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On the average
John Bull
This article is a contribution to the recent run of interest in formulae that
derive from the arithmetic–geometric mean inequality. Actually there are
a lot more examples of means, all having fixed ordering between them for
all values of variables. The most familiar are the harmonic (H), geometric
(G), power (P ) and arithmetic (A) means, where it is always true that
H ≤ G ≤ P ≤ A. Proofs of these relationships can readily be found in
books. Other means and their relationships are rather more elusive. In
fact, there is still plenty of scope for interesting results and innovation,
particularly involving the logarithmic and identric means, which are very
curious beasts.

We are all familiar with the idea of a mean, although we usually have in
mind the arithmetic mean: sum all the samples and take the average. To a
lesser extent most of us will have experienced the harmonic and geometric
means, usually in school by way of problems involving average speed and
area respectively. To a lesser extent still, some will have come across the
root mean square by way of average amplitude. This isn’t the end of it.
There are many more examples and some are given below. First let us
introduce some means. For convenience and simplicity they are first given
in terms of just two samples, a and b, but below they are generalized to any
number of samples.

1. Arithmetic mean A(a, b) =
a+ b

2

2. Harmonic mean H(a, b) =
2ab

a+ b

3. Geometric mean G(a, b) =
√
ab

4. Root mean square R(a, b) =

√
a2 + b2

2

5. Power mean H(a, b) =

(√
a+
√
b

2

)2

6. Contraharmonic mean C(a, b) =
a2 + b2

a+ b

7. Centroidal mean T (a, b) =
2(a2 + ab+ b2)

3(a+ b)
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8. Heronian mean N(a, b) =
a+
√
ab+ b

3

9. Logarithmic mean L(a, b) =
b− a

log b− log a

10. Identric mean I(a, b) =
1

e

(
bb

aa

)1/(b−a)

All means have common properties.

If all the samples are scaled by a common factor, the final result will
also be scaled by the same factor. In other words, if each sample is a unit
of measure—it doesn’t matter what the units are (feet, metres, miles/sec,
etc.)—the mean will also be expressed in the same units. They are all
homogeneous.

If all sample values are equal, the mean will also take this common value.
‘Equal’ is interpreted in the case of the logarithmic and identric means as
the limit a as b tends to a (or b as a tends to b).

Otherwise a mean will always be less than the largest sample and greater
than the smallest sample. In other words, a mean will always lie somewhere
within this range of largest and smallest samples but different means will
be biased towards one end of the range or the other.

Means are all symmetric: the values of a and b may be interchanged. If
means are extended to any number of samples the result will be the same
regardless of the order of the samples.

There are two ways to generalize: allow any number of samples; add
parameters. In most cases extension to any number of samples is obvious;
the exceptions being the logarithmic and identric means. In many cases
it may also be seen how to generalize and consolidate through additional
parameters in the function definition. Some examples follow.

1. Arithmetic mean A(ai) =

∑
ai
n

2. Harmonic mean H(ai) =
n∑
1/ai

3. Geometric mean G(ai) = (
∏
ai)

1/n

4. Root mean square R(r, ai) =

(∑
ari
n

)1/r
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5. Power mean P (r, ai) =

(∑
a
1/r
i

n

)r

6. Contraharmonic mean C(r, ai) =

∑
ari∑
ar−1i

7. Centroidal mean T (ai) =
2

n+ 1

∑
aiaj∑
ai

(j ≥ i)

8. Heronian mean N(ai) =
2

n(n+ 1)

∑
(aiaj)

1/2 (j ≥ i)

Given the symmetry and homogeneous properties, it will be of little
surprise that for any given set of samples the different means will be ordered.
For the cases above where r = 2, it will always be true that H ≤ G ≤ P ≤
N ≤ A ≤ T ≤ R ≤ C, equalities occurring when all the samples are equal.

For less obvious cases, such as for the logarithmic and identric means,
there have been various suggestions for generalizations (e.g. [1]) but, while
strong contenders have been proposed, none of these are definitive. Ideas for
means and their generalizations have emerged from all branches of mathe-
matics: algebra, calculus, geometry, . . . (e.g. [2, 3]).

Means and their inequality relationships are fascinating because they
are true regardless of the sample set taken; in other words they are true for
all ai. Also the relationships hold for any number n of ai, even, in some
instances, as n tends to infinity.

