
* ISSN 1350-8539

M500 277



The M500 Society and Officers

The M500 Society is a mathematical society for students, staff and friends of the
Open University. By publishing M500 and by organizing residential weekends, the
Society aims to promote a better understanding of mathematics, its applications
and its teaching. Web address: m500.org.uk.

The magazine M500 is published by the M500 Society six times a year. It
provides a forum for its readers’ mathematical interests. Neither the editors nor
the Open University necessarily agree with the contents.

The Revision Weekend is a residential Friday to Sunday event providing re-
vision and examination preparation for both undergraduate and postgraduate
students. For details, please go to the Society’s web site.

The Winter Weekend is a residential Friday to Sunday event held each January
for mathematical recreation. For details, please go to the Society’s web site.

Editor – Tony Forbes

Editorial Board – Eddie Kent

Editorial Board – Jeremy Humphries

Advice to authors We welcome contributions to M500 on virtually anything
related to mathematics and at any level from trivia to serious research. Please
send material for publication to the Editor, above. We prefer an informal style
and we usually edit articles for clarity and mathematical presentation. For more
information, go to m500.org.uk/magazine/ from where a LaTeX template may be
downloaded.

M500 Winter Weekend 2018
The thirty-seventh M500 Society Winter Weekend will be held at

Florence Boot Hall, Nottingham University

Friday 5th – Sunday 7th January 2018.

Details, pricing and a booking form will be available nearer the time. Please
refer to the M500 Web site.

http://www.m500.org.uk/winter.htm



M500 277 Page 1

Sylvester’s Catalecticant

Jon Selig

1 Introduction

This work was prompted by a problem which was introduced by Tony Forbes
in a Maths Study Group talk at London South Bank University and later
resurfaced in M500 266 as Problem 266.4 – Determinants. It involved a
determinant of the form

det


a0 a1 · · · an
a1 a2 · · · an+1

...
... . .

. ...
an an+1 · · · a2n

 . (1)

After searching on Wikipedia, [1], I found that this is an invariant dis-
covered by Sylvester in 1852, [2]. The paper that introduces this determi-
nant does a lot more, producing a sequence of invariants for binary forms
of even degree. Here, I just want to look at one result, mentioned in the
Wikipedia article.

One problem with reading old papers is that terminology has changed
over the years. So, for example, a binary form of degree n is a homogeneous
polynomial in two variables with degree n. A general binary form would be
written as

f(x, y) = a0x
n + na1x

n−1y +
n(n− 1)

2
a2x

n−2y2 + · · ·+ any
n

=

n∑
i=0

ai

(
n

i

)
xn−iyi.

The catalecticant of this form is (1), the determinant of its catalecticant
matrix. The coefficients ai are arbitrary constants, as usual. The inclusion
of the binomial coefficients here was standard in the 19th century but has
fallen out of use now. However, it is essential for the simplicity of the result.

Finally, note that the ground field will be taken to be the complex num-
bers C. This is not usually specified in older work but is implicit since the
fundamental theorem of algebra, that the complex numbers are complete,
will be used.
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2 The Theorem

A binary form of degree 2n can be split into a sum of powers of n linear
forms if and only if its catalecticant is zero.

Consider a binary form of even degree,

f(x, y) =

2n∑
i=0

ai

(
2n

i

)
x2n−iyi.

The theorem gives a condition for this to be equal to an expression of the
form

φ(x, y) =

n∑
j=1

(pjx+ qjy)2n. (2)

Notice that for a form of odd degree, 2n+1, there will be 2n+2 constants
a0, . . . , a2n+1. Hence when we equate this to a sum of powers of n+1 linear
factors, there will be the same number of constants to be determined. So
we might expect that an odd degree binary form can always be decomposed
into a sum of powers of n + 1 linear factors. And this is indeed (almost
always) the case, as shown by Sylvester in an earlier paper. In the even case
considered here there is one fewer constant to be determined than there are
coefficients in the binary form. So in this case we would expect there to be
a single condition on the coefficients which ensures the decomposition can
be performed.

As an example, consider the binary quartic

fe(x, y) = 2x4 + 12x3y + 30x2y2 + 36xy3 + 17y4.

This can be written as

fe(x, y) = 2

(
4

0

)
x4 + 3

(
4

1

)
x3y + 5

(
4

2

)
x2y2 + 9

(
4

3

)
xy3 + 17

(
4

4

)
y4;

that is, a0 = 2, a1 = 3, a2 = 5, a3 = 9 and a4 = 17. The catalecticant is
thus

det

a0 a1 a2
a1 a2 a3
a2 a3 a4

 = det

2 3 5
3 5 9
5 9 17

 = 0.

