what you get when
you apply the formula (n+ 1)/n or (n− 1)/n or sum 1/2 + 1/4 + 1/8 + . . . .

Irrationals as limits In practice though no one ever bothers with the
set-theoretic definition. What we all do is adopt the analytical approach
which views a real number as the limit of an equivalence class of Cauchy
sequences not as the equivalence class itself. This is shown by our very
language—which even I find it impossible to avoid. We speak of ‘approxi-
mations to’ root 2 or φ.

This is the sense employed in M332, Unit 0, ‘Real Analysis’.

Theorem 12 (Nested Intervals Theorem)

Let {Sn} be a sequence of nested closed intervals . . . where the
lengths converge to zero. Then

(i) S is non-empty and contains a unique real number x0 . . .

Note that this language and the way of thinking it embodies imply
that the ‘limit’ in question is actually attained, which in the vast majority
of cases it cannot be. Even quite respectable authors insist on using the
wretched phrase ‘sum to infinity’ making, for example, 2 the ‘sum to infinity’
of 1 + 1/2 + 1/4 + 1/8 + . . . even though every partial sum to n terms is
2 − 1/2n, n = 0, 1, 2, . . . . Worse still, I have even come across one or two
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writers on mathematics who state that a convergent series ‘converges to
itself’—so the serpent eats its tail and our end is our beginning. Such
nonsense would never be accepted in any subject other than mathematics.

What’s in a name? Quite a lot apparently. Primitive peoples avoided
telling members of other tribes their name, believing that knowing some-
one’s name gave one a certain leverage over the person in question. In just
such a primitive way we—and that even includes myself—feel that the ‘ra-
tio’ of the radius to half the circumference of a circle really exists because
we have a symbol for it (only since the eighteenth century). And somehow
this extends to 1 + 1/22 + 1/32 + . . . since it ‘sums to π2/6’. But this
is more a matter of human psychology than scientific fact. There are any
amount of series which qualify as convergent—because, say, they are mono-
tonic and bounded above or below—but whose limits, though calculable to
any number of decimal places, do not correspond to anything we are famil-
iar with. In such a case does one really feel that the formula or procedure
given defines a single number? I don’t—it just defines a series.

After years of pondering the issue I find that ‘I came out by the same
door as in I went’ (Omar Khayyam). My final conclusion is that there is
no such quantity as 21/2 but that it is extremely convenient to pretend that
there is.

The quantification of the reality of real numbers Mathematics,
a large part of it at any rate, is quantification so, in principle at least, it
should be possible to quantify the degree of reality which numbers and other
mathematical entities possess ranging from 1 for complete reality to 0 for a
completely fictitious existence.

As a first bash I suggest something along the lines of

Positive integers 1
Negative integers 1/10
Zero 1/2
Positive fractions (proper or improper) 3/4
Irrationals n 7→ 1/10n

Transfinite cardinals/ordinals 0

The above calls perhaps for some brief comment. The integers I take to
be real because they are direct representations of actual or possible entities.
If there are four sheep in a field there are four sheep in the field, not ‘approx-
imately’ or ‘in the limit’ but actually, which is to say exactly. Moreover, a
sheep really is a distinct entity, a ‘one’. It cannot be chopped up without
losing its identity—this is the point about the judgment of Solomon.
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I give proper fractions a reality value somewhat less than 1 since their ex-
istence supposes that it is possible to divide up an object absolutely equally,
while clearly this is not the case. We have thus moved already some distance
away from actuality towards ideal conditions—but reality is still at arm’s
reach.

What about −3? −2? There has always been strong cultural resistance
to negative numbers essentially because people feel, quite rightly, that there
are no such things as ‘negative entities’ — a thing either exists or it does
not. (Those inclined to scoff would do well to bear in mind that no less a
person than Newton regarded negative numbers with suspicion.) In practice
negative numbers only come in when we are comparing positions relative
to a fixed point which is usually itself arbitrary, or perhaps when we are
referring to imaginary ‘quantities’ like overdrafts. A position is less real
than a thing, hence the depleted reality value.