Interesting results emerge when particular values are substituted for the
ai, such as the set of integers from 1 to n. An example was shown in M500
196, p. 21:

A =
1 + 2 + · · ·+ n

n
=

n+ 1

2
,

G = (1 · 2 · . . . · n)1/n = (n!)1/n,

G ≤ A ⇒ n! ≤
(
n+ 1

2

)n
.

Other results that could be obtained by a similar method are

(n!)2/n <
(n+ 1)(2n+ 1)

6
and (n!)3/n <

n(n+ 1)2

4
.

Further results could be obtained by substituting say 1/12, 1/22, 1/32,
. . . , 1/n2, or perhaps the sequence 2/1, 3/2, 4/3, . . . , (n + 1)/n, or the
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reciprocals 1/2, 2/3, 3/4, . . . , n/(n + 1). One might then consider what
happens as n tends to infinity. These happen to be series that produce
familiar results. Many other substitutions could be explored, perhaps in-
volving functions.

The arithmetic and geometric means can also be extended by adding
weights to the samples. These weighted means become

A∗ =
w1a1 + w2a2 + · · ·+ wnan

w1 + w2 + · · ·+ wn

and
G∗ = (aw1

1 · a
w2
2 · . . . · awn

n )
1/(w1+w2+···+wn) .

It is still always true that G∗ ≤ A∗ for any chosen set of values of ai and
wi. This leads to some other interesting results. For example, by assigning
weights 1 and n to the numbers 1 and 1 +x/n respectively, it can be shown
that (

1 +
x

n+ 1

)n+1

≥
(

1 +
x

n

)n
if x > −n.

In this case we use the weighted arithmetic–geometric mean inequality with
just two samples, each weighted. Of course with more weighted samples,
carefully chosen, this result could be extended.

Notice that when handling inequalities is often possible to obtain a
simplification in the form of the inequality by relaxing its strength. Also, it
may not be necessary to go to elaborate means to demonstrate an inequality;
it may simply be constructed from an axiom. For example, consider the
factorial inequality of M500 Problem 193.4, where we have already shown
above that n! ≤ ((n+1)/2)n. Now consider the second part of the problem.
We are given that n is a positive integer. So 0 < n, and hence 0 ≤ n − 1.
By adding n+ 1 to each side it must therefore be true that n+ 1 ≤ 2n and
hence that (n + 1)/2 ≤ n. Multiply both sides by ((n + 1)/2)3, which, of
course, can’t be negative, and we have ((n + 1)/2)4 ≤ n((n + 1)/2)3, and
hence (

n+ 1

2

)n
≤

(
n

(
n+ 1

2

)3
)n/4

.

So the inequality required, which follows from

n! ≤
(
n+ 1

2

)n
≤
(
n(n+ 1)3

8

)n/4
for all n > 0,
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is a first relaxation of strength. A second relaxation of the strength would
be to take 0 ≤ n−2 and see what follows, or generalize by taking 0 ≤ n−r,
where 1 ≤ r ≤ n.

Given the host of results from the various types of mean, and given the
greater freedom to manipulate inequalities by relaxing their strength, it is
surprising that not more elegant and simple results have been published.
Perhaps more will now appear in M500.
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Problem 201.1 – Continued fraction
Prove that

tan θ =
2

cot
θ

2
− 2

cot
θ

22
− 2

cot
θ

23
− 2

cot
θ

24
− . . .

.

Problem 201.2 – Sine series
Prove that

θ = (sin θ)(cos θ) +

∞∑
n=1

2n sin
θ

2n−1
sin2 θ

2n
.

Problem 201.3 – 25 objects
Tony Forbes
Let V be a set of 25 objects. Let Ai, i = 1, 2, ..., n be n different 12-element
subsets of V . For 1 ≤ i < j ≤ n, the number of elements in Ai ∩Aj is 5 or
6. How large can n be?
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More arctangent identities
Tony Forbes
The last thing Bryan Orman did in ‘A class of arctangent identities’, M500
199, was to ask about formulae of the kind

N arctan
1

B
+M arctan

1

C
= arctan

1

A
, (1)

where N and M are positive integers.

First some trigonometry. We need a couple of identities:

tan(x+ y) =
tanx+ tan y

1− (tanx)(tan y)
(2)

and

tannx =

[(n−1)/2]∑
i=0

(−1)i
(

n

2i+ 1

)
tan2i+1 x

[n/2]∑
i=0

(−1)i
(
n

2i

)
tan2i x

, (3)

where n is a positive integer.