Hence by the theorem the form can be written as the sum of two quartics
of linear factors:

fe(x, y) = (x+ y)4 + (x+ 2y)4.
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(Of course the computations here were performed in the reverse order to
the presentation above.)

3 Proof

Before expanding the sum of the powers in (2) let qj = λjpj for j = 1, . . . , n.
So now we can write

φ(x, y) =

n∑
j=1

p2nj (x+ λjy)2n.

Expanding the powers of the linear factors gives

φ(x, y) =

2n∑
i=0

 n∑
j=1

p2nj λ
i
j

(2n

i

)
x2n−iyi.

Comparing the coefficients between the above expansion and the defi-
nition of the form f(x, y) gives 2n+ 1 equations,

p2n1 + p2n2 + · · · + p2nn = a0,
p2n1 λ1 + p2n2 λ2 + · · · + p2nn λn = a1,
p2n1 λ21 + p2n2 λ22 + · · · + p2nn λ

2
n = a2,

...
p2n1 λ2n1 + p2n2 λ2n2 + · · · + p2nn λ

2n
n = a2n.

Notice the cancellation of the binomial coefficients. The equations can be
written in the matrix-vector form

1 1 · · · 1
λ1 λ2 · · · λn
λ21 λ22 · · · λ2n
...

...
. . .

...
λ2n1 λ2n2 · · · λ2nn



p2n1
p2n2
...
p2nn

 =


a0
a1
a2
...
a2n

 . (3)

Now take the first n+ 1 rows of this system,
1 1 · · · 1
λ1 λ2 · · · λn
...

...
. . .

...
λn1 λn2 · · · λnn



p2n1
p2n2
...
p2nn

 =


a0
a1
...
an

 . (4)
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The matrix on the left-hand side of this equation has order (n + 1) × n;
hence there will be an (n+1)-vector, (Λ0, Λ1, . . . ,Λn), which annihilates it:

(Λ0 Λ1 . . . Λn)


1 1 · · · 1
λ1 λ2 · · · λn
...

...
. . .

...
λn1 λn2 · · · λnn

 = 0.

In particular, the elements Λi can be identified with the cofactors of the
matrix,

Λ0 = det


λ1 λ2 · · · λn
λ21 λ22 · · · λ2n
...

...
. . .

...
λn1 λn2 · · · λnn

 , Λ1 = −det


1 1 · · · 1
λ21 λ22 · · · λ2n
...

...
. . .

...
λn1 λn2 · · · λnn

 , . . .

up to

Λn = (−1)n det


1 1 · · · 1
λ1 λ2 · · · λn
...

...
. . .

...
λn−11 λn−12 · · · λn−1n

 .

The last determinant here is the Vandermonde determinant and in fact
the others are multiples of the Vandermonde determinant by a symmetric
polynomial in the λi. However, for our purposes this is not important.

Multiplying equation (4) by the vector of cofactors gives a linear equa-
tion,

a0Λ0 + a1Λ1 + a2Λ2 + · · ·+ anΛn = 0.

Next we take another n + 1 rows from equation (3), this time starting
from the second row,

λ1 λ2 · · · λn
λ21 λ22 · · · λ2n
...

...
. . .

...
λn+1
1 λn+1

2 · · · λn+1
n



p2n1
p2n2
...
p2nn

 =


a1
a2
...

an+1

 .

Notice that for any λi we have that

Λ0λi + Λ1λ
2
i + · · ·+ Λnλ

n+1
i = λi(Λ0 + Λ1λi + · · ·+ Λnλ

n
i ) = 0,
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and hence we get another linear homogeneous equation,

a1Λ0 + a2Λ1 + a3Λ2 + · · ·+ an+1Λn = 0.

Clearly we can repeat this procedure until we get n+ 1 equations,

a0Λ0 + a1Λ1 + a2Λ2 + · · · + anΛn = 0,
a1Λ0 + a2Λ1 + a3Λ2 + · · · + an+1Λn = 0,

...
anΛ0 + an+1Λ1 + an+2Λ2 + · · · + a2nΛn = 0.

In matrix-vector form this is
a0 a1 · · · an
a1 a2 · · · an+1

...
... . .

. ...
an an+1 · · · a2n




Λ0

Λ1

...
Λn

 =


0
0
...
0

 . (5)

Now clearly the vanishing of the catalecticant,

det


a0 a1 · · · an
a1 a2 · · · an+1

...
... . .

. ...
an an+1 · · · a2n

 = 0,

gives a necessary condition for the decomposition to be possible, otherwise
only the trivial solution for the Λi would be possible.