Zero rates fairly well in my estimation since I do feel it to be in some
sense part of our experience — ‘nothing’ is what remains when we have
removed all the objects within a certain space. Certain Eastern philosophies
make ‘nothing’ more basic than ‘something’, of course, but this is perhaps
going too far, at any rate, mathematically. See Kaplan, The Nothing that
Is.

Irrationals just about keep a grip on the cliff by their fingernails since
they can be, as it were, approached via better founded numbers.

The infinite, a fortiori the transfinite, is not part of our sense experience
(***). Infinity, it is finally agreed even by mathematicians, is not a number
but it is still used in a way that suggests to the unwary that it is. In the
majority of cases we could dispense with the infinity sign altogether and just
use an arrow pointing in one direction (→) meaning ‘carry on increasing as
much as you see fit’. There are no sets that can actually be put in one-one
correspondence with one of their own proper subsets: any attempt to do
such a thing in the case of an indefinitely extendable sequence would be an
interminable procedure akin to measuring a permanently expanding object.

(*) We assume that Leibnitz derived his series from tan−1 x = x − x3/3 +
x5/5 + . . . , setting x = 1 for an angle of π/4. The general series had already been
given by Gregory though whether Leibnitz knew this or not remains a bone of
contention.

I had always thought, remarkable though the series is, that it was a bit of a
cheat deriving a result in pure number theory by way of Taylor series and calculus
and that an ‘elementary proof’ should be possible. I was both surprised and
delighted to find that Daniel Shanks shares my misgivings and provides a strictly
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number-theoretic proof. However, the argument is very intricate and depends on
a theorem Shanks states without proof, namely that

If n ≥ 1, has A positive divisors ≡ 1 (mod 4) and B positive divisors
≡ −1 (mod 4), then r(n) = 4(A − B), where r(n) is the number of represen-
tations n = x2 + y2 in integers x and y, which are positive, negative or zero, the
representations being considered distinct even if the xs and ys differ only in sign
or order.

Shanks then considers the number of Cartesian lattice points (a, b) in or on
a circle x2 + y2 = N and shows that they equal r(N). He then shows that as
N increases, r(N) → πN and so on. (Solved and Unsolved Problems in Number
Theory, pp. 162–6).

(**) The proof that the ratio of successive terms in any sequence tn+1 =
tn + tn−1 ‘converges’ to the golden section irrespective of the starting point is
quite simple and may be worth giving here for the benefit of those who don’t
know it.

Consider the sequence defined by the relation

un = aφn−1 + b(−1/φ)n−1,

where a and b are constants. Then

un+1 = aφn + b(−1/φ)n,

and adding to un we obtain

aφn−1(1 + φ) + b(−1/φ)n−1(1− 1/φ)

= aφn+1 + b(−1/φ)n+1 (because 1 + φ = φ2 and 1− 1/φ = φ−2)

= un+2.

Now, this relation holds whatever real values we give to a and b. As n increases
without bound the second part of un, namely b(−1/φ)n, and similarly of un+1,
namely b(−1/φ)n+1, both go to zero and so we only need to take into account the
first parts aφn−1 and aφn. Thus, as n increases without limit, the ratio un+1/un

approaches (though never actually attains) φn/φn−1 = φ.

The usual Fibonacci sequence beginning 1, 1, 2, 3, 5, . . . is produced by setting
a = φ2/(φ2 + 1), b = 1/(φ2 + 1).

(***) Mystics might quarrel with this. But what seems to be an essential

feature of the mystic vision is a sense of the ‘oneness’ of everything. In such a

case, the whole concept of dividing things up into bits is bypassed or obliterated

and if we are to give a numerical value to such an ‘infinite’ vision it can only be

1. Galileo, of all people, has a curious passage where he says that the ‘conditions

of infinite existence are to be met with in the case of unity’ or something to this

effect.
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Re: ONE + TWELVE = TWO + ELEVEN
David Singmaster
Colin Davies’s question,

