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Prime partitions: an asymptotic result
Tommy Moorhouse
Introduction This article is a brief summary of an investigation into the
asymptotic behaviour of the number of partitions P (n) of an integer into
prime parts. This essentially means finding a good approximation for P (n)
when n is very large. Hardy and Ramanujan found a beautiful asymptotic
formula for p(n), the number of partitions of an integer n into positive
integers. The formula was refined by Rademacher, and a general theory of
asymptotics for a range of partitions was developed [Apostol, Andrews]. In
this article we will look at a simple asymptotic bound on the logarithm of
P (n), the number of partitions of n into primes.

Background to the problem The classic result of Hardy and Ramanujan
uses an identity between modular functions and a rather ingenious integra-
tion around a circle. The starting point is the expression for the generating
function for unrestricted partitions

F (x) =

∞∏
n=1

1

1− xn
=

∞∑
n=0

p(n)xn.

Taking x to be a complex variable we can extract the coefficient of xn,
namely p(n), by integration:

p(n) =
1

2πi

∫
C

F (x)

xn+1
dx

where C is any smooth contour lying inside the unit circle and circling the
origin once in the positive direction. A clever choice of contour, close to the
unit circle, gives a manageable series of integrals. The choice of contour was
refined by Rademacher to give a better behaved asymptotic series. Indeed,
F (e2πiz) is closely related to a function for which a striking identity is
known, and use of this identity allows the integration to be carried out.
The details are in [Apostol 2] and [Andrews]. Unfortunately it is not a
simple matter to apply this method directly to prime partitions because the
modular function identity is not available, at least not in a form I have been
able to deduce.

Asymptotics For large values of n we can obtain asymptotic conditions
on many partition functions. For example we have [see e.g. Apostol]

p(n) <
eπ
√
( 2
3n)

4n
√
π
.
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Sometimes we can find asymptotic formulae that allow us to quickly com-
pute partition functions to the nearest integer for large n. However, other
techniques such as those in [Andrews] do not appear to be directly applica-
ble to the problem of prime partitions.

The case of prime partitions We may wonder whether logP (n) has the
same asymptotic dependence on n as log p(n). Given that a prime partition
can only be made up from the π(N) primes smaller than or equal to N we
might postulate that

logP (N) ∼ K
√
π(N) ∼ K

√
N

logN
.

This ‘hand waving’ argument can be strengthened, and we will consider this
further below.

Finding an asymptotic bound For prime partitions the relevant parti-
tion function is given by a product over prime numbers:

Z(x) =
∏
p

1

1− xp
=

∞∑
n=0

P (n)xn.

We will use the fact that, given the truncated product

N∑
n=0

P (n)xn +

∞∑
n=N+1

r(n)xn =
∏
p≤N

1

1− xp
,

we certainly have, for fixed N ,

P (N) <
1

xN

∏
p≤N

1

1− xp
.

This is simply because we have omitted all the other (positive) terms in
the sum on the left. We can pick out a given P (N) by choosing x < 1
appropriately, because the terms in the sum P (n)xn are products of the
increasing function P (n) and the decreasing xn, so that the series of terms
has a minimum for a value of n depending on x. Terms r(n) (‘remainder
terms’) are smaller than the terms P (n) in the full product. Taking logs
and setting x = exp(−s) where s is a positive real number, we have

logP (N) < sN −
∑
p≤N

log(1− e−ps)



M500 242 Page 3

for all s. This means that if we substitute the value of s for which the
expression on the right is smallest we should get a good upper bound for
P (N). Regarding the expression on the right as a function of s we can find
the minimum in terms of N , and hence get an upper bound for P (N). The
sum of logarithms can be estimated using Abel’s identity [Apostol, Theorem
4.2] to get the integral∑

p≤N

log(1− e−ps)− π(N) log(1− e−Ns) ≡ IN

= − s
∫ N

2

π(t)
e−st

1− e−st
dt = − s

∫ N

2

π(t)

∞∑
n=1

e−sntdt.