To show that this condition is also sufficient, note that, if it holds, then
equation (5) has a nontrivial solution. With the solutions for the Λi we can
find the λi as the n solutions to the polynomial equation

Λ0 + Λ1λ+ · · ·+ Λnλ
n = 0.

Finally the p2ni , and hence the pi, can be found by linear algebra, that is,
from equation (3).

4 An Application

I found this problem in an old textbook, [3]: Show that the secant variety to
the rational normal quartic curve is a cubic hypersurface. A hypersurface
is an algebraic variety with dimension one less than that of the projective
space it lies in; a primal in older language.
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The rational normal quartic curve can be thought of as a mapping from
the projective line P1 to P4. In particular, if the line has homogeneous
coordinates (s : t) then the mapping is given by

(s : t) −→ (s4 : s3t : s2t2 : st3 : t4).

This can be seen as a parametrization of the curve, with homogeneous
parameters s and t. It is an example of a Veronese embedding, a general
way to map one projective space into another of higher dimension.

If the P4 has homogeneous coordinates (x0 : x1 : x2 : x3 : x4) then the
curve is given by the intersection of six quadric (degree 2) hypersurfaces.
These can be expressed as

Rank

(
x0 x1 x2 x3
x1 x2 x3 x4

)
= 1.

That is the quadrics are given by the six degree 2 equations,

x0x2 − x21 = 0,
x0x3 − x1x2 = 0,
x0x4 − x1x3 = 0,
x1x3 − x22 = 0,

x1x4 − x2x3 = 0,
x2x4 − x23 = 0.

Now we can think of points in P4 as quartic binary forms; given a form

a0y
4 + 4a1y

3x+ 6a2y
2x2 + 4a3yx

3 + a4x
4,

we will associate with it the point

(a0 : a1 : a2 : a3 : a4) ∈ P4.

Note that multiplying the form by an overall non-zero constant doesn’t
change it, so these are points in a projective space.

Under this mapping, forms which can be decomposed as the fourth
power of a linear factor describe a rational normal quartic curve. To see
this consider the fourth power of an arbitrary linear factor,

(px+ qy)4 = q4y4 + 4pq3xy3 + 6p2q2x2y2 + 4p3qx3y + p4x4,

where p and q are arbitrary. Such forms will be mapped to the points
(q4 : pq3 : p2q2 : p3q : p4) in P4. That is, they lie on a rational normal
quartic curve.
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A secant line to a curve is a line which meets the curve in two points.
The closure of the set of these lines will also include tangent lines to the
curve, where the two points of intersection coalesce. The set of points on
all possible secant lines to an algebraic curve will form a three dimensional
variety; two dimensions given by varying the points along the curve and
another dimension as the point can move along the line. This means that for
our quartic curve, its secant variety will be a hypersurface in P4 and hence it
will be given by a single equation. Since the points on the curve correspond
to forms which are decomposable into single quartic factors, a point on
a secant line to the curve will correspond to a linear combination of such
quartics. So the condition for a quartic binary form to be decomposable into
the fourth powers of a pair of linear terms will be the same as the condition
for the point in P4 to lie on the secant variety to the rational normal quartic
curve. That is,

det

a0 a1 a2
a1 a2 a3
a2 a3 a4

 = 0,

clearly a homogenous cubic in the coordinates of P4.
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Problem 277.1 – Cooling towers
Find a function f(x, y) that convincingly
models the shape of a power station cool-
ing tower. The picture on the right, taken
at East Midlands Parkway station from in-
side the St Pancras to Nottingham train,
shows these structures at the Ratcliffe-on-
Soar Power Station. Why do they have
that shape?
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Solution 275.4 – Hidden die
A special X-ray scanner can detect the results of a hidden die
rolled inside a box. The results are 90 per cent accurate. The
scanner shows that a six has been rolled. What is the probability
that the die in the box actually shows a six?

Several and varied answers were offered when the problem was
aired at the 2017 M500 Winter Weekend in January. Thanks to
Rob and Judith Rolfe for suggesting it.

Rob Rolfe
It is not totally impossible to get oneself in knots here.

(1) I’ve decided that I might have overlooked a possible credible alter-
native solution to the one that I delivered during the M500 Winter Weekend
at Nottingham. The reasoning leading to 9/14 could be wrong, since if we
say that 14/60 the output would be ‘6’, we can say the same for each of the
other five numbers, hence getting a total of 84/60.

The wrong output for the 50/60 actual outcomes ‘not a 6’, a total of five
wrongs, are not all 6s, in fact only 1/5 of them, one, would be a 6. That is,
in 60 throws, the scanner would output a 6 ten times, of which nine would
be correct, hence the chances of the scanner giving the correct outcome is
90 per cent, as Diana suggested at the Weekend.