To prove (2) and (3), the best method by far is to ignore the usual text
books and instead start with the complex exponential formula

eix = cosx+ i sinx. (4)

Thus

cos(x+ y) + i sin(x+ y) = ei(x+y) = (cosx+ i sinx)(cos y + i sin y).

Equating real and imaginary parts yields the familiar identities

cos(x+ y) = cosx cos y − sinx sin y,

sin(x+ y) = cosx sin y + cos y sinx

from which (2) follows on dividing one by the other. Also from (4) we have

cosnx+ i sinnx = einx = (cosx+ i sinx)n.

When the right hand side is expanded the real terms sum to cosnx and the
imaginary terms to i sinnx. Dividing sinnx by cosnx gives (3).



M500 201 Page 7

With that out of the way we can now proceed. Let us apply tan to both
sides of (1),

1

A
= FN,M (B,C) = tan

(
N arctan

1

B
+M arctan

1

C

)
, (5)

use (2) to get

FN,M (B,C) =
tan(N arctan 1/B) + tan(M arctan 1/C)

1− tan(N arctan 1/B) tan(M arctan 1/C)

and then expand each of the tans with (3). The result is that we obtain a
ratio P (B,C)/Q(B,C), where P (B,C) and Q(B,C) are polynomials in B
and C. For example,

F1,1(B,C) =
B + C

BC − 1
,

F1,2(B,C) =
C2 + 2BC − 1

B (C2 − 1)− 2C
,

F1,3(B,C) =
C3 + 3BC2 − 3C −B
−3C2 +B (C2 − 3)C + 1

,

F1,4(B,C) =
C4 − 6C2 + 4B (C2 − 1)C + 1

−4C3 + 4C +B (C4 − 6C2 + 1)
,

F2,2(B,C) =
2 (B + C) (BC − 1)

(B (C − 1)− C − 1) (C B +B + C − 1)
,

F2,3(B,C) =
(3C2 − 1)B2 + 2C (C2 − 3)B − 3C2 + 1

(B2 − 1)C3 − 6BC2 − 3 (B2 − 1)C + 2B
,

As you can imagine, if N and M are large, the polynomials become quite
complicated.

Observe that F1,2(B,−2B) = −1/(4B3 + 3B) thereby producing in-
finitely many solutions of (1) with

(N,M,B,C,A) = (1, 2, B,−2B,−4B3 − 3B). (6)

And there is another infinite family of solutions for N = 1, M = 2 obtained
by setting B = 4p3 + 3p and C = −2(B − p), where p is a positive integer:

(N,M,B,C,A) = (1, 2, 4p3 + 3p,−8p3 − 4p,−p (16p4 + 20p2 + 5)).
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In fact we can repeat this process indefinitely. We start with (6) and gen-
erate new solutions of (1) by the recursion

(1, 2, B,C,A) → (1, 2,−A, 2A− C,A′), (7)

where

A′ =
4A3 − 2C − 4A2 C +A

(
3 + C2

)
1 + 2AC − C2

.

My proof that A′ is an integer involves a fair amount of messy algebra
the details of which are omitted. Let D = C2 + 2BC − 1. From (5) and the
definition of F1,2(B,C) we have

A =
BC2 − 2C −B

D
.

Also

A′ =
4(B + C)(B2 + 1)(C2 + 1)

D2
−B.

Since A, B and C are integers, it follows that

(A−B)(A− C) =
2C(B + C)(B2 + 1)(C2 + 1)

D2

is also an integer. Furthermore, gcd(D,C) = 1; therefore D2 must divide
2(B + C)(B2 + 1)(C2 + 1). Hence A′ is an integer.

However, (6) does not generate every (1, 2) identity. If we start with
(1, 2, 1,−3, 7) and apply (7), we generate yet another infinite family of so-
lutions.

Some examples are tabulated on the next page. An interesting phe-
nomenon is the appearance of pairs involving the same B value which are
generated from (1,−2,−7) and (1,−3, 7). For instance,

arctan
1

8119
− 2 arctan

1

19601
= arctan

1

47321
,

arctan
1

8119
− 2 arctan

1

13860
= − arctan

1

47321
.