Using the prime number theorem we estimate the integrals by assuming
that for large N we have π(N) = N/ logN. The lower integration limit can
be ignored because π(1) = 0 so we will not pick up a contribution from this
region. Now we integrate by parts (take te−snt = v′, u = 1/ log t) to find

IN ∼
∞∑
n=1

(
N

n
+

1

sn2

)
e−Nns

logN
+ · · ·

where the dots indicate terms that we neglect in the limit of large N (a
fuller treatment would seek to justify this rigorously).

In the first sum
∑
e−snN/n is forced to converge by the exponential

factor, and the sum is found to be −N log(1 − e−sN )/ logN . For large N
this is a slowly varying function of s with a value close to zero. The second
sum is clearly bounded by ζ(2)/(s logN).

Therefore we have

logP (N) < Ns− N log(1− e−sN )

logN
+

ζ(2)

s logN
.

To find the minimum value of this function of s we differentiate and solve
for s. To do this we treat the second term on the right as constant (recall
that it is slowly varying), and we find

s =

√
ζ(2)

N logN
.

Substituting this into the inequality for P (N) we find that the first and last
terms add, and

logP (N) < π

√
2N

3 logN
− N log(1− e−sN )

logN
.
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We can make the final term (which is positive) as small as we like by choosing
N large enough, and therefore we have the asymptotic bound

logP (N) < π

√
2N

3 logN
.
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Problem 242.1 – Interesting integrals
Tony Forbes
Show that ∫ ∞

−∞

cosx

x2 + 1
dx =

∫ ∞
−∞

x sinx

x2 + 1
dx =

π

e
,

two interesting integrals both of which evaluate to that possibly rational
number π/e.

Problem 242.2 – Quintic
Show that the real root of the cubic x3 − x− 1 is also a root of the quintic
x5 − x4 − 1. See if you can solve the problem without calculating the root
in question, which is actually

A+B ≈ 1.32472,

where

A =
3

√
1

2
−
√

69

18
≈ 0.337727 and B =

3

√
1

2
+

√
69

18
≈ 0.986991.

Observe that AB = 1/3.
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Problem 242.3 – Central trinomial coefficients
Tony Forbes
Let Tn(b, c) denote the coefficient of xn in the expansion of (x2 + bx+ c)n.
Thus the Tn(b, c), which one might refer to as central trinomial coefficients,
can be thought of as generalizing the more familiar central binomial coeffi-
cients

(
2n
n

)
. Indeed, putting b = 0 gives T2n(0, c) =

(
2n
n

)
cn.

(i) Show that

Tn(b, c) =

bn/2c∑
j=0

(
n

2j

)(
2j

j

)
bn−2jcj =

bn/2c∑
j=0

(
n

j

)(
n− j
j

)
bn−2jcj

and

(n+ 1)Tn+1(b, c) = (2n+ 1)bTn(b, c)− n(b2 − 4c)Tn−1(b, c), n ≥ 1.

(ii) On the Internet forum NMBRTHRY, Zhi-Wei Sun of Nanjing Uni-
versity has made a number of interesting conjectures involving the central
trinomial coefficients and π. For instance, he asserts that

∞∑
j=0

(−1)j
30j + 7

256j

(
2j

j

)2

Tj(1, 16) =
24

π
(1)

and
∞∑
j=0

(−1)j
30j + 7

1024j

(
2j

j

)2

Tj(34, 1) =
12

π
. (2)

Having no idea how to proceed, I would be delighted if anyone succeeds
in actually finding proofs of (1) and (2). On the other hand, the obvious
similarity between the two expressions suggests to me that it might be
relatively easy to compute the ratio of the two left-hand sides. So for the
second part to this problem, we merely ask you to show that

∞∑
j=0

(−1)j
30j + 7

256j

(
2j

j

)2

Tj(1, 16) = 2

∞∑
j=0

(−1)j
30j + 7

1024j

(
2j

j

)2

Tj(34, 1).