However . . .

(2) Consider a die with five green faces and one red, and a scanner
output which is 90 per cent accurate. In sixty throws, there will be on
average ten reds, of which nine will be correctly reported. There will be
fifty greens, of which 10 per cent, five, will be reported as red. Where is the
reasoning false?

But . . .

(3) Consider different probabilities. Take a hypothetical disease with
an incidence of 10/1000, or 1 per cent. A 90 per cent accurate test of 1000
people would give: (a) of 10 people who had the disease on average, nine
would be told so correctly (b) of 990 people who did not have the disease, 99
would be told they did, incorrectly. Thus 108 people would be told they had
the disease, although only nine of them did. 892 would be told they did not
have the disease, although only one of them did. Summarizing, taking the
test and getting a positive outcome would increase the probability of you
having the disease from 10/1000 to 9/108, while getting a negative outcome
would decrease the probability of you having the disease from 10/1000 to
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1/892. (If you were the worrying kind, would a negative outcome make any
difference? A positive outcome certainly would for most people. This is
an argument against scanning without other indicators, which is not our
concern here.)

I think this problem could run and run, but I would like the Winter
Weekend participants to know I’ve changed my mind.

On the other hand . . .

(4) My thoughts at Nottingham were correct, but I did not generalize
enough. In 60 throws of the die, the output would be ‘6’ (which I shall
call positive), 14 times. This exaggerates the number of sixes. Of those 14
outputs, only 9 would be correct. That is, the chance of the box actually
containing a six, given the output ‘6’, would be 9/14.

Consider if it were a fair coin and not a die. Same scanner, 90 per
cent accuracy. Then in 100 tosses the scanner output ‘heads’ would occur
50× 0.9 + 50× 0.1 times = 50, so no exaggeration.

Now consider if the actual incidence were 3/5. The positive output
would be 0.6×0.9+0.4×0.1 = 0.58, i.e. the number of positives is reduced.

To generalize: Any test of less than 100 per cent accuracy will generate
false positives if the incidence is less than 0.5, be correct for the wrong
reasons if the incidence is 0.5, and generate false negatives if the incidence
is greater than 0.5.

As a further test, try incidences of 0 per cent and 100 per cent.

This is the big argument against medical screening without other indi-
cators. Since practically all diseases have a very low incidence, the problems
caused by false positives can far outweigh any benefit of screening. However,
I do not in any way pretend any expertise in this field.

Jeremy Humphries
The probabilities the die is showing 1, 2, 3, 4, 5 or 6 are each 1/6. If the
die is showing 1 and the 90 per cent X-ray says 6, the probability of that is

1

6
· 1

10
· 1

5
=

1

300
.

Ditto if the die is showing 2, 3, 4 and 5. (Because the X-ray has 1/10
chance of going wrong, and 1/5 chance of giving 6 as its wrong answer.
I’m assuming all wrong answers are equally likely.) So the total of those
probabilities is 5/300, or 1/60.
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If the die is showing 6 and the 90 per cent X-ray says it’s a 6, the
probability of that is

1

6
· 9

10
=

9

60
.

Therefore when the X-ray says it’s a 6, it’s right nine times out of ten. So
the probability it really is a 6 is 9/10.

That’s the same as the X-ray success rate. And that seems to be gen-
erally the case. If the X-ray is right with probability p, then if it says that
the die is showing a particular number the probability it’s really showing
that number is p. Sounds obvious really.

Chris Pile
If the scanner shows a six and is 90 per cent accurate, then the probability
that the die is a six is 90 per cent!! No problem.

To determine this by ‘equally probable outcomes’, consider rolling the
die 600 times. Expected results would be 100 outcomes of each of the faces
1, 2, 3, 4, 5, 6. The scanner would show 540 results accurately. Thus it
would show 90 sixes accurately. The remaining 60 outcomes (10 of each
value) would not be shown accurately. Assuming the scanner is not biased
in its inaccuracy, the 10 sixes would be shown as 2 of each value 1 to 5.
The ten 1s would be shown as two each of the other values (including 6).
Similarly for 2, 3, 4, 5. Therefore 10 sixes are shown inaccurately. Hence
the scanner shows 90 accurate plus 10 inaccurate sixes. Therefore, if the
scanner shows a six, the probability that the die is actually a six is 90 per
cent as originally expected.