How is ONE + TWELVE = TWO + ELEVEN

[M500 191, p. 10] was posed about three years ago by Victor Bryant on
Puzzle Panel, R4. My immediate response was it must be an alphametic,
but it turned out to be simply an ingenious anagram. Somehow the idea
recurred to me and I decided to see whether there were any solutions to the
problem as an alphametic. Obviously there is some difficulty about the left
hand three places of the longer words and a little thought shows that we
must have TWE = ELE, digit by digit. So T = E and W = L are necessary. This
reduces to five letters, two of which depend on the other three. A simple
program finds 133 solutions. I took E, O, V as the independent variables.
Some of these have O = 0; there are 21 such, so 112 without any leading
zeroes. This is not a very satisfactory alphametic, but most of the solutions
form groups of four to six related solutions with the same value of ONE.
There are 36 groups. There are just five examples where the value of ONE
occurs just once. These are numbered 67, 84, 85, 101 and 116 (two of these
have O = 0). Though not very satisfactory as an alphametic, it is interesting
as the closest(?) possible version of a triply-true alphametic: the English
statement is true; it is a correct anagram; and it is arithmetically true. As
a result, I entered this in my Sources in Recreational Mathematics. So I’d
like to know where the original version came from.

After writing the above, I remembered, perhaps incorrectly, that Victor
had said that

ONE + TWELVE = TWO + ELEVEN

was unique in being anagrammatic, but I’ve just been thinking about it and
I find

FOUR + SIXTEEN = SIX + FOURTEEN

and there are six such examples, letting 4, 6 be replaced by 4, 6; 4, 7; 4, 9;
6, 7; 6, 9; 7, 9.

I’ve now tried these examples to see if they give alphametics as above. In
all but one case, the lengths differ and this rapidly leads to a contradiction.
E.g. for the first case cited, we have to have SIX = 999, FOUR = 1000 and
then the units digits lead to X = R, which is a contradiction. (This is making
the assumption that the numbers do not have leading zeroes.) But for

FOUR + NINETEEN = NINE + FOURTEEN,
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the units digits give us R = E and this forces FOUR = NINE and the problem
reduces to

NINE + NINETEEN = NINE + NINETEEN,

which is trivial, with (10)7 = 10·9·8·7 solutions (this includes the cases with
leading zeroes, but replacing the 10 on the right by a 9 gives the number
without leading zeroes). So this isn’t really satisfactory, but again it seems
to be the best one can do.

Clearly,

SIXTY-SEVEN and SEVENTY-SIX

are anagrams, as are 69 & 96, 79 & 97, but I can’t see how to make use of
these to make a doubly-true example.

We also have quite a number of examples like

TWENTY-ONE + THIRTY-TWO = TWENTY-TWO + THIRTY-ONE.

I thought at first that these led to trivial alphametics with the letters in each
column of one sum being a permutation of the letters in the corresponding
column of the other sum. But the lengths of the words can vary and this
makes the situation more complex. I write the word forms without hyphens
or spaces. For an early interesting example,

TWENTYONE + THIRTYTHREE = TWENTYTHREE + THIRTYONE.

The 0th, 1st, 2nd, 3rd, 4th columns from the right give no information, but
the 5th column (appropriately) gives us N+Y = R+Y, so N = R. Proceeding
to the left and using previous results, we eventually get E = I, H = W,
N = R = Y and both sides reduce to

THENTNONE + THENTNTHNEE,

with (10)5 solutions. (Again, multiply by 9/10 to get the number without
leading zeroes.)

After doing a lot of examples, I recognized that solvability depends
on the lengths of the words rather than the exact forms. So consider the
problem as being of the form AC+BD = AD+BC, where the first example
above would be 21 + 32 = 22 + 31, or A = TWENTY, C = ONE, B = THIRTY,
D = TWO. Let |X| be the number of letters in the English word for X; so
|A| = |B| = 6, |C| = |D| = 3. We can assume |D| ≥ |C|. It is easily seen
that any assignment of values to letters gives an alphametic solution when
|C| = |D|. But if |D| > |C|, then we can get an alphametic if and only
if |A| = |B|. These alphametics will generally have some different letters
having the same value.