If it helps, here are the first few of the relevant Tj coefficients.

j 0 1 2 3 4 5 6
Tj(1, 16) 1 1 33 97 1729 8001 105441
Tj(34, 1) 1 34 1158 39508 1350214 46222524 1584998556
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Solution 238.4 – Wednesday’s child
I have two children, one of whom is a boy born on a Wednesday.
Assuming boys and girls as well as days of the week are equally
likely, what’s the probability that my other child is also a boy?

Dick Boardman
I would like to propose the following modification of the problem for con-
sideration. Let there be a characteristic X which occurs in boys with a
probability p, 0 < p ≤ 1. For the first child there are three possible events
with probabilities

Boy with X probability p/2 (event 1),
Boy without X probability (1− p)/2 (event 2),
Girl probability 1/2 (event 3).

For the second child there are three similar events. These are independent
events and hence the probability of any two happening is the product of the
probabilities.

First child

Second child (1) (2) (3)

(1) 1
4p

2 (∗) 1
4p(1− p) (∗) 1

4p (∗∗)
(2) 1

4p(1− p) (∗) 1
4 (1− p)2 1

4 (1− p)
(3) 1

4p (∗∗) 1
4 (1− p) 1

4

According to this ‘standard’ procedure the probability of having two
children, at least one of which is a boy with X, is the sum of the boxes
marked either (∗) or (∗∗); that is (4p − p2)/4. The probability of having
two boys, at least one of whom has characteristic X is the sum of the boxes
marked (∗); that is (2p− p2)/4. The ratio of these is

(2− p)/(4− p).
This ratio varies between 1/2 and 1/3. To answer the original problem,

put p = 1/7. Then (2 − p)/(4 − p) = 13/27. In the limiting case, where
p = 1, the problem simplifies to: ‘I have two children, one of whom is a boy;
what’s the probability that my other child is also a boy?’ Then the ratio
agrees with the direct computation:

P(BB)

P(BG) + P(GB) + P(GG)
=

1

3
.
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Robin Marks
We show the possibilities below.

B1

B2

B3

B4

B5

B6

B7

G1

. . . . . .
G7

X

X

X

X

X

X

X

X

X

X X X X X X X X X X X X X

B1B2B3B4B5B6B7G1G2G3G4G5G6G7

The labels along the bottom represent the first child, where B = boy, G =
girl, and 1, 2, 3, . . . represent Monday, Tuesday, Wednesday, . . . . The labels
on the left represent the second child. Initially let us assume the children
are statistically independent. Each pair which includes at least one B3 is
shown by the letter X; there are 13 cases of 2 boys, and 14 of a boy and a
girl. Hence the probability that your other child is also a boy is 13/27.

The assumption of independence fails if the children are identical twins,
when the probability that your other child is also a boy is 1. The rate of
male identical twins in the world is about 3/2000. The probability that
your other child is also a boy then becomes about

1997

2000
· 13

27
+

3

2000
· 1 =

13021

27000
.

Re: Solution 233.1 – Hill
Ken Greatrix
Perhaps Norman Graham and other readers might be interested in the pa-
per http://journals.tubitak.gov.tr/engineering/issues/muh-04-28-6/muh-28-6-
3-0404-5.pdf, which shows a derivation for the trajectories of projectiles over
long distances, and includes air resistance, the radius of the Earth and vari-
able gravity. But it’s only a cubic approximation—which doesn’t work for
the higher levels of drag which you would get with arrows (as in my hobby
of archery).
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Solution 240.1 Two tins of biscuits
There are two tins, each containing n > 0 biscuits. Take a biscuit
from a tin chosen at random. Keep doing this until one tin is
empty. What is the expected number of biscuits that remain in
the other tin?

Dick Boardman
I am an engineer and programmer, not a mathematician. I do computer
assisted puzzle solving just as engineers in industry use computers to help
them solve their problems. When attacking a problem like this, I find it
helps to calculate the answer for small values of n, say up to 10. I use a
programming language like C or Mathematica although Basic or Pascal
would do just as well. In this case, I used a random number generator to
play 50000 versions of each game from n = 3 to n = 10. To estimate the
expected value, I used the average over the 50000 games. Of course, these
results cannot play any part in the proof but if my general method gives
results very different from these, it is probably wrong. My first attempt at
a general method failed this test so I had to re-work it.