Tony Forbes
To deal with thorny probability questions which have presented themselves
to me over the years, I always use a fool-proof method: computer simula-
tion. Admittedly it can only give an approximate answer, but it is usually
sufficient to provide the hint you need to obtain the correct solution ana-
lytically. Actually, when I say fool-proof I really mean that the method is
guaranteed to work only if the program is correct. Otherwise it will solve
a different problem. Anyway, I find that my computer simulations get the
desired results often—about 90 per cent of the time.

Here is what happened with two typical runs of 1000000 trials. Let t
be the number of times a 6 is reported and let s be the number of times a
reported 6 is actually thrown.
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(i) We assume that the X-ray scanner is acting as a 6-detector, getting
it right with 90 per cent accuracy. A 6 is reported if it is a 6 (probability
1/6) and the machine is right (90%), or if it is not a 6 (5/6) and the machine
gets it wrong (10%).

s = 149467, t = 232877, s/t ≈ 0.641828 ≈ 9/14.

(ii) Now suppose the X-ray scanner looks at the die and tries to decide what
it is, getting it right 90 percent of the time with the remaining 10 per cent
spread equitably over the five wrong numbers. A 6 is reported if a 6 is
thrown (1/6) and the machine is right (90%), or an x is thrown (1/6) and
the machine shows 6 (2%), x = 1, 2, 3, 4, 5.

s = 150271, t = 166838, s/t ≈ 0.899681 ≈ 90%.

Reassuringly, t/1000000 is about 1/6, as it should be since this model of the
scanner ought to show the numbers with approximately equal frequencies.

However, one can consider other models. For instance, a realistic pos-
sibility is that the device’s spot-counting mechanism is only slightly faulty,
with a maximum error of ±1. So 6 gets reported as 6 (90%) or 5 (10%), 5
gets reported as 4 (5%) or 5 (90%) or 6 (5%), and so on.

s = 150783, t = 158965, s/t ≈ 0.94853.

I leave it for someone else to analyse.

Problem 277.2 – Circle

William R. Bell

The points A and B lie on the circle
with equation

x2 + y2 = 25.

The tangents to the circle at A and B
meet at the point P = (1, 7). Show that
the chord AB has equation

x+ 7y = 25.

In what ratio does this chord divide the
area of the circle?

A
B

P

O
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Solution 274.2 – Holey cube
A (2h + 1) × (2h + 1) × (2h + 1) cube has
three mutually orthogonal h×h arrays of 1×1
holes running through it. Find a formula for
c(h), the number of little cubes used in its con-
struction, and f(h), the number of exposed
facelets. Hence or otherwise compute the limit
of f(h)/c(h) as h tends to infinity.

Robin Marks
Consider a substructure S consisting of a cube with three orthogonal cubes
attached, as in the left-hand illustration, below.

We assemble (h+ 1)3 copies of S to make a holey cube with (h+ 1)2 extra
cubes attached to three of its faces, as illustrated on the right, above. From
the pictures it is plain that

c(h) = 4(h+ 1)3 − 3(h+ 1)2

and

f(h) = 12(h+ 1)3 + 6(h+ 1)2 − 3 · 4(h+ 1)2 = 12(h+ 1)3 − 6(h+ 1)2.

Hence f(h)/c(h) = (12h3 + O(h2))/(4h3 + O(h2)), which has limit 3 as h
tends to infinity.
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Problem 277.3 – Coasters
Tommy Moorhouse
Three identical circular coasters lie on a table. The coasters are in contact
so that the shape of the ‘hole’ in the middle is a triangle with curved concave
edges. If the distance from the centre of that ‘triangle’ (call it a ‘c-triangle’)
to a vertex (where the coasters touch) is called ρ, what is the area of the
c-triangle?

It is possible to generalize this and an interesting thing emerges. Sup-
pose N circles are arranged so that each touches two neighbours and their
centres lie on a larger circle so that a regular c-N -gon (an N -gon with curved
edges) is formed. Again, let the distance from the centre of the large circle
to a vertex of the c-N -gon be ρ. What is the area AN of the c-N -gon? Try
small values of N at first and then see if you can find a general formula
depending on ρ and N .

Check that AN → πρ2 as N →∞. Now consider the length of the curve
formed by the N small circular edges, and show that it tends to π2ρ and
not 2πρ.

If this surprises you then another curiosity may throw some light on it.
A straight line is drawn in the plane and two points A and B a distance 1
apart are chosen. A path between A and B is drawn by forming the two
sides of an equilateral triangle with apex C above the midpoint of AB. This
path is twice as long as the line AB. Now break the lines AC and CB at
their midpoints and invert the peak, so that C now lies at the midpoint of
AB, and the path is now an M shape of length 2 (as we have not altered
the length of the path at all). The apexes are half the height of the original
apex C. Repeat this process with each peak, so that the Nth iteration is
a path with 2n peaks of height 1/2n and length 2. As N → ∞ the path
goes to zero height above AB but still has length 2. The limiting path is
continuous but does not have a definite slope (‘is not differentiable’) at any
point. A similar thing is happening with the coaster construction.
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Solution 253.4 – Two colours
Is it possible to colour each point of R2 red or blue in such
a manner that no continuous curve containing more than one
point is monochromatic?