There are also possibilities of the form 20 + 31 = 21 + 30, i.e. |C| = 0.
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Similar analysis shows this gives an alphametic solution if and only if |A| =
|B|.

More elaborately, we have 67+79+96 = 76+69+97 and 679+796+967 =
697 + 976 + 769. We write this out as

SIXTYSEVEN + SEVENTYNINE + NINETYSIX

= SEVENTYSIX + SIXTYNINE + NINETYSEVEN.

The 0th, 1st, 2nd, 3rd and 4th columns from the right give no information,
but the 5th column (again appropriately!) gives us Y + T + E = N + T + Y,
whence we must have E = N. The 6th column gives T + N + N = E + X + T,
but E = N forces E = X. Carrying on, we get E = I = N = S = V = X and
both sides reduce to

EEETYEEEEE + EEEEETYEEEE + EEEETYEEE,

which has (10)3 solutions. Considering the hyphen as a character only shifts
the argument a bit and we get both sides reducing to

EEETY-EEEEE + EEEEETY-EEEE + EEEETY-EEE,

with (10)4 solutions. In the second case, we get the same letter identifica-
tions and both sides of the problem reduce to

EEEHUEDREDEEEETYEEEEE

+ EEEEHUEDREDEEEEETYEEE

+ EEEEEHUEDREDEEETYEEEE,

with (10)7 solutions.

Problem 196.1 – 47 primes
ADF
Let Sn denote the smallest prime p such that (n+1)p−np is also prime. By
a relatively straightforward computation, the sequence Sn for n = 1, 2, ..., 46
is as follows: (2, 2, 2, 3, 2; 2, 7, 2, 2, 3; 2, 17, 3, 2, 2; 5, 3, 2, 5, 2; 2, 229,
2, 3, 3; 2, 3, 3, 2, 2; 5, 3, 2, 3, 2; 2, 3, 3, 2, 7; 2, 3, 37, 2, 3; 5). Thus, for
example, 52− 42 = 9 is composite whereas 53− 43 = 61 is prime—therefore
S4 = 3, the fourth entry in the list.

All we want you to do is determine S47.

As you can see, Sn takes small values for n up to 46 although there is
a bit of a blip at 22 and to a lesser extent at 43. But something strange
seems to happen when you get to 47. If it exists, S47 exceeds 20000. The
qualifier is relevant because, as far as I am aware, nobody has yet found a
single example of a p for which 48p − 47p is prime.
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Problem 196.2 – Quadrilateral
Barbara Lee
In any quadrilateral ABCD, draw squares on its sides. Join the centres of
the squares of opposite sides with PQ and RS. Prove that PQ is perpen-
dicular to RS.

When you have done that, prove that PQ and RS are equal in length.
This is more difficult.

It is helpful to obtain expressions for (PQ)2 and (RS)2 and equate them.

A
B

C
D

P
Q

R

S

Anne Robinson – Which mathematical term translates from Latin as ‘by
the hundred’?

Contestant – Pythagoras’ theorem. [JRH]
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Solution 193.4 – Factorial inequality

Show that for positive integer n, n! ≤
(
n(n+ 1)3

8

)n/4

.

Basil Thompson
By trial it can be seen that the inequality is true for n = 1, 2, 3, 4, 5, and it
appears that the complicated factor (n+ 1)3/8 is there only to cover these
first few cases. For n ≥ 6 we shall prove the simpler inequality,

n! <
nn

2n
. (1)

This implies the original inequality since nn/2n = (n4/16)n/4 and n4/16 <
n(n+ 1)3/8.

Write (1) as
nn

n!
> 2n. (2)

We prove (2) for n ≥ 6 by induction. Clearly, (2) is true for n = 6. Suppose
(2) is true for some n ≥ 6, and consider n+ 1. Then

(n+ 1)n+1

(n+ 1)!
=

(n+ 1)n

n!
=

nn

n!

(
1 +

1

n

)n

> 2n
(

1 +
1

n

)n

(by the induction hypothesis)

> 2n+1,

since (1 + 1/n)n can be expanded as

1 +
n

n
+
n(n− 1)

2!

