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Revisiting Pascal’s triangle
Martin Hansen
In the Back To The Future trilogy of time-travel films, the principal charac-
ters repeatedly find themselves back, both in space and time, at their small
town’s clock tower. Every return adds a layer of complexity to the moment
at 10.04pm on the 12th of November 1955 when the tower is struck by
lightning. The film’s heroes, teenager Marty McFly and (mad) Dr Emmett
Brown, repeatedly add to what they know from previous visits to navigate
an increasingly intricate region of space and time without committing the
ultimate time traveller’s crime: meeting an earlier version of themselves.

The mathematical equivalent of the clock tower in Hill Valley’s town
square is, for me, Pascal’s triangle of binomial coefficients. Recently, I had
cause to rethink what I knew from previous visits. Past entanglements have
seen me buy books on the triangle [1], print out material from websites
devoted to it [2] and read accounts of how computers are being used to
find and prove ever more obscure relationships between its entries [3]. Alas,
there is too much information. The key ideas are buried amid the incon-
sequential. Having grappled with the triangle once again, I have a good
understanding of what is worth knowing. I thought it worth sharing with
the M500 readership.
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A tour of the basics is a good place to start, for there are irritations
that a newcomer needs to get to grips with and which occasionally trip up
older hands, myself included.

Confusion can be minimized by careful use of words when talking about
the rows and columns. In the diagram notice row 4 is the horizontal line
‘1 4 6 4 1’. It’s actually the fifth row of the triangle. Worse, column 7 is
the diagonal that begins ‘1 8 36 120 . . . ’. It’s the eighth diagonal. To avoid
muddle, never talk about the fourth row or the seventh column. Instead
say row 4 and column 7. The 1 at the apex is at row 0, column 0.

Illogically, the letter n represents row and r column. The binomial
coefficient at row n, column r, can be written nCr. Note carefully that r does
not represent ‘row’ nor C ‘column’. Unfortunately, this is too established to
be changed. the symbol 7C2 can better be written with the 7 above the 2 all
inside vertically stretched curved brackets. There is a logic to this notation
being the same as that for a vector as the 7 and the 2 provide a position
vector of sorts to the entry, 21; 7C2 is often said ‘7 choose 2’.

An obvious feature of the array is ‘any internal element is the sum of the
two terms directly above it, one on a previous column (or diagonal) to the
left, the other, on the same column (or diagonal), to the right’. Translated
into mathematics this becomes Pascal’s Rule:(

n

r

)
=

(
n− 1

r − 1

)
+

(
n− 1

r

)
.

I remember Pascal’s Rule in words and translate it each time I require it.
The words subtly keep me thinking correctly about the columns which, like
the diagonals, slope downward from right to left.

The following formula, usually proved by a counting argument [4], allows
any given binomial coefficient, at row n, column r, to be evaluated:(

n

r

)
=

n!

r!(n− r)!
.

From this formula one can easily prove, using algebra, Pascal’s Rule. Also,
it confirms the value of 7C2:(

7

2

)
=

7!

2!(7− 2)!
=

7!

2!5!
= 21.

I enjoy rethinking old results in new ways. A fresh perspective can be gained
by considering any given entry in Pascal’s array as the tth term along the
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dth diagonal. Note the change in the way language is being used with
counting from a first diagonal and a first term rather than row zero and
column zero. The 21 of the recent example is on the third diagonal where
it’s the sixth term. Thought yields a rewrite of the factorial formula:〈〈

d

t

〉〉
=

[(d− 1) + (t− 1)]!

(d− 1)!(t− 1)!
.

This is written to be natural and memorable. When thinking rows and
columns, readers hunt for the row first then the column. The existing
notation places row n above column r. When thinking diagonals and terms
along a diagonal, it’s the diagonal, d, that ones eye tracks for first, then the
count along to the term, t. So, the d is above the t in the notation. This
helps differentiate between the two representations of the same thing. In
the one, the lower number, r, is less than or equal to the upper, n, whereas
in the other it’s the upper number, d, that is less than or equal to the lower,
t. The double angled brackets notation I made up. It’s not standard but
it seemed appropriate to use vertically stretched brackets of some sort. To
be absolutely clear, the 21 of the earlier example found via 7C2 can be also
found from 〈〈

3

6

〉〉
=

[(3− 1) + (6− 1)]!

(3− 1)!(6− 1)!
=

7!

2!5!
= 21.

Incidentally, before moving on, Pascal’s Rule can be expressed as〈〈
d

t

〉〉
=

〈〈
d

t− 1

〉〉
+

〈〈
d− 1

t

〉〉
.