Following a suggestion from Tony [Forbes], I noted that there are a
maximum of 22n−1 versions. I calculated each one for n = 3 to 10, summed
and found the expected value in each case. This is called constructing the
probability tree. This gives precise values and any general solution has to
match these exactly. I looked into the cases where the number left was n
or n − 1 or n − 2 and saw how many there were and how they arose, and
this suggested that I looked at a number if different routes to a state times
the number of ways the state was reached. The number of ways was always
a power of 2, 2n when n were left, 2n+1 where n− 1 were left, 2n+2 where
n− 2 were left and so on.

I tried to work with the game as stated but found it very confusing
and difficult to get right so I used a similar game, which emphasized the
patterns in the numbers and made each stage clearer.

Consider a related problem. Start with empty tins and at each stage
add a biscuit to either the left tin or the right tin with a probability of 1/2.
Call the state where there are L biscuits in the left tin and R biscuits in
the right tin s(L,R). I shall also use s(L,R) to denote the number of ways
of getting there. In order to get to state s(L,R) we must go through either
s(L− 1, R) or s(L,R− 1).

If we draw a grid of squares which puts the number in the left tin along
the bottom and the number in the right up the side, and in each square
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we put the number of routes to the square, we get a well-known pattern,
Pascal’s triangle. The number of routes to s(L,R) is

(
L+R
L

)
=
(
L+R
R

)
.

To mimic the original game, we decide the grid ends when the when
the number in either tin reaches k. Then there is only one route to s(k,R),
that is from s(k − 1, R). The route from s(k,R − 1) is barred. There is no
route to s(k, k). Thus in the truncated grid s(k +R,R) = s(k +R− 1, R).

-

6

1 1 1 1 1

1 2 3 4 4

1 3 6 10 10

1 4 10 20 20

1 4 10 20 0

Example with k = 5

L

R

The probability of each route is (1/2)L+R. In the truncated grid, the
probability of getting to s(k,R) is

(
k+R−1
R

)
/2k+R, where R is in the range

0 to k − 1. To return to the original problem, we would like to find the
probability, prob[n, r], where n is the starting number in each pile and r is
the number left, where r goes from n to 1. In a truncated game it is evident
that n = k and r = k −R so that

prob[n, r] = s(k,R) + s(L, k) = 2s(k,R)

=
2

22n−r

(
2n− r − 1

n− r

)
=

1

22n−r−1

(
2n− r − 1

n− r

)
.

Checks. Since the answer must be in the range 1 to n,
∑n
r=1 prob[n, r]

must be 1. I use the symbolic algebra package Mathematica, for which
I had to pay, but there are similar free packages like Maxima, which any
puzzler can have. Mathematica shows that

∑n
r=1 prob[n, r] = 1. The

function prob[n, r] matches exactly the values given by constructing the
probability tree and finding the expected value:

3

2
,

15

8
,

35

16
,

315

128
,

693

256
,

3003

1024
,

6435

2048
,

109395

32768
,

230945

65536
. (1)

To find the expected value
∑n
r=1 r prob[n, r], Mathematica gives

22−2nn

(
2n− 1

n

)
. (2)
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Tony Forbes
Dick and I agree there is still work to do. We need proofs that the prob-
abilities really do add up to 1 and that

∑n
r=1 r prob[n, r] really does give

the stated value, (2), for the expected number of biscuits in the other tin.
I shall set these tasks as Problem 242.4.

In parallel with Dick, I also was working on the problem. By developing
the probability tree in the usual manner I arrived at the same answers for
n = 1 to 10 as in (1), above, also the help of Mathematica. Then I noticed
to my amazement a connection with the hyperbolic cosine function. Indeed,
the answer to the problem is actually

2∫ ∞
−∞

dx

cosh2n x

.