Reinhardt Messerschmidt

Such a colouring exists if the axiom of choice is assumed. I found the idea
behind the following solution at [1], after many of my own unsuccessful
attempts.

If A is a set, then Ac will denote its complement with respect to R, i.e.
Ac = R−A. All statements involving measurability or measure will be with
respect to the Lebesgue σ-algebra and the Lebesgue measure λ on R.

We will prove later that there exists a subset X of R with the following
property:

if u < v then X ∩ [u, v] and Xc ∩ [u, v] are not measurable. (∗)

Let

R =
(
X ×Q

)
∪
(
Xc ×Qc

)
,

B = R2 −R =
(
X ×Qc

)
∪
(
Xc ×Q

)
.

Colour the set R red and the set B blue.

Let I = [0, 1] and suppose f is a continuous function from I into R. We
will show that f must be constant. Let g, h be the coordinates of f ; i.e.
g, h are functions from I into R and f(t) = (g(t), h(t)) for every t. The
functions g, h are continuous because f is continuous; therefore g(I) = [a, b]
and h(I) = [c, d] for some a ≤ b and c ≤ d. Since f(I) is contained in R,

g(t) ∈ X if and only if h(t) ∈ Q;

therefore
X ∩ [a, b] = g

(
h−1(Q)

)
=

⋃
r∈Q

g
(
h−1

(
{r}
))
.

For every r ∈ Q, the set h−1({r}) is a closed subset of the compact set I;
therefore it is compact. Continuous functions preserve compactness; there-
fore g(h−1({r})) is compact; therefore it is closed. It follows that X ∩ [a, b]
is a countable union of closed sets; therefore it is measurable. This implies
that a = b, because if a < b then X ∩ [a, b] is not measurable by (∗). In
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other words, g is constant. If the constant value of g is in X then [c, d] is
contained in Q, otherwise [c, d] is contained in Qc. In either case, c = d;
therefore h is constant. It follows that f is constant.

If f(I) is contained in B, then

Xc ∩ [a, b] =
⋃
r∈Q

g
(
h−1

(
{r}
))
,

and it follows by a similar argument that f is constant.

Existence of a set X satisfying (∗)

If the axiom of choice is assumed, then there exists a subset X of R with
the following property:

every measurable subset of X or Xc has a measure of zero. (∗∗)

For a proof of this claim, see Proposition 1.4.9 in [2]. We will show that X
also satisfies (∗). Suppose, for a contradiction, that u < v and X ∩ [u, v]
or Xc ∩ [u, v] is measurable. Both X ∩ [u, v] and Xc ∩ [u, v] must then be
measurable, because

X ∩ [u, v] = [u, v]−
(
Xc ∩ [u, v]

)
, Xc ∩ [u, v] = [u, v]−

(
X ∩ [u, v]

)
.

It follows by (∗∗) that

λ
(
X ∩ [u, v]

)
= λ

(
Xc ∩ [u, v]

)
= 0;

therefore

0 < v − u = λ
(
[u, v]

)
= λ

(
X ∩ [u, v]

)
+ λ
(
Xc ∩ [u, v]

)
= 0,

which is a contradiction.

References

[1] https://mathoverflow.net/questions/156 (accessed 29 April 2017).

[2] D. L. Cohn, Measure Theory, Birkhäuser, Boston, 1980.

Student: I am planning to take both Real Analysis and Complex Analysis.
Which should I do first?

Tutor: It doesn’t matter. Each is a prerequisite for the other.

— Sent by Eddie Kent.
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Solution 274.6 – Tan integral
Show that

I =

∫ π

0

tan(t/6) tan(t/3)

tan(t/2)
dt = log

36

29
.

Richard Gould
We first use the substitution u = tan(t/6) to give

tan
t

3
=

2u

1− u2
, tan

t

2
=

u+
2u

1− u2

1− 2u2

1− u2

=
3u− u3

1− 3u2
,

du

dt
=

1

6
sec2

t

6
=

1

6
(1 + u2), u(0) = 0, u(π) =

1√
3
.

From which

I = 6

∫ 1/
√
3

0

u · 2u

1− u2
· 1− 3u2

3u− u3
· 1

1 + u2
du

= 12

∫ 1/
√
3

0

u(1− 3u2)

(1− u2)(3− u2)(1 + u2)
du.