If you add them together, you get a (1, 1) solution,

arctan
1

19601
+ arctan

1

13860
= arctan

1

8119
,

but the process is not always reversible. You do not necessarily get two
(1, 2) identities from a (1, 1) identity.
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Initial (B,C,A) Generated (B,C,A), B < 55000

(1,−2,−7) (7,−12,−41), (41,−70,−239), (239,−408,−1393),
(1393,−2378,−8119), (8119,−13860,−47321),

(47321,−80782,−275807)
(2,−4,−38) (38,−72,−682), (682,−1292,−12238),

(12238,−23184,−219602)
(3,−6,−117) (117,−228,−4443), (4443,−8658,−168717)
(4,−8,−268) (268,−528,−17684), (17684,−34840,−1166876)
(5,−10,−515) (515,−1020,−52525), (52525,−104030,−5357035)
(6,−12,−882) (882,−1752,−128766)
(7,−14,−1393) (1393,−2772,−275807)
(8,−16,−2072) (2072,−4128,−534568)
(9,−18,−2943) (2943,−5868,−959409)
(10,−20,−4030) (4030,−8040,−1620050)
(11,−22,−5357) (5357,−10692,−2603491)
(12,−24,−6948) (6948,−13872,−4015932)
(13,−26,−8827) (8827,−17628,−5984693)
(14,−28,−11018) (11018,−22008,−8660134)
(15,−30,−13545) (13545,−27060,−12217575)
(16,−32,−16432) (16432,−32832,−16859216)
(17,−34,−19703) (19703,−39372,−22816057)
(18,−36,−23382) (23382,−46728,−30349818)
(19,−38,−27493) (27493,−54948,−39754859)
(20,−40,−32060) (32060,−64080,−51360100)
(21,−42,−37107) (37107,−74172,−65530941)
(22,−44,−42658) (42658,−85272,−82671182)
(23,−46,−48737) (48737,−97428,−103224943)

(1,−3, 7) (7,−17, 41), (41,−99, 239),
(239,−577, 1393), (1393,−3363, 8119),

(8119,−19601, 47321), (47321,−114243, 275807)

One way, although perhaps not the best, of discovering further interest-
ing arctangent identities is to perform a brute-force search for integral values
of 1/FN,M (B,C). Because of the tan function in (5), solutions found in this
manner satisfy (1) modulo π. If we want proper solutions of (1), we must
select those values of B and C for which N arctan 1/B +M arctan 1/C lies
in the interval (−π/2, π/2]. Having said that, apart from trivial solutions
such as (7, 5, 1,−1, 0), the only one I can find is given by (1, 4, 1,−5,−239)
and is usually known as Machin’s formula.
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Odds and ends
Probability, chance, odds, percentages, whatever. We are constantly af-
fected by statistics in our daily lives—so you can imagine that it’s a subject
which all the popular media know about. Well, not quite all. Here for your
amusement we have collected together some of the strange things people
have said, trawled from a variety of sources over the past few years.

From Chapter 3 of John McEnroe’s autobiography — ‘The semifinal
matchups that year were Bjorn Borg against Vitas Gerulaitis, and Jimmy
Connors against ... me. Me! I remember walking into the Gloucester
Hotel, the big players’ hotel at the time, and seeing the odds posted on
a chalkboard (everyone bets in London): “Borg, 2-to-1; Connors, 3-to-1;
Gerulaitis, 7-to-1; McEnroe, 250-to-1.”’

Surely he cannot be serious. With odds like that the poor bookmakers
would rapidly go out of business! I suppose 2-to-1 was a misprint for 2-to-1
on, or 0.5-to-1. That maintains the the bookmakers’ advantage over the
punters, just: 2/3 + 1/4 + 1/8 + 1/251 ≈ 1.04565.

British Heart Foundation poster — ‘Nearly half of all people in Britain
will, at some time, be struck by heart disease. If you believe it’ll never
happen to you, chances are you’re wrong.’

Is it not the case that chances are you’re right, rather than wrong? At
least if the phrase ‘nearly half’ has its usual meaning. [Sent by Jeremy
Humphries]

Robert Graves, Claudius the God, Chapter 18 — ‘Sure enough, the three
dice were lying in a neat equilateral triangle and each showed a six! The
odds against Venus are 216 to one, so I can be pardoned for feeling great
elation.’

Perhaps the dice were loaded. More likely, Graves was confusing the
odds with the probability value, 1/63 = 1/216; that’s 215 to one against.