The triangle is riddled with well-known number sequences. Along the third
diagonal, for example, are the triangular numbers:

1, 3, 6, 10, 15, 21, . . . ,
t(t+ 1)

2
.

This is not a dead end observation. Pietro Mengoli discovered in 1650, and
proved in his book Novae Quadraturae Arithmetica, that the sum of the
reciprocals of the triangular numbers is 2:

∞∑
t=1

2

t(t+ 1)
= 1 +

1

3
+

1

6
+

1

10
+

1

15
+

1

21
+ . . . = 2.

At the time, Mengoli’s results, such as this, were ground breaking. Stopple
in [5] looks at various ways of proving this result and the similar one for
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the tetrahedral numbers which lie along the fourth diagonal. In our very
own M500, Nick Hobson recently [6] presented a method with proof that
summed to infinity the reciprocal of any diagonal you care to pick—except
the first two, which do not converge. Working the diagonals of Pascal’s
triangle can result in significant mathematics.

A key observation from the desire to work the diagonals is to notice
what Tony Colledge in his poster on Pascal’s Triangle [7] refers to as an
edge worm.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

The numbers in the diagonally descending edge worm’s tail sum to its
head which, if the body is a zig, is a zag. Formally, this result is known as
Fermat’s combinatorial identity:(

n

s

)
=

(
f + 1

s+ 1

)
.

This identity says ‘the sum of the edge worm’s tail from row, s, (start) down
to row, f , (finish) is in the head, which, if the tail is a zig, is a zag’. Again,
this is phrased to be memorable and easy to translate into mathematics.

The highlighted edge worm runs from row 4 to row 8 along column 4:(
n

4

)
=

(
9

5

)
= 126.

In the literature there are convoluted explanations of why Fermat’s combi-
natorial identity works. Michael Hirschhorn, alongside a campaign urging
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mathematicians to add this identity to their armoury, points out that its
proof need only be a one line affair [8]:

f∑
n=s

(
n

s

)
= 1 +

f∑
n=s+1

{(
n+ 1

s+ 1

)
−
(

n

s+ 1

)}
=

(
f + 1

s+ 1

)
.

This is a splendid example of telescopic cancelling. To appreciate it, write
out the linking step in the proof for the example edge worm along column
4:

8∑
n=4

(
n

4

)
= 1 +

8∑
n=5

{(
n+ 1

5

)
−
(
n

5

)}
= 1 +

{(
6

5

)
−
(

5

5

)}
+

{(
7

5

)
−
(

6

5

)}
+

{(
8

5

)
−
(

7

5

)}
+

{(
9

5

)
−
(

8

5

)}
= 1−

(
5

5

)
+

(
9

5

)
=

(
9

5

)
= 126.

Here’s the same result and proof expressed in diagonals and terms:

f∑
t=s

〈〈
d

s

〉〉
= 1+

f∑
t=s

{〈〈
d+ 1

t+ 1

〉〉
−
〈〈

d+ 1

t

〉〉}
=

〈〈
d+ 1

f

〉〉
.

Check:
5∑

t=1

〈〈
5

1

〉〉
=

〈〈
6

5

〉〉
= 126.

It was observed that the triangular numbers lie along the third diagonal
of Pascal’s triangle. They are intimately linked to the edge worm concept.
For example, the illustration shows the seventh triangular number, 28, is
the head of the worm along the second diagonal that contains seven terms,
1 + 2 + 3 + 4 + 5 + 6 + 7. This generalizes easily to the statement that
‘the tth triangular number, is at the head of the worm along the second
diagonal that contains t terms’.
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

So, in general, the tth triangular number is formed from the tail given
by

t∑
n=1

(
n

1

)
.

Applying Fermat’s combinatorial identity to this is a lovely way of obtaining
the formula for the tth triangular number:

t∑
n=1

(
n

1

)
=

(
t+ 1

2

)
=

(t+ 1)!

2!((t+ 1)− 2)!
=

t(t+ 1)

2!
.

Care is needed when trying to obtain a similar formula for the tetrahedral
numbers which lie along the fourth diagonal. The edge worm this time runs
down the third diagonal from row 2 to the row that is one more than any
given term, t, in the third diagonal that is being summed to. Thus

t+1∑
n=2

(
n

2

)
=

(
t+ 2

3

)
=

(t+ 2)!

3!((t+ 2)− 3)!
=

t(t+ 1)(t+ 2)

3!
.

From these two illustrative steps, it’s straightforward to generalize the ar-
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gument and obtain a formula for the tth term on the dth diagonal:

t+d−3∑
n=d−2

(
n

d− 2

)
=

(
t+ d− 2

d− 1

)
=

(t+ d− 2)!