After a somewhat lengthy skirmish with partial fractions this becomes

I =

∫ 1/
√
3

0

(
− 6u

1− u2
+

12u

3− u2
+

6u

1 + u2

)
du

=
[
3 ln |1− u2| − 6 ln |3− u2|+ 3 ln |1 + u2|

]1/√3

0

=

[
ln

∣∣∣∣ (1− u4)3

(3− u2)6

∣∣∣∣]1/
√
3

0

= ln

(
83

93
× 36

86
× 36

13

)
= ln

(
36

29

)
,

as required.
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Tony Forbes
As with Problem 272.1 and its solution in M500 274, one is tempted to
consider a generalization

T (a, b, c) =

∫ π

0

tan(t/a) tan(t/b)

tan(t/c)
dt,

and again we see some of the various kinds of behaviour that were observed
in 274. Using the multiple-angle formula,

tannθ =
Im (1 + i tan θ)n

Re (1 + i tan θ)n
,

we can put

m = lcm(a, b, c), α =
m

a
, β =

m

b
, γ =

m

c
, u = tan

t

m
,

and follow Richard Gould’s argument to obtain

T (a, b, c) = m

∫ tan(π/m)

0

Im (1 + iu)α

Re (1 + iu)α
· Im (1 + iu)β

Re (1 + iu)β
· Re (1 + iu)γ

Im (1 + iu)γ
· du

1 + u2
.

Now we are stuck unless we choose a, b and c with some care. Here are a
few examples:

T (3, 3, 2) = 3 log(32/9)− 3,

T (3, 3, 6) = 3 + log 8,

T (4, 6, 3) = 2
√

3− 3 + log
212

39/2
+ log

(−1 +
√

3)4

(1 +
√

3)2
,

T (6, 6, 2) = log(224/315),

T (6, 6, 3) = log(64/27)− 1/2,

T (6, 6, 4) = 6− 4
√

3 + log(218/321) + 12 log(1 +
√

3),

T (6, 6, 12) = 4
√

3− 6 + log(64/27),

T (6, 12, 3) = 3− 2
√

3 + log(29/9) + log(−45 + 26
√

3).

The original problem, T (3, 6, 2), was also solved in a similar manner by
Bruce Roth.
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Solution 274.8 – Binomial coefficients
Let n1, n2, . . . , nr be r ≥ 0 numbers. Show that

r∑
i=1

(
ni
2

)
+

r−1∑
i=1

r∑
j=i+1

ninj =

(
n1 + n2 + · · ·+ nr

2

)
.

Tommy Moorhouse
The starting point is the relation

(1 + x)n =

n∑
i=0

(
n

k

)
xk.

We choose any partition of n, say n = n1 + n2 + · · ·+ nr and write

(1 + x)n1+n2+···+nr = (1 + x)n,
r∏
i=1

(
ni∑
ki=0

(
ni
ki

)
xki

)
=

n∑
k=0

(
n

k

)
xk.

The coefficient of x2 can be read off on each side:∑
k1+k2+···+kr=2

r∏
i=0

(
ni
ki

)
=

(
n

2

)
.

Using (
n

1

)
= n

it is clear that the products on the left are either of the form(
nj
2

)(
nk
0

)
· · · =

(
nj
2

)
or (

nj
1

)(
nm
1

)(
nk
0

)
· · · = njnm.

Each pair (ninj) occurs just once, so we can specify that i < j. Summing,
we conclude that

r∑
i=1

(
ni
2

)
+

r−1∑
i=1

r∑
j=i+1

ninj =

(
n1 + n2 + · · ·+ nr

2

)
.
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Solution 248.6 – Bus stop
Buses arrive at a bus stop according to the Poisson process with
arrival rate β. People arrive at the same bus stop also according
to the Poisson process but with arrival rate α. You arrive at the
same bus stop and see n people (other than yourself) waiting.
How long would you expect to wait for the bus. Assume for
simplicity that only one bus route is served by the stop.

TF writes. I am pleased to inform readers of M500 that the problem has
been solved by Rafael Prieto Curiel. See his article, which is available
on the website of the magazine Chalkdust: ‘Why I hate an empty bus stop’,
http://chalkdustmagazine.com/blog/empty-bus-stop/, 11 August 2016.