Letter to The Times, 15/11/2002 — ‘Sir, You report that 98 per cent of
convictions for dangerous driving were of men drivers. This means that men
are 49 times more likely than women to be convicted of dangerous driving.’
[Peter Fletcher]
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BBC R4 News, 9.00, 2/9/03 — ‘The chance the asteroid will hit the
earth is one in 909,000.’

BBC R4 News, 10.00, 2/9/03 — ‘There is just under a one in a million
chance that the asteroid will hit the earth.’

One can imagine another interview:

“Good morning Professor. What is the chance that the sun will rise in
the general direction of east tomorrow?”

“Well, taking all our calculations and observations into account, I’d say
the chance of that happening is well under one in a million – something like
one in one, in fact.”

This is a strange usage of the adjective ‘under’. In the usual ordering of
the real numbers, ‘1/a is under 1/b’ means ‘1/a < 1/b’, not ‘a < b’. Recall
that somewhere in M500 192 we reported a local paper saying, ‘Only one
in two cameras are actually in operation, but this could increase to as many
as one in three.’ [Jeremy Humphries]

Advert at Euston Station — ‘A rail route takes up to four times less
land than a motorway.’ [Peter Fletcher]

Herbal Health Newsletter, Issue 1 — ‘ Migraines affect approximately
14% of women and 7% of men; that’s one fifth of the population.’ [Peter
Fletcher]

Man on BBC2 talking about the millennium bug — ‘82 per cent of
big businesses are certain that they have a good chance of being relatively
unaffected.’

Good chance? Relatively unaffected? How meaningful is such a precise
figure as 82?

Macclesfield Express, 16/10/2002 — ‘Legionnaires’ disease is a rare form
of pneumonia that is fatal in up to 15 per cent of cases. ... Most are treated
with antibiotics and recover, but up to one in 15 dies.’ [Peter Fletcher]

Breakfast Programme, BBC R5 — ‘Nine out of ten people said that
health was the most important issue in the election; four out of ten said
Europe was the most important issue.’ [Peter Fletcher]
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The Fibonacci series and the golden section
Sebastian Hayes
I had always wondered how on earth it could be that the ratios of successive
terms tn/tn−1 of any complex number Fibonacci series, i.e. one verifying
tn+1 = tn + tn−1, converge to φ = (1 +

√
5)/2; so thanks to Dennis Morris

for explaining this point in his fascinating article (M500 198, pp l–7). But
why should there be any connection between the breeding of rabbits and
the golden section in the first place?

The brilliant thirteenth century mathematician Fibonacci does not men-
tion the golden section nor does he introduce the numbers forever associated
with his name as a recursive series. He sets the reader a curious mathemat-
ical problem not unlike ones regularly appearing in M500 and which, at the
other end of the time scale, could easily have figured in the Rhind Papyrus.
(The conundrum As I was going to St Ives, I passed a man with seven wives
. . . probably does go back to the Egyptians.) Suppose a pair of rabbits is
shut up in a certain place and they produce a pair every month, how many
pairs will we have in a year? This is easy, at any rate to us—we have a
geometric series with t1 = 1 and constant ratio 2. But Fibonacci introduces
the real-life constraint of an inevitable period of infertility during matura-
tion setting this at one month by which we must understand a full month,
beginning to end, passed in the enclosure. Thus, supposing pn gives the
number of pairs at the end of month n, pn+1 = 2pn− (infertile pairs). How
do we know how many infertile pairs there are at the end of the month n+1?
They will be precisely the pairs that have been born during the month n
and so will be given by the discrepancy between the counts on successive
months, i.e. pn − pn−1. Hence the formula,

pn+1 = 2pn − (pn − pn−1) = pn + pn−1.

During month n, the ratio of the productive pairs (marked in black) to
the unproductive pairs is very nearly equal to the ratio of the productive
pairs to the total number of pairs.

� � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

This already has a slightly more geometrical feel—in fact it is precisely the
procedure of cutting a line segment in such a way that ‘the ratio of the
smaller part to the larger is equal to the ratio of the larger part to the
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whole,’ i.e. what Euclid calls ‘dividing a line in extreme and mean ratio.’
Except that in the case of rabbit populations two successive ratios are never
exactly equal.

Now suppose the non-productive period extends to two whole months.
This time the unproductive newly born are given by the difference between
population counts at two month intervals so (newly born) = pn− pn−2 and
the formula becomes

pn+1 = 2pn − (pn − pn−2) = pn + pn−2.