(d− 1)!((t+ d− 2)− (d− 1))!

=
(t+ d− 2)!

(d− 1)!(t− 1)!

=
1

(d− 1)!
t(t+ 1)(t+ 2)(t+ 3) . . . (t+ d− 2).

The manipulations to obtain this were long winded. More succinctly, recall〈〈
d

t

〉〉
=

[(d− 1) + (t− 1)]!

(d− 1)!(t− 1)!
.

From this, what has just been proven via delicate thinking is obvious:〈〈
d

t

〉〉
=

1

(d− 1)!
t(t+ 1)(t+ 2)(t+ 3) . . . (t+ d− 2).

I hope at this juncture, readers do not feel they’ve been lead a merry
dance unprofitably. Both trains of thought are interesting. The longer
comes from the established way of thinking about the triangle. Thinking
differently gets the same result in fewer steps. As a bonus, being familiar
with both paths places within reach a result which knowledge of the edge
worm concept has made easy to grasp.

A formula has been found, in two ways, for the tth term on the dth
diagonal. Pascal’s combinatorial identity reveals this is also the sum of t
entries along the (d− 1)th diagonal:

T∑
t=1

1

(d− 2)!
t(t+ 1) . . . (t+ d− 3) =

1

(d− 1)!
T (T + 1) . . . (T + d− 2).

Multiply both sides by (d− 2)!:

T∑
t=1

t(t+ 1) . . . (t+ d− 3) =
1

(d− 1)
T (T + 1) . . . (T + d− 2).
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Now let r = d− 3 and shuffle the letters. An abstract relationship results:

n∑
i=1

r∏
a=0

(i+ a) =
1

r + 2

r+1∏
a=0

(n+ a).

When I obtained this I was very pleased with myself. I’ve since found
it in an old A-level mathematics formula book [9] where it is written in less
abbreviated form:

n∑
i=1

i(i+ 1)(i+ 2) . . . (i+ r) =
1

r + 2
n(n+ 1)(n+ 2) . . . (n+ r + 1).

This is a beautiful result, that we’ve proved fairly easily by thinking about
Pascal’s triangle in two different ways. It deserves to be far better known
than would seem to be the case.
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Q. What is the value of a contour integral around Western Europe?

A. Zero.

Q. Why?

A. Because all the Poles are in Eastern Europe!

[Found on the Web. Presumably Western Europe does not include Britain.]
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Solution 216.3 – Reflection
What is the function you get when you reflect graph of y = ex

in the line y = ax, where a is a constant?

Steve Moon
Line y = ax makes an angle θ = tan−1 a with the positive x axis at the
origin. The matrix representation of reflection in this line is[

cos 2θ sin 2θ
sin 2θ − cos 2θ

]
.

Using standard trigonometric formulae

cos 2θ =
1− a2

1 + a2
, sin 2θ =

2a

1 + a2
,

let (x′, y′) be the map of a point (x, y) on reflection; then

[
x′

y′

]
=

 1− a2

1 + a2
2a

1 + a2
2a

1 + a2
a2 − 1

1 + a2

[ x
y

]
.

Hence

(1 + a2)x′ = (1− a2)x+ 2ay,

(1 + a2)y′ = 2ax+ (a2 − 1)y.

Solving yields

x =
1− a2

1 + a2
x′ +

2a

1 + a2
y′,

y =
2a

1 + a2
x′ − 1− a2

1 + a2
y′,

and substituting for x and y in y = ex gives

2a

1 + a2
x′ − 1− a2

1 + a2
y′ = exp

(
1− a2

1 + a2
x′ +

2a

1 + a2
y′
)
.

Using trigonometric formulae and replacing x′ by x and y′ by y,

x sin(2 tan−1 a)− y cos(2 tan−1 a) = ex cos(2 tan−1 a)ey sin(2 tan−1 a).