1

n2
+
n(n− 1)(n− 2)

3!

1

n3
+ . . . > 2. (3)

Hence (2) is true for n+ 1.

Tony Forbes
This is interesting. Observe that the series (3) tends to e = 2.718281828 . . .
as n tends to infinity. So we should be able to obtain a tighter in-
equality than (1), at least for sufficiently large n. For example, 612! <
612612/(2.7)612 and then the above proof is quite easily modified to show
that n! < nn/(2.7)n holds for all n ≥ 612.
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John Bull
Define the arithmetic and geometric means A and G by

A =
1

n
(a1 + a2 + ...+ an), G = (a1a2 . . . an)1/n.

We then use the arithmetic–geometric mean inequality, A ≥ G.

When a1, a2, . . . , an happen to be the positive integers, we have A =
((n+ 1)/2), G = (n!)1/n and it follows from A ≥ G that

n! ≤
(
n+ 1

2

)n

.

Furthermore, since n > 0, we have

0 ≤ n− 1 ⇒ n+ 1 ≤ 2n ⇒
(
n+ 1

2

)4

≤ n(n+ 1)3

8
.

Hence

n! ≤
(
n+ 1

2

)n

≤
(
n(n+ 1)3

8

)n/4

.

Problem 196.3 – Combinatorial index
Tony Forbes
Let b be a number base. Imagine a list of all those t-digit numbers in base
b which have increasing digits when read from left to right. The list is in
numerical order. Let

N = dtdt−1 . . . d2d1

be one of these numbers. Then the position of N in the list is given by

I(N) =

(
b

t

)
−

t∑
i=1

(
b− 1− di

i

)
.

To see how it works, let b = 7, t = 3. The list consists of the 35 numbers

012, 013, 014, 015, 016, 023, 024, 025, 026, 034, 035, 036,
045, 046, 056, 123, 124, 125, 126, 134, 135, 136, 145, 146,
156, 234, 235, 236, 245, 246, 256, 345, 346, 356, 456,

and, for example, if you apply the formula to 235, you should get 27.

Problem: Find a formula for the inverse function of I(N). That is, given
b and t, we want a function J(n) which maps n to the number at position
n in the list.
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Problem 196.4 – Snub cube
Tony Forbes
Behold, two views of a snub cube, the Archimedean solid consisting of six
squares and 32 equilateral triangles.

It is a chiral object and therefore it exists in two forms. The left-hand
diagram shows the view looking down the z-axis on to a square. You can see
that the four squares whose centres are in the (x, y)-plane have been rotated
by an angle α, say, about the z-axis in a counter-clockwise direction. Alter-
natively, the squares individually have each undergone a clockwise rotation
through α from their original ‘cube’ orientation. Reversing the angle to −α
gives the other form of the object. You can see it by viewing the picture in
a mirror.

I am curious. What is α?

Also I would like to know the angles between adjacent faces and the
distance between two opposite squares. They are given approximately by
Cundy & Rollett, Mathematical Models:

square–triangle dihedral angle δ1 ≈ 142◦ 59′,
triangle–triangle dihedral angle δ2 ≈ 153◦ 14′,
distance between opposite squares ds ≈ 1/0.438 ≈ 16/7.

However, this is not the type of answer that interests me. I am hoping that
someone can obtain expressions giving δ1, δ2 and ds exactly.

And if you are feeling really energetic, do something similar for the snub
dodecahedron, the object featured on the front cover.
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Dot products and determinants
John Spencer
In his interesting and informative article ‘Dot products and determinants –
is there a connection?’ [M500 193], Robin Marks says that the area of a
parallelogram whose sides are two vectors f and g is ‖f‖‖g‖ cos θ, the dot
product of the vectors. In fact the area of the parallelogram is given by
‖f‖‖g‖ sin θ, the cross-product. The dot product is the product of those
parts of the vectors which have a common orientation, the cross-product
multiplies the vectors’ orthogonal (perpendicular) parts. But ‖g‖ sin θ is
orthogonal to f , whereas ‖g‖ cos θ is in the same direction as f , so cannot
contribute to a measure of area.