The first few terms are 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, . . . and the ra-
tio of successive terms goes towards 1.4656 . . . . Possibly φ is hidden here
somewhere but I haven’t yet dug it out.

In this model the unproductive pairs are those born in the month that
has just ended and the preceding month, i.e. unproductive = pn−pn−2 while
the productive pairs are those already in existence during month n− 2. So

unproductive

productive
=

pn − pn−2
pn−2

=
pn
pn−2

≈ 1.1478.

Extending the maturation period to 3, 4, . . . , r years gives recursive series
of the form pn+1 = 2pn − (pn − pn−r) = pn + pn−r.

This is not the same set as the ‘φ-type Fibonacci series’ studied by
Dennis Morris: the latter result from imposing a graded initial productivity.
After a month’s full stay a pair is, say, capable of producing a single pair
and after two months two pairs. Now, if every pair had been capable of
producing two new pairs while remaining alive itself we would have pn+3 =
3pn and so

pn+1 = 3pn − (not fully productive).

The difference between pn and pn−1 gives us the unproductive pairs born
in the month that has just ended while pn−1−pn−2 tells us how many pairs
will be producing a single pair only in the coming month instead of two.
We end up with

pn+1 = 3pn − 2(pn − pn−1)− (pn−1 − pn−2) = pn + pn−1 + pn−2.

Extending the grading produces further series of the same type.

The imposition of further constraints provides further series or varia-
tions on the basic ones. If we throw in four newly-born rabbits in the first
month and an extra one in the second, we have p1 = 4, p2 = 5, and though
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this throws the numbers out, the ratios soon become barely distinguish-
able from the standard set. Further sophistications would be to have a
proportion of the pairs remaining permanently infertile, then to make this
proportion itself variable, &c. &c.

As far as we know, the Greeks were not aware of the Fibonacci series. An
Alexandrian craftsman who actually wanted to employ the golden section
in a building or artefact (because of its alleged aesthetic qualities) would
not have got a lot out of Euclid’s strictly non-numerical ‘construction’. He
would have wanted numbers to use in measurement but a mathematician
at the University of Alexandria would have assured him there were none
available. ‘In effect you require a trio 1,m/n, (m/n)2, where m/n is in its
lowest terms and m2/n2 = 1+m/n, or m2 = n2+mn. For reasons of parity
there are no such numbers since if m is even, n odd, we have even = odd +
even, which is impossible, while if m is odd, n even, we have odd = even +
even, likewise. And if there is no unitary solution, there are no solutions.
My regrets.’

It has in fact been plausibly conjectured by Tannery that the original
‘irrational number’ proof concerned not

√
2 but φ.

Our craftsman, working by trial and error, might have stumbled on the
Fibonacci numbers by trial and error. A reasonable first attempt would be
to divide a given length in the middle giving the ratios 1 : 1 and 1 : 2.
The difference in areas is 1 · 2 − 12 = 1 square unit. Chopping the given
length into three equal sections gives the ratios 1 : 2 and 2 : 3 while the
difference in areas, rather pleasingly, remains one square unit. After some
more experimentation our craftsman, if he were really sharp, might realize
that using the second ratio in an attempted golden sectioning as the first
ratio in the next attempt always brings the diagonals closer together and
keeps the difference in the areas at 1 square unit. Since the unit is always
decreasing in real value, the above procedure is sufficient to obtain pairs
of numbers for measurement purposes to any required degree of accuracy.
Tri-golden sectioning would have been more difficult—I do not know of
anyone trying to build a golden parallelepiped—but the principle remains
the same. This time we are looking for numbers a, b and c where a/b =
b/c = c/(a+b+c) and setting a = 1 we have c = b2; hence b3 = 1+b+b2. The
φ3-Fibonacci numbers, as Dennis Morris calls them, i.e. 1, 1, 1, 3, 5, 9, 17 . . . ,
move steadily towards the desired situation without ever attaining it.

I originally assumed the remarkable property F 2
n = F1 ·Fn+1±1 was true

for all Fibonacci2 style series and I was considerably put out that I couldn’t
prove this directly. In fact it isn’t! With the starting points p1 = 4, p2 = 5
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we obtain 52 = 4 · 9 − 11 and it is ±11 that persists. What we have is as
follows. Suppose Fn−1Fn+1 = F 2

n + C. Then

Fn+2Fn = (Fn + Fn+1)Fn

= F 2
n + FnFn+1

= Fn−1Fn+1 − C + FnFn+1

= Fn+1(Fn−1 + Fn)− C
= F 2

n+1 − C.