Check: Putting a = 0, 1, ∞ produces −ex, log x, e−x respectively.
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The Golden Ratio pops out of 5-dimensional space
Dennis Morris
The 5-dimensional H-type natural algebra is

C5,1L
1H4 =


a b c d e
e a b c d
d e a b c
c d e a b
b c d e a

 .
We have

a b c d e
e a b c d
d e a b c
c d e a b
b c d e a



f g h i j
j f g h i
i j f g h
h i j f g
g h i j f



=


af + bj + ci+ dh+ eg ∼ ∼ ∼ ∼
ef + aj + bi+ ch+ dg ∼ ∼ ∼ ∼
df + ej + ai+ bh+ cg ∼ ∼ ∼ ∼
cf + dj + ei+ ah+ bg ∼ ∼ ∼ ∼
bf + cj + di+ eh+ ag ∼ ∼ ∼ ∼

 .
Thus, in non-matrix notation, the multiplication operation is

(a+ bm̂+ cn̂+ dô+ ep̂) (f + gm̂+ hn̂+ hô+ jp̂)

= (af + bj + ci+ dh+ eg + (bf + cj + di+ eh+ ag)m̂

+ (cf + dj + ei+ ah+ bg)n̂+ (df + ej + ai+ bh+ cg)ô

+ (ef + aj + bi+ ch+ dg)p̂.

From the adjoint matrix, the conjugate is

(a+ bm̂+ cn̂+ dô+ ep̂)

= a4 − 3a2be− 3a2cd+ 2ab2d+ 2abc2 + 2ad2e+ ace2

− b3c− c3e− bd3 − de3 + b2e2 + c2d2 − bcde
+ (e4 − 3ade2 − 3bce2 + 2a2ce+ 2ab2e+ 2c2de+ 2bd2e

− a3b− b3d− ac3 − cd3 + a2d2 + b2c2 − abcd) m̂

+ (d4 − 3abd2 − 3cd2e+ 2a2de+ 2b2cd+ 2ac2d+ 2bde2

− a3c− b3e− bc3 − ae3 + a2b2 + c2e2 − abce) n̂
+ (c4 − 3ac2e− 3bc2d+ 2a2bc+ 2b2ce+ 2acd2 + 2cde2

− a3d− ab3 − d3e− be3 + a2e2 + b2d2 − abde) ô
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+ (b4 − 3ab2c− 3b2de+ 2a2bd+ 2bc2e+ 2bcd2 + 2abe2

− a3e− c3d− ad3 − ce3 + a2c2 + d2e2 − acde) p̂.
Multiplying one of these matrices by its conjugate produces the determinant.
This is an expression too horrendous for the gentle reader to view, but it
leads to identities like m̂p̂ = 1, n̂ô = 1, m̂ = ôô, n̂ = ôp̂, ô = m̂n̂, p̂ = m̂ô,
m̂m̂ = ôp̂, p̂p̂ = m̂n̂, n̂n̂ = m̂ô, n̂ = m̂m̂, m̂5 = 1, n̂5 = 1, ô5 = 1, p̂5 = 1
and many more.

In the euclidean complex numbers the fifth roots of unity have the same
relations with

m̂ ≡
√

5− 1

4
+ î

√
2
√

5 +
√

5

4
,

n̂ ≡ −
√

5− 1

4
+ î

√
2
√

5−
√

5

4
,

ô ≡ −
√

5− 1

4
− î
√

2
√

5−
√

5

4
,

p̂ ≡
√

5− 1

4
− î
√

2
√

5 +
√

5

4
.

We thus have the 2-dimensional shadow algebra of this 5-dimensional alge-
bra:

Shad (a+ bm̂+ cn̂+ dô+ ep̂)

= a+b

(√
5− 1

4
+ î

√
2
√

5 +
√

5

4

)
+c

(
−
√

5− 1

4
+ î

√
2
√

5−
√

5

4

)

+ d

(
−
√

5− 1

4
− î
√

2
√

5−
√

5

4

)
e

(√
5− 1

4
− î
√

2
√

5 +
√

5

4

)

= a+
(b− c− d+ e)

√
5− (b+ c+ d+ e)

4

+ î
√

2

(√
5 +
√

5

4
(b− e) +

√
5−
√

5

4
(c− d)

)
.

The determinant of this euclidean complex number is

a2 + b2 + c2 + d2e2 − φ(ac+ ad+ bd+ be+ ce) +
ab+ ae+ bc+ cd+ de

φ
,

where φ is the golden ratio. So distance in 5-dimensional space is connected
to the golden ratio. The polar form of this complex number is
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exp

(
4a+ (b− c− d+ e)

√
5− (b+ c+ d+ e)

4

)
·
(

cos(0.95...b+ 0.59...c− 0.59...d− 0.95...e)

+ î sin(0.95...b+ 0.59...c− 0.59...d− 0.95...e)
)
,

where the numbers are more accurately 0.9510565161... and 0.5877852522....
We have

0.9510565161...

0.5877852522...
= φ.

Has anyone seen φ expressed as this ratio before?