It’s not hard to see that for 0 < θ < π/2, the area enclosed by the
vectors increases as θ increases, so sin rather than cos is the appropriate
function. For proof, consider vectors f and g at angles of θ + φ and φ to
the x-axis of a plane. Without altering the area between them, f and g can
be rotated about the origin through an angle −φ so that g lies along the
x-axis.

In terms of the components of the two vectors, the rotating matrix is[
cosφ sinφ
− sinφ cosφ

]
=

1

‖g‖

[
g0 g1
−g1 g0

]
.

Acting on f , this gives

1

‖g‖

[
g0 g1
−g1 g0

] [
f0
f1

]
=

1

‖g‖

[
g0f0 + g1f1
g0f1 − g1f0

]
.

The rotating matrix moves f from its original position to ‖f‖
[
cos θ
sin θ

]
. So

we can equate the two expressions

‖f‖
[
cos θ
sin θ

]
=

1

‖g‖

[
g0f0 + g1f1
g0f1 − g1f0

]
to get

f0g0 + f1g1 = ‖f‖‖g‖ cos θ and g0f1 − g1f0 = ‖f‖‖g‖ sin θ.

The latter expression is the absolute value of det

[
f0 g0
f1 g1

]
.

I don’t think this affects the rest of Robin’s argument, because he has
based it on equating areas (volumes) and determinants, rather than on dot
products.



Page 24 M500 196

Cosines and chandeliers
Dilwyn Edwards
While gazing at the ceiling of our
committee room during an ex-
tremely long discussion, my col-
league Mike Bramwell became
convinced that cosine formulae of
the form

cos q + cos(q + 2π/n)

+ cos(q + 4π/n) + . . .

+ cos(q + 2(n− 1)π/n)

= 0

are caused by chandeliers.

L Θ

The chandelier in question hangs so that its five arms are horizontal.
Assume that the arms are weightless and of length r and that each light
fitting has mass m. Taking moments about a horizontal line L, we have for
equilibrium

0 = mgr cos q +mgr cos(q + 2π/5) +mgr cos(q + 4π/5)

+mgr cos(q + 6π/5) +mgr cos(q + 8π/5).

Of course, as the chandelier has five arms the proof is for n = 5. To
obtain the result for some other n we just need to persuade the university
to fit a new chandelier.

Problem 196.5 – Three more friends
David Kerr
I have three friends, Alan, Bert and Curt. I write an integer greater than
zero on the forehead of each of them and I tell them that one of the numbers
is the sum of the other two. They take it in turns in alphabetical order to
attempt to deduce their own number. The conversation goes as follows.

Alan: “I cannot deduce my number.”

Bert: “I cannot deduce my number.”

Curt: “I cannot deduce my number.”

Alan: “My number is 50.”

What are Bert’s and Curt’s numbers?

[Not quite the same as Problem 189.6. See David’s letter on page 28.]
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Solution 193.2 Thirteen tarts
There are thirteen tarts. All weigh the same, with one exception.
Is it possible to identify the odd tart with three weighings?

Dick Boardman
For the problem to be soluble, the number of possible observations must
not be less than the number of answers. This is true, not just at the start,
but at all stages of the solution.

Now suppose the first weighing balances four against four, with five
tarts off the scales. Suppose this weighing balances. Then the odd one is
one of the five off the scales; that is 10 possible answers. But there are
only two weighings left—only 9 possible observations. Hence the problem
is impossible with this first weighing.

Now suppose the first weighing balances five against five, with three
tarts off the scales. Suppose this weighing does not balance. Then the odd
one out is one of the 10 on the scales, that is 20 possible answers. There
are only 18 possible observations (9 for left side heavy and 9 for right side
heavy), so no solution is possible for this weighing. Any other first weighing
is worse and so no solution is possible for the problem as stated.

However, suppose a fourteenth tart, known to be of the correct weight,
is available for the first weighing. A solution is now possible. All you have
to do is alter Tony Forbes’s weighings of M500 191, page 23, as follows.