But the integral is doable. Suppose m ≥ 3. Integrating by parts with

u =
1

coshm−1 x
,
du

dx
=
−(m− 1)(sinhx)

coshm x
, v = sinhx,

dv

dx
= coshx,

we have∫ ∞
−∞

dx

coshm−2 x
=

∫ ∞
−∞

u
dv

dx
dx = uv

∣∣∣∞
−∞
−
∫ ∞
−∞

v
du

dx
dx

=
sinhx

coshm−1 x

∣∣∣∣∞
−∞

+ (m− 1)

∫ ∞
−∞

sinh2 x

coshm x
dx = (m− 1)

∫ ∞
−∞

cosh2 x− 1

coshm x
dx,

the uv part vanishing because m ≥ 3. This gives the recursion formula∫ ∞
−∞

dx

coshm x
=

m− 2

m− 1

∫ ∞
−∞

dx

coshm−2 x
(3)

from which we can compute∫ ∞
−∞

dx

cosh2n x
=

2n− 2

2n− 1
· 2n− 4

2n− 3
· · · · · 4

5
· 2

3

∫ ∞
−∞

dx

cosh2 x
.

To do the integral on the right, make the substitution x = arcsinh(tan z),
dx/dz = | sec z| to get∫ ∞
−∞

dx

cosh2 x
=

∫ ∞
−∞

dx

1 + sinh2 x
=

∫ π
2

−π2

sec z dz

1 + tan2 z
=

∫ π
2

−π2

cos z dz = 2.
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Thus∫ ∞
−∞

dx

cosh2n x
=

(
(2n− 2)(2n− 4) . . . (2)

)2 · 2
(2n− 1)!

=
22n−2

(
(n− 1)!

)2 · 2
(2n− 1)!

and therefore

2∫ ∞
−∞

dx

cosh2n x

=
22−2n(2n− 1)!(

(n− 1)!
)2 = 22−2nn

(
2n− 1

n

)
,

in agreement with (2).

The recursion formula (3) also works for odd m:∫ ∞
−∞

dx

cosh2n+1 x
=

2n− 1

2n
· 2n− 3

2n− 2
· · · · · 1

2

∫ ∞
−∞

dx

coshx
.

As before, the integral on the right is evaluated by the same substitution,
x = arcsinh(tan z), dx/dz = | sec z|, but with a slightly different outcome:∫ ∞
−∞

dx

coshx
=

∫ ∞
−∞

dx√
1 + sinh2 x

=

∫ π
2

−π2

sec z dz√
1 + tan2 z

=

∫ π
2

−π2

dz = π.

Therefore ∫ ∞
−∞

dx

cosh2n+1 x
=

(2n)!π

(2nn!)2
=

π

22n

(
2n

n

)
and hence there is yet another solution to Problem 240.1:

2n

π

∫ ∞
−∞

dx

cosh2n+1 x
.

Problem 242.4 – Two sums
Prove that

n∑
r=1

(
2n− r − 1

n− r

)
2r = 22n−1

and
n∑
r=1

(
2n− r − 1

n− r

)
2rr = 2n

(
2n− 1

n

)
.
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Solution 240.3 – Double sum
Show that

∞∑
r=1

∞∑
s=r+1

1

r2s2
=

π4

120
.

Tony Forbes
It is no coincidence that I chose to put this problem in the same issue as
Steve Moon’s solution of Problem 237.5. Recall that you were to show that

∞∑
n=1

1

n2(n+ 1)2
=

π2 − 9

3
.

The key step in Steve’s solution of this last problem was the use of
the Taylor series as well as the product formula for the function (sinx)/x.
Indeed, we have

sinx

x
=

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
. . .

= 1− x2

3!
+
x4

5!
− · · ·+ (−1)n

x2n

(2n+ 1)!
+ . . . .

Now equate the coefficients of x2n to obtain (after cancelling (−1)n)

∞∑
r1=1

∞∑
r2=r1+1

∞∑
r3=r2+1

· · ·
∞∑

rn=rn−1+1

1

r21r
2
2r

2
3 . . . r

2
nπ

2n
=

1

(2n+ 1)!
.

Putting n = 1 yields the familiar equality

∞∑
r=1

1

r2
=

π2

6
.