A word to the wise
Eddie Kent
Oxford University Press has completed five years of the Oxford Corpus (part
of the language research programme, where words are planted to see if they
grow or die). To celebrate this some excerpts have been released, mostly I
expect for entertainment. I’ll mention some that relate to computing.

But first, one cannot ignore bling. This was first recorded in 1998, by
the US rapper Baby Gangsta (B.G.), to refer to ostentatiously extravagant
clothing and jewelery. By 2000 it was in wide use, having left the hip-hop
world and even reached Britain. It has now given rise to a large family
of offspring; currently more than 40. Bling-dripping arrived in 2006, three
years after blingless.

The word scam had 347 instances in 2000, rising to 10409 this year; it
is now associated with phishing, lottery, email, telephone and dialler. And
here are half a dozen words that might be of interest to readers of this
magazine: digilanti – volunteers dedicated to keeping scams (and spam)
off the internet; bipodding – two people listening to the same mp3 player;
crowdsourcing – outsourcing beyond the normal professional group; peer-
ents – parents who want to be their children’s friends; mojo – an amateur
journalist using a mobile phone; and all the variants of cyber—(including
the unlikely cyberloo). I can count 21 of these.

These words and many more have been collected by Countdown’s Susie
Dent from her latest Language Report recorded in the Oxford Corpus. She
also lists those words that didn’t make it: millennium bug hasn’t been heard
from this century, and the verb dyson had a sprited but doomed existence.
The English language just keeps on evolving, with over two billion words
now in the Corpus. If you are truly interested, visit www.askoxford.com.
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Problem 221.1 – Ten hats
Tony Forbes
Ten people wear hats. On each there is a number 1, 2 or 3, chosen at
random. As usual, each can see all the hat numbers except his/her own. At
the appointed instant all persons simultaneously guess what number they
have. If they are all correct, there is a Valuable Prize for everybody.

The probability of success, 3−10, is pretty poor, wouldn’t you agree?

But the game is played again (with new numbers), and in the interval the
participants have had time to discuss a strategy. Show that the probability
of all correct can now be as high as 1/3.

And yet again. But this time the players are standing regularly spaced
in a circular corridor; so each can see only the hat of his/her two immediate
neighbours. Again, there is time for devising a strategy before the game
commences. Now what probability of winning the prize can be achieved?

Thanks to Søren Riis of Queen Mary College, London for the idea
behind this problem.

Problem 221.2 – Coefficients
Given n, find a simple formula for the coefficient of xk in the polynomial

(x+ n− 1) (2x+ n− 2) . . . ((n− 1)x+ 1) (nx).

Problem 221.3 – Six tans
Show that

1

tan2 1
7π + tan2 3

7π
+

1

tan2 3
7π + tan2 5

7π
+

1

tan2 5
7π + tan2 1

7π
=

17

26
.

Problem 221.4 – Eleven bottles
Tony Forbes
Three people, A, B, C, are stuck in a lift over the weekend. They have 11
bottles of water, four supplied by A and seven by B, which are to be shared
equitably. C donates £11 for the water. How is it to be divided between A
and B?

The same thing happens the following weekend, but this time A has
three bottles and B has eight. Again, £11 is to be split between A and B.



Page 14 M500 221

Solution 218.1 – Wands
Having just returned from a night on the town Harry and his
friends cast spells to ward off the effects of excessive drinking.
But in the confusion on leaving the club they had each picked
up a wand at random from the pile that was given back to them.
Also the magic isn’t perfect, and when it fails the caster will turn
into a toad (albeit one without a hangover). The probability of
the spell working properly is p with one’s own wand and zero
with someone else’s wand. Show that the probability of them all
turning into toads is approximately e−p. What is the expected
number of toads created by this escapade?

John Smith
A solution written in terms of n friends can become a maze of notation. So
first we consider the case of three friends, and later sketch the more general
argument.

Suppose Harry goes clubbing with Albert and Bertie. Let H be the
event that, after the wand allocation and spell casting, Harry is not turned
into a toad. Define A and B similarly for Albert and Bertie. Write p(H),
p(A) and p(B) for the probabilities that Harry, Albert and Bertie are not
turned into toads. Let P3 be the probability that all three are turned into
toads. Using the inclusion–exclusion principle, we find that P3 is given by

P3 = 1− (p(H) + p(A) + p(B)) + (p(H ∩A) + p(A ∩B) + p(B ∩H))

−p(H ∩A ∩B).

Since the problem has symmetry in the events H, A and B,

P3 = 1− 3p(H) + 3p(H ∩A)− p(H ∩A ∩B).