As an afterthought, perhaps one can suggest a possible refinement. As
you can imagine, the situation nowadays is different due to the widespread
availability of smart phones. It seems to me, therefore, that it might now
be appropriate to count persons at the bus stop with some weight w > 1
if they are staring at their telephones, assuming those who are not have no
information regarding bus activity. Of course, this problem is soon to be
irrelevant because by 2019, so I am told, every bus stop will have a ‘Next
Bus’ indicator, and hence the arrival time will be determinable exactly—
well, perhaps with a smallish plus-or-minus error.

Chalkdust is a mathematics magazine for undergraduates, edited by
Rafael Prieto Curiel and published by The Department of Mathematics,
University College, London. It is free. The current and all past issues are
available online at http://chalkdustmagazine.com/, and you can usually ob-
tain a paper copy from UCL. The title presumably derives from the waste
product that is the inevitable result of mathematical activity involving the
writing with chalk on a blackboard. However, one cannot help being re-
minded of the time when the white lines on grass tennis courts were painted
with a slurry consisting of powdered chalk and water together with some
kind of binding agent. A consequence of using such material was that the
impact of a tennis ball hitting a line at high speed would throw up a cloud of
white powder the presence of which could provide assistance to the umpire
in reaching his or her decision to award the point one way or the other.
This was especially important in the days before Hawkeye, when player
and umpire had no alternative but to resolve questionable line-judge calls
by evidence-based discussion and debate, as, for example, “I saw chalkdust,
you moron!”
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Problem 277.4 – Characteristic polynomial
For n ≥ 3, let M be an n× n symmetric {0, 1} matrix with 0 all along the
diagonal, and let

m0 +m1x+ · · ·+mnx
n = det(xI −M)

be its characteristic polynomial. Show that

trace(M j) = − j mn−j , j = 1, 2, 3.

For example,

M =


0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

 , M2 =


3 1 1 0
1 2 1 1
1 1 2 1
0 1 1 1

 , M3 =


2 4 4 3
4 2 3 1
4 3 2 1
3 1 1 0

 ,
the characteristic polynomial of M is x4 − 4x2 − 2x + 1, trace(M) = 0,
trace(M2) = 8 and trace(M3) = 6.

Problem 277.5 – Closure and complement
Show that if X is any set of real numbers, then, with the usual topology, the
closure of the complement of the closure of the complement of the closure of
the complement of the closure of X is equal to the closure of the complement
of the closure of X.

For example, if X is the set of rational numbers in the interval (0, 1),
you should end up with (−∞, 0 ] ∪ [1,∞) in both cases. This problem is
actually a special case of Theorem of the Day, number 239, Kuratowski’s
14-set Theorem, http://www.theoremoftheday.org.

Problem 277.6 – Rational sum
Tony Forbes
Suppose a, b and c are rational numbers and let

d = 1 + 20a− 10b+ 4c,

e = 3 + 38a− 17b+ 5c,

f = 3 + 20a− 8b+ 2c.

Show that
∞∑
n=1

n6 + fn5 + en4 + dn3 + cn2 + bn+ a

n4(n+ 1)4

is rational.
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The origin of our dates and degrees
Peter L. Griffiths
Ancient astronomers observing the sky at night and at daytime will have
concluded that there was a yearly cycle of about 360 days, and that equal
night and day occurred twice during this period separated by about 180
days. Furthermore these equinoxes were separated by 90 days from the two
solstices, the summer solstice and the winter solstice.

This is the origin of 360 degrees to a circle, and 90 degrees for a right
angle. Later astronomers were able to calculate the number of days to the
year more accurately as 3651/4. It was felt that the phases of the Moon
should be fitted into this, and it was recognised that one third of the 90
degrees would approximate to the Moon’s approximate cycle of 30 days.
The days of the week seem to originate with the Romans, but the planetary
names of the days of the week seem to be Anglo-French as follows.

French English

Sunday dimanche Sunday
Monday lundi Monday
Tuesday mardi Mars
Wednesday mercredi Mercury
Thursday jeudi Jupiter
Friday vendredi Venus
Saturday samedi Saturday

Host (of The Chase): “On an electricity bill, what does kWh stand for?”

Contestant: “Kilowatts per hour.”

Host: “Correct.”
— sent by Jeremy Humphries

TF: For my enlightenment, I looked up The Chase to see what it was
about and in passing I noticed that the Sun had spent a lot of columns per
inch writing about the daft answers offered by various contestants. However
there was no indication of any such answers actually getting accepted.

Jeremy Humphries: When I was a lot younger I used to read a motoring
magazine. The magazine always gave the units of torque as lb/ft. Did
anybody ever take it seriously? ‘OK, it says do up the cylinder head bolts
to 70 lb/ft. We’ve got a 2 foot spanner, so stick 140 pounds on the end of
it.’

TF again: Sorry, I meant column-inches.
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