But of course we now have an infinite number of similar identities, including
the one stated in the problem, the case n = 2, in which the sequence of
denominators in numerical order is 4, 9, 16, 25, 36, 36, 49, 64, 64, 81, 100,
100, 121, 144, 144, 144, 169, 196, 196, 225, 225, 256, 256, 289, 324, 324,
324, 361, 400, 400, 400, 441, 441, 484, 484, 529, 576, 576, 576, 576, 625,
676, 676, 729, 729, 784, 784, 784, 841, 900, 900, 900, 900, 961, . . . .
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Five hats
Eddie Kent
Do you know what hat you are wearing? Many problems depend on people
being able to deduce this without looking. Sometimes it gets them out of
prison, or even helps them avoid the gallows. Here is a problem someone
gave me many years ago. I wasn’t sure it was possible when it turned up
recently, but I managed it and so can you.

Five people including you, Anabel, are wearing hats. Three hats are
square and two are round. You all know this but not what yours is.

shape name

Anabel

square Bert

round Clarence

square Dick Ernestine

Who can deduce and call out the shape of your (that is, Anabel’s) hat.
No one can look back. Only Dick can see Ernie. Clearly Bert can tell his
hat is square because if it was round he knows Anabel would know her own
was square.

Tracks
Tony Forbes
Next time you see a tank in action, answer these simple questions.

(i) At what speeds are various bits of the tracks moving?

(ii) Where is the best place to put the driving wheels? I ask because
I notice, for instance, that the Pz Kpfw IV had them at the front (so that
the tracks are dragged from the back of the vehicle and pushed towards the
ground) whereas on the T-34 they were placed at the rear.

Teacher: “We need to work out seven times nine. I’m hopeless at arith-
metic. Can someone do it for me, please.”

Student: “Forty-two.”

Another student: “I make it fifty-six.”

Teacher: “Come on, guys. You can’t both be right. It has to be one
or the other.”
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Problem 242.5 – Coffee cup
Tony Forbes
A coffee cup in the form of a truncated cone closed at its thin end is made
from plastic sheeting. There are two parts. A section of an annulus of radii
r and R, R > r, subtending an angle of θ, and a disc of radius rθ/(2π).
Assuming that the total surface area is 1 unit, choose the parameters to
maximize the volume of the cup.

-

The diagram actually represents what I believe to be the optimum vol-
ume. So you could just make some careful measurements with a ruler and a
protractor if you only want the answer without all that tedious mathemat-
ical reasoning.

This is like ‘Problem 230.5 – Cup-cake holder’ except that the receptacle
is constructed in a different manner.

Problem 242.6 – Three cylinders

Start with a 1 m3 cube. Take
out three mutually orthogo-
nal cylinders of length 1 m
and diameter 1 m. What is
the volume that remains?

The cylinders should of
course fit snugly inside the
cube along its main axes, as
suggested by the picture on
the right.

Thanks to John Faben
and Andy Drizen for commu-
nicating this problem to me
(TF).
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Problem 242.7 – Numbers in a row
Arrange two ones, two twos, two threes and two fours in a row such that
exactly k numbers occur between two ks.

Here is one way to do it with two ones, two twos and two threes.

3 1 2 1 3 2

Can you do it with two ones, two twos, two threes, two fours and two fives?

Things that do not exist
Tony Forbes
A considerable part of mathematical activity is concerned with the investi-
gation of things that do not exist. Sometimes they even have famous names
associated with them. For instance, Siegel zeros (real zeros in the range
(0, 1) of the Dirichlet L functions) have been the subject of intensive inves-
tigation in past years and, although the general opinion is that there aren’t
any, the question of their existence is still open. Anyway, suitably inspired,
we offer the following examples of non-existent items taken from outside
mathematics.

• A poor banker

• Chinese food that does not benefit from the addition of a considerable
quantity of chilli sauce [Vaughan’s conjecture]

• A tin of paint that does not have in the instructions, ‘The surface to
be painted must be clean, dry and free from dust and grease’

• A box of matches for children

• A packet of peanuts that may not contain nuts

• A restaurant with a dessert menu that includes raspberry ice-cream

(Any more?)