The probability p(H) is given by the product of the probability of Harry
getting his own wand, and the probability of Harry’s spell working given
that he has the right wand. There are six possible allocations of wands to
friends. Of these six, Harry gets his own wand just twice. Thus p(H) = 1

3p.

The probability p(H ∩ A) is given by the product of the probability
of both Harry and Albert getting their own wands, and the probability of
Harry’s and Albert’s spell working given that they have their own wands.
In just one of the six possible allocations of wands to friends do both Harry
and Albert get their own wands. Thus p(H ∩A) = 1

6p
2.

Similarly, p(H ∩A ∩B) = 1
6p

3.
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Thus

P3 = 1− p+
p2

2!
− p3

3!
.

The extension to n friends is now practical. Suppose the friends are
A1, A2, . . . , An, and the probability that they all turn into toads is Pn.
Then

Pn = 1−
∑
i

p(Ai) +
∑
i<j

p(Ai ∩Aj)−
∑

i<j<k

p(Ai ∩Aj ∩Ak) + · · ·

+ (−1)np(A1 ∩A2 ∩A3 ∩ . . . ∩An)

= 1− nC1p(A1) + nC2p(A1 ∩A2)− nC3p(A1 ∩A2 ∩A3) + · · ·
+(−1)n nCnp(A1 ∩A2 ∩A3 ∩ . . . ∩An).

The probability p(A1∩A2∩A3∩ . . .∩Ar) is given by the product of pr and
the probability that friends 1, 2, . . . , r of the n all receive their own wands.
The allocation of wands to friends defines a permutation on the n friends.
There are n! possible permutations, of which in (n − r)! permutations the
friends 1, 2, . . . , r all get their own wand. Thus the probability that friends
1, 2, . . . , r of the n receive their own wand is (n− r)!/n!. Then

Pn = 1− p+
p2

2!
− · · ·+ (−1)r

n!

(n− r)!r!
× (n− r)!

n!
pr + · · ·+ (−1)n

pn

n!

= 1− p+
p2

2!
+ · · ·+ (−1)r

pr

r!
+ · · ·+ (−1)n

pn

n!
.

Thus Pn is the first n+ 1 terms of the power series for e−p; so Pn is approx-
imately e−p.

The problem also asks for the expected number of toads. This requires
less calculation. The expected number of toads into which Harry alone turns
as a result of this escapade is 1− p/n. Thus the expected number of toads
resulting from all n friends is n times 1− p/n, which is n− p.

Use your calculator to show that(
178212 + 184112

)1/12
= 1922,

and then deduce that 178212 + 184112 = 192212. See if you can discover
further counterexamples to Fermat’s Last Theorem.
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Solution 218.3 – Nearly an integer
Let

α =
3

√
1

2

(
27 + 3

√
69
)
, β =

(
α

3
+

1

α

)2000

.

Show that β is within 10−120 of an integer.

Dick Boardman
Let

γ =
α

3
+

1

α
,

so that β = γ2000. To prove the stated property of β we show first that the
number γ is the solution of a cubic equation, and secondly that γn is part
of a solution to a recurrence relation between integers and that the other
parts are small when n is large.

Consider the recurrence relation

f(n+ 3) = f(n+ 1) + f(n). (R)

The values of the sequence depend on three initial values, f(0), f(1) and
f(2). Obviously, if these three values are integers, then all of the terms in
this sequence are integers.

Let x, y and z be the roots of the cubic equation X3 = X+1, where x is
real and y and z are complex conjugates. Using the well-known relationships
between the roots of equations and the coefficients of the equation we have

x+ y + z = 0, (1)

xy + xz + yz = 1, (2)

xyz = −1. (3)

Dividing equation (2) by equation (3) and simplifying, we get

1

x
+

1

y
+

1

z
= − 1. (4)

It is well known that the general solution to (R) is

f(n) = Axn +Byn + Czn,

where A, B and C are arbitrary constants. Choose A = B = C = 1. Then,
using (1), f(0) = 3, f(1) = 0 and f(2) = x2 + y2 + z2.
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Since x, y and z are the roots of the cubic equation it follows that

x2 = 1 +
1

x
, y2 = 1 +

1

y
and z2 = 1 +

1

z
.

Adding these three equations and using (4), we get f(2) = x2 +y2 +z2 = 2.

The three solutions of X3 −X − 1 = 0 are

x =
1

3

(
27

2
− 3
√

69

2

)1/3

+

(
1
2 (9 +

√
69)
)1/3

32/3
,

y = −1 + i
√

3

6

(
27

2
− 3
√

69

2

)1/3

−
(1− i

√
3)
(
1
2 (9 +

√
69)
)1/3

2 · 32/3
,

z = −1− i
√

3

6

(
27

2
− 3
√

69

2

)1/3

−
(1 + i

√
3)
(
1
2 (9 +

√
69)
)1/3

2 · 32/3
.