1st weighing: A B C D M against E F G H N

2nd weighing: A B C E N against D I J K M

3rd weighing: A D F I N against B G J L M

Here, M is the 13th tart and N is the known good tart. (If you want to be
pedantic, replace N in the 2nd and 3rd weighings by another good tart.)

If M is bad, the left pan will go either (up, down, down) or (down, up,
up). But these two combinations were previously impossible; hence they
now unambiguously indicate M light or M heavy, respectively.

If M is good then the M and the N have no effect; we treat the situation
as if we had just tarts A–L, and we can read off the result from the twelve
tarts table in M500 191.

This also solves the slightly more difficult problem where you are given
only that at most one tart is not of the correct weight. For then ‘all correct’
will be detected by (balance, balance, balance), which is the third unused
entry in Forbes’s table.
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Solution 193.7 – Binomial coefficients
Which 2nCn are not divisible by the square of an odd prime?

Sebastian Hayes
The first 2nCn divisible by the square of an odd prime is

10C5 =
10 · 9 · 8 · 7 · 6
1 · 2 · 3 · 4 · 5

= 10 · 9 · 8 · 7 · 6 = 252 = 28 · 32.

Why does this work? Because 3 occurs once below and three times above
so we gain an extra two 3s.

The key then is to gain (at least) an extra two occurrences in the nu-
merator. Now if there are r multiples of p, our prime, in the denominator,
there will be at most r + 1 multiples in the numerator and the latter will
only occur if n = rp + m, where m > p/2. This results in a gain of only
one occurrence of p but a square will provide a second. We require then
the double condition n = rp + m with p > m > p/2 and p < n < p2 < 2n,
where p > 2.

Thus 26C13 will work, also 28C14 since both the conditions are met. But
30C15 will not work because m < 5/2. Solutions will in fact come in batches
(p− 1)/2 long.

The smallest 2nCn will occur when p2 is at one end of the numerator,
and the largest when it is at the other:

p2(p2 + 1) . . . 2(p2 − 1)

1 · 2 . . . (p2 − 1)
= 2(p2−1)Cp2−1,

(p2 + 3)/2 . . . (p2 + 1)

1 · 2 . . . (p2 + 1)/2
= p2+1Cp2+1/2.

In the sequence n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, the bold n indicate what I shall call
prime-square coefficients, i.e. n for which 2nCn is a multiple of the square
of an odd prime. The pattern is that for each prime p we have (p + 1)/2
clusters of prime-square coefficients between n = (p2 + 1)/2 and n = p2 − 1
and each of them is (p− 1)/2 digits long.

Thus for 3 we have two occurrences at 5 and 8, each a single term long.
Then 5 homes in at 13 with three two-term clusters (13, 14), (18, 19) and
(23, 24), and 7 commences at 25. As it happens, 7 takes over when 5 ends,
so we get a cluster of 2 + 3 = 5.

The same sort of thing will work for all higher powers of p. Certainly,
since (pr + 1)/2 > pr−1, all powers lower than pr, the highest, will be
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squeezed into the denominator and the numerator will not contain any
fewer occurrences of multiples of a particular power than the denomina-
tor. Thus 3 enters the picture again at n = 14 with further occurrences at
n = 17, 20, 23, 26, and we can fill in one or two gaps in the list to produce
n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34.

To sum up, the conditions for 2nCn being a prime-square coefficient are
that for some p and r ≥ 2,

pr + 1

2
≤ n ≤ pr − 1 and n ≡ p+ 1

2
, . . . , p− 1 (mod p).

A point that needs to be investigated is whether the intervals [(pr +
1)/2, pr − 1] overlap in order to provide complete coverage for any n. This
seems to be the case from 13 onwards but I wouldn’t care to prove it.

David Porter
The answer is possibly 1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 21, 22, 28, 29, 30, 31,
36, 37, 54, 55, 57, 58, 110, 171, 784 and 786.

Why do I say this? Well to tell the truth I cheated and wrote a computer
program (in Maple) that checked on all the n up to one million and those
are the only square free ones it found. To allow the program to perform
without having to handle ridiculously large numbers I did first have to
indulge in the following bit of mathematics.