Connect A to A, B to B and C to C with no lines (including the ones in the
picture) crossing.

j j
j

j
��

���
���

���

XXXXXXXXXXX

XX
XXX

XXX
XXX

�����������

B C

A

A

jC jB
Now do it again but this time with the A–A path inside the diamond.
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Solution 231.5 – Four cos and four sins
Prove that

cos4A

cos2B
+

sin4A

sin2B
= 1 ⇒ cos4B

cos2A
+

sin4B

sin2A
= 1.

David Wild
An alternative method to that printed in M500 238 is as follows. Multiply

the equation
cos4A

cos2B
+

sin4A

sin2B
= 1 by cos2B sin2B, and replace sin2 by

1− cos2. This gives

cos4A(1− cos2B) + (1− cos2A)2 cos2B = cos2B(1− cos2B).

Simplifying gives

cos4A− 2 cos2A cos2B + cos4B = (cos2A− cos2B)2 = 0.

Therefore cos2A = cos2B and sin2A = sin2B. So

cos4B

cos2A
+

sin4B

sin2A
= 1.

Letter

Re: The Four Card Problem
Dear M500,

There is a stupid error in my article on the Four Card Problem [M500
241, 1–8]. The last paragraph should start: ‘Now, suppose the card PARIS
does have TRAIN in the back . . . .’ The article reads ‘Now, suppose the
card PARIS does have AIR on the back . . . .’

I am a suspect for a murder committed on a Eurostar train bound for
Paris and I make a statement to the effect that it cannot be me, “Because
I never travel to a French city possessing an airport by train.” The police
find a train ticket to Paris and the Prosecutor flourishes it: this information
is presented as a ‘card’ with PARIS on one side and TRAIN on the other.
I am dumbfounded until I remember that on the date mentioned there was
an air strike (not a train strike) and so I had to take the train. The point is
that a single counter-example does not in real life falsify a general statement
especially since there may be special circumstances.

I have made different versions of this train/air Four Card Problem and
got mixed up. My apologies,

Sebastian Hayes
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Gender in mathematics
Eddie Kent
Grace Chisholm was an English mathematician and as such is one of the
subjects of a book by Claire G. Jones: Femininity, Mathematics and Sci-
ence, 1880–1914. Grace married William Henry Young, adding his surname
to her own, and collaborated with him in his research. However, for reasons
connected with male attitudes (and not only her husband’s) and financial
expediency, they often submitted under his name, thus promoting for him
a distinguished career.

The Youngs were friends of A. S. Besicovitch, and Patricia Rothman
tells an anecdote in ‘Grace Chisholm Young and the division of the laurels’
(Notes and Records of the Royal Society 50 (1996) 97) that hints at feelings
of insecurity.

‘William Henry Young was out swimming one day with Besicovitch and
he got into difficulties. Besicovitch swam over to help him. With Besicov-
itch’s assistance W. H. Young came up for a “third time” coughing, his long
beard bobbing in the waves. He spluttered out as he gasped for breath,
“Are you one of those people who think my wife is a better mathematician
than I am?”’

M500 Winter Weekend 2012
Join with fellow mathematical enthusiasts for a weekend of mathematical
fun. If you are interested in mathematics and want a great weekend, then
this is for you, accessible to anyone who has studied mathematics. The
thirty-first M500 Society Winter Weekend will be held at

Florence Boot Hall, Nottingham University, 6–8 January 2012.

Cost: £193 to M500 members, £198 to non-members. You can obtain a
booking form from the M500 site.

http://www.m500.org.uk/winter/booking.pdf

If you have no access to the internet, send a stamped addressed envelope to

Diana Maxwell.

See the inside of the front cover for her address.

We will have the usual extras. On Friday we will be running a pub quiz
with Valuable Prizes, and for the sing-song on Saturday night we urge you
to bring your favourite musical instrument (and your voice). Hope to see
you there.
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