Then

γ =

(
2

27 + 3
√

69

)1/3

+
1

3

(
27 + 3

√
69

2

)1/3

.

Moreover, γ3 − γ − 1 = 0; so γ is my x.

A simple calculation shows that

x ≈ 1.3247, y ≈ −0.66236 + 0.56228i, z ≈ −0.66236− 0.56228i

and |y| ≈ |z| ≈ 0.86884.

Thus yn and zn become small when n is large. Indeed, we have

|y2000 + z2000| ≤ |y2000|+ |z2000| ≤ 10−121.

However, the 2000th term of the recurrence relation (R) is an integer and
is given by x2000 + y2000 + z2000. Hence β = x2000 is within 10−120 of an
integer.

Stone, 14 lb, £14; Plácido Domingo, tenor, £10; poorly cuttlefish, sick squid, £6;

ladies underwear, pair of knickers, £2; type of pig, guinea, £1/1/-; sixteen ounces,

1 lb, £1; royal headdress, crown, 5/-; boy’s name, Bob, 1/-; leather worker, tanner,

6d; cockney breast, thrupenny bit (tit), 3d; bicycle, penny farthing, 1 1
4
d; girl’s

name, Penny, 1d; primate’s leg joint, ape knee, 1
2
d.
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Solution 202.2 – Five spheres
Four spheres of radius a are arranged so that their centres are at
the vertices of a regular tetrahedron. Each sphere touches the
other three. A fifth sphere of radius 1 is in the middle of the
structure and it touches each of the other four spheres. What is
a? Can you generalize to n spheres of equal radius surrounding
a sphere of radius 1?

Steve Moon
I found the algebra easier if I determined the radius of the included small
sphere surrounded by four spheres of unit radius, then scaled up. Let this
be r.

First, consider the plane in which the centres of the three base spheres
lie.

q q

q

q q

q
q q q

q

A C

B

D

O

A C

B

D

1

1

1

1

1 1

A O

X

E

1 + r2

The centres of the small sphere and the fourth sphere in the tetrahedron
lie on the perpendicular through the point of intersection of the lines joining
the vertices and opposite side midpoints in the middle triangle, above. By
Pythagoras and |OD| = 1

3 |BD|, we have |OD| =
√

3/3 and |OA| = 2/
√

3.

Now consider the vertical plane passing through the centres of one
sphere in the base, the upper sphere in the tetrahedron (E) and the small
sphere. We have (right-hand diagram, above) |OX| from |OE|2 = 4− 4/3;
|OE| = 2

√
2/
√

3; Hence |OX| = 2
√

2/
√

3 − (1 + r). Then by Pythagoras
on ∆AXO,

(1 + r)2 =
4

3
+

8

3
+ (1 + r)2 − 4

√
2(1 + r)√

3
.

Hence r =
√

3/2− 1 ≈ 0.225; a = 1/r =
√

2/(
√

3−
√

2) ≈ 4.449.
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I don’t think you can generalize this for arrangements of spheres of
radius a where not all the spheres are equivalent. For example, with five
spheres you could try either a triangular bipyramid (but no central hole—
just two tetrahedral ones), or a square based pyramid (but the apical sphere
not equivalent to the four comprising the base).

You can solve for six spheres in an octahe-
dral hole as they are all equivalent geometri-
cally. In the plane of four spheres, by Pythago-
ras, 4a2 = 2(a+ 1)2. Hence

a = 1 +
√

2 ≈ 2.414.

qq q
�
�

@
@
a a

Next, the cube. For eight spheres, consider the plane through opposite
edges and centre. The length of the main diagonal of a 2a× 2a× 2a cube is√

4a2 + 4a2 + 4a2 = 2
√

3a.

But this is equal to 2a+ 2. Hence

a =
2

2
√

3− 2
=

√
3 + 1

2
≈ 1.366.

I postulate that the only other arrangements that might work are the
remaining Platonic solids, the icosahedron (20 spheres) and the dodecahe-
dron (12 spheres), where all spheres are equivalent. However, whilst I would
expect the values of a to continue to decrease, their calculation I happily
leave for others.

Thus we have the radii of the holes in which the small sphere fits, r, in
an array of n larger spheres of radius R.

n 4 6 8
r/R 0.225 0.414 0.732

This is used in solid-state chemistry in analysing crystal lattice struc-
tures for ionic solids, where one atom ion packs in an infinite hexagonal or
cubic array and its oppositely charged ion can be thought of as fitting in
the holes created—the bigger the ion, the larger the hole it needs to pack
well.