Let Tn = 2nCn = (2n)!/(n!)2. So Tn+1 = (2n + 2)(2n + 1)Tn/(n + 1)2

which on back stepping one stage gives us the recurrence relationship

Tn = 2Tn−1(2n− 1)/n.

This relationship allows the calculation to progress from one factoriza-
tion to the next by just adding in the odd prime factorization of 2n− 1 and
subtracting that of n.

A few facts. For n = 786 Tn had 169 odd prime factors ranging from
3 to 1571. For none of the Tn that contained an odd prime square was it
necessary to check primes above 43, and this was first necessary for n =
3250.

For n = 1000000 the odd prime factorization of Tn contained one 8th
power (3), one 4th power (17), six cubes (5, 19, 43, 47, 53 and 73) and 61
squares (from 31 up to 1409). Based on this very small amount of evidence
I would guess that there are no more to be found.
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Letters to the Editor

Three friends
Dear Tony,

You asked why there were apparently two solutions to Problem 189.6. [I
have three friends, Alan, Bert and Curt. I write a different positive integer
on the forehead of each of them . . . ] As the source of the problem I thought
I’d better have a look at it and, to my horror, I realized that I’d made a
mistake in the wording. The second sentence should read: ‘I write an integer
greater than zero on the forehead . . . ’, i.e. the numbers are not necessarily
different. According to my reasoning the problem now has a unique answer,
which is neither (50, 40, 10) nor (50, 10, 40). Hopefully this is now OK.

David Kerr

OK. We present the corrected version as Problem 196.5. See page 24.

LEDs
Dick Boardman’s solution to Problem 190.5 (Eight switches) for LEDs is,
in fact, the way that an LED display screen is controlled, using transistors
in place of the switches. The fact that you have to use one transistor for
each row and column of LEDs, with an unholy amount of associated wiring
(and have to do this three times over for a colour screen) is the reason why
flat screens are still so expensive. So far no one has found a better way of
doing it. If anyone were to come up with an answer, they should promptly
build a small working model, patent it, and sell the rights to Matsushita or
somebody for an immense sum.

Best wishes,

Ralph Hancock

Inequalities
Dear Tony,

It is curious that not more inequality problems are proposed as there
must be infinitely many more inequality problems than equality ones. One
might have thought this would lead to an even greater number of novel and
innovative solutions than we actually see.

John Bull
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M500 194
Tony,

Problem 194.1. A friend of mine wrote a paper asking us to start by
considering a pencil of matrices with particular properties. So presumably
a pencil is a collective noun.

Fermat numbers. I did not realize that 645815 was such a good ap-
proximation to dlog10 log10(22

2145351

+ 1)e. Even so, my answer is the same
as yours within my estimation of error.

Getting dressed. I foresee problems with assuming the usual conven-
tions. A model I once knew said that, when dressing for the catwalk, she
usually put her hat on first, and that as the topology of a skirt allowed
for certain items of underwear to be put on last, she herself had no usual
conventions for the order of dressing.

Colin Davies

Problem 196.6 – Pendulum
ADF
Show that

θ(t) = 4 arctan e
√

g/L t − π

is a solution of

d2θ

dt2
= − g

L
sin θ,

the equation of motion of a pendulum of
length L under gravitational acceleration g.

Θ

This appeared on Stan Wagon’s Problem of the Week (Internet mailing
list) but when the answer arrived it was just quoted without explanation.

Notice that when t = −∞ the pendulum points vertically upwards, is
stationary and has zero acceleration—so it should stay there forever. But
when t = 0 the pendulum is pointing downwards and moving with speed
2
√
gL. It’s amazing what can happen after an infinite amount of time!

Crossnumber 195 solution

Across 3. 1622, 5. 2882, 6. 2192, 7. 317, 11. 2242, 12. 1642, 13. 56

Down 1. 2412, 2. 310, 3. 512, 4. 66, 8. 1452, 9. 39, 10. 1922
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