Mathematics is not a deductive science—that’s a cliche. When you try to

prove a theorem, you don’t just list the hypotheses, and then start to reason.

What you do is trial and error, experimentation, guesswork. [Paul Halmos]
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Solution 209.3 – xy + yx

Show that if x is an odd power of 4, then xy + yx is composite
for all integers y ≥ 2. What if x is an even power of 4?

Steve Moon
Let x = 42k+1 and y = 2m+ 1, the problem being trivial if y is even. Then

xy + yx = 4(2k+1)y + y4
2k+1

= 2(4k+2)y + y2
4k+2

,

which is positive for k ≥ 0 and y ≥ 1. Completing the square, we have

xy + yx =
(

2(2k+1)y + y2
4k+1

)2
− 2 · 2(2k+1)yy2

4k+1

=
(

2(2k+1)y + y2
4k+1

)2
− 22ky+y+1y2

4k+1

.

Now substitute y = 2m+1, in which case 22ky+y+1y2
4k+1

is a square. Hence

xy + yx =
(

2(2k+1)(2m+1) + (2m+ 1)2
4k+1

)2
−
(

22km+k+m+1(2m+ 1)2
4k
)2

=
(

2(2k+1)(2m+1) + (2m+ 1)2
4k+1

+ 22km+k+m+1(2m+ 1)2
4k
)

×
(

2(2k+1)(2m+1) + (2m+ 1)2
4k+1

− 22km+k+m+1(2m+ 1)2
4k
)
.

Hence xy + yx is composite if the second factor is greater than 1. Write

K = 22km+k+m and M = (2m+ 1)2
4k

. Then the second factor is

2K2 − 2KM +M2 = K2 + (K −M)2,

which is greater than 1 unless k = m = 0, in which case x = 4, y = 1 and
xy + yx = 5, a prime.

So xy + yx is composite for x an odd power of 4 and y ≥ 2.

Now consider xy + yx for x = 42k. If k = 0, then xy + yx = 1 + y, which
clearly takes both prime and composite values. So we can assume that
k ≥ 1, and obviously we can assume that y = 2m+ 1 is odd. Unfortunately
the method involving the difference of squares fails, since

xy + yx = 24ky + y2
4k

=
(

22ky + y2
4k−1

)2
− 2 · 22kyy2

4k−1

and the last term is not a square.

So for x 6= 1 an even power of 4, xy + yx is composite for even y but,
in the absence of any evidence to the contrary, I can only conjecture that
xy + yx is composite for odd y ≥ 3.
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A century of theorems
Tony Forbes
Congratulations to Robin Whitty, who reached 100 on February 20th this
year.

Well, no; Robin has a long way to go for his 100th birthday. What I
am referring to is his website at www.theoremoftheday.org, which attained
its one hundredth theorem on that date.

In this excellent site, Robin has collected together a cornucopia of beau-
tiful mathematical results. Each theorem is presented in a masterful way
to appeal as far as possible to the enthusiastic mathematician in the street.
Here you can find theorems on graphs, including the famous Four Colour
Theorem (which is actually first in the list), numbers (such as The Fifteen
Theorem and Fermat’s Last Theorem), and many if not all of the other
diverse branches of our subject.

He also has results in geometry, such as Miquel’s Triangle Theorem,
which are illustrated by clever Java programs using David Joyce’s Geom-
etry Applet software showing how various elements change their shapes
as you move points around. And of course the human side of mathematics
has not been forgotten. Two of his theorems feature weddings—The Happy
Ending Problem and The Marriage Theorem.

But why am I particularly excited about Theorem of the Day? How
appropriate it is that Theorem 100 should be The Design of the Century,
which first appeared on the front cover of M500 205!

Old money
Gareth Harries
This is more suitable for
older readers of M500.

From the cryptic
clues, fill in the amounts
in pre-decimal currency
to reach the given to-
tal. To make it easier the
amounts are in descending
value.

Answers somewhere in
this issue.

£ s d

stone
Plácido Domingo
poorly cuttlefish
ladies underwear
type of pig
sixteen ounces
royal headdress
boy’s name
leather worker
cockney breast
bicycle
girl’s name
primate’s leg joint

34 7 11 3
4
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Cover: The graph M22. The vertices are the 77 blocks of the Steiner system

S(3, 6, 22), and two vertices are joined when the blocks they represent are disjoint

[http://mathworld.wolfram.com/M22Graph.html].