The spin-off is that the difference between the ratios of successive terms
remains b/a − (a + b)/b = ±C/(ab) with ab increasing and so, irrespec-
tive of the starting points, we get closer and closer to the situation where
b2 = a(a+ b) exactly. If our starting points are arbitrary positive fractions
we eventually end up in the same situation and this is even true of complex
series—it is this same relation Fn+2Fn = Fn+1 ± C, which makes the nu-
merator of the imaginary part go to zero incidentally (see bottom of page 2
of Dennis Morris’s article). If we have two starting values of different signs,
eventually successive terms are either both positive or both negative; so the
ratio is positive. Thus all roads lead to Rome.

Solution 197.2 – Consecutive cubes
Which integers can be expressed as sums of three or more con-
secutive cubes?

Ted Gore

Using
∑n
i=1 i

3 = 1
4n

2(n+ 1)2, we have

n∑
i=r

i2 =

(
n(n+ 1)

2
− (r − 1)r

2

)(
n(n+ 1)

2
+

(r − 1)r

2

)
,

= mj (mj + r(r − 1)), (1)

where m and j are as defined in my solution to Problem 197.1 (page 17).

Let
z = mj (mj + r(r − 1)).

This has the form z = a(a + 2b), where b ≥ 0, so that either z is odd or z
is divisible by 4. This implies that no number of the form 4w + 2 can be
represented as the sum of consecutive cubes.
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It is easily shown that

r = m− j

2
+

1

2
. (2)

In order for z to be expressible as the sum of consecutive cubes we need a
triple of numbers (j,m, r) that fulfils (1) and (2).

Taking the case where z is odd, we see that mj is odd, so that either m
is odd and j is odd (both odd factors of z) or m = s/2 and j = 2t (where s
and t are odd factors of z).

As examples: (i) Consider the case m = 5, j = 3. From (2), r = 4, so
that z = 405 = 43 + 53 + 63. (ii) Let m = 21

2 , j = 6. From (2), r = 0, so
that z = 225 = 03 + 13 + 23 + 33 + 43 + 53.

When z is even, mj is even, so that either m is even and j is odd (both
factors of z), or m = s/2 and j = 2t (where s is an odd factor of z and t is
an even factor).

As examples, consider: (i) m = 4, j = 3. From (2), r = 3, so that
z = 216 = 33 + 43 + 53. (ii) m = 3 1

2 , j = 4. From (2), r = 2, so that
z = 224 = 23 + 33 + 43 + 53.

The following procedure can be used to decide whether a number, z, is
expressible as a sum of consecutive cubes.

(1) The number z is of the form a2 + 2ab, where b ≥ 0 and a = mj, so
a has the same parity as z and a ≤

√
z.

(2) For each value of a, assign values to m and j.

(3) For each m, j pair, calculate r.

(4) Check that the (m, j, r) triple gives rise to z.

A slightly different approach is possible. From (1) and (2) we can derive

z

j
= m3 +m

(
j2 − 1

4

)
and this with p = (j2 − 1)/4 and q = z/j yields

m =
3

√
q

2
+

√
p3

27
+
q2

4
+

3

√
q

2
−
√
p3

27
+
q2

4
.

So m and r can be calculated for each possible value of j and the triple
(m, j, r) tested to see whether it gives rise to z, bearing in mind the con-
straints on the possible values of j and m for a given z.
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Solution 197.1 – Consecutive integers
Which integers can be expressed as sums of three or more con-
secutive integers?

Ted Gore
Using

∑n
i=1 i = n(n+ 1)/2, we have
n∑
i=r

i =
n(n+ 1)

2
− (r − 1)r

2
=

n+ r

2
· (n− r + 1) = mj,

where m is the mean of j consecutive numbers.

Now if j is odd then m is the middle value in the sequence of integers,
k, say, so that

z =

k∑
i=r

i = jk, (1)

while if j is even then m is the mean of the two central values, k and k+ 1;

z = j
(
k + 1

2

)
. (2)

If z is any non-prime number that has an odd factor, we apply (1). For
example, 15 = 3 · 5; let j = 3, k = 5 so that 15 = 4 + 5 + 6. Clearly we can
always choose j ≥ 3.

An interesting development occurs when some of the integers are allowed
to be negative. For example, 33 can be represented as 10 + 11 + 12 (j = 3,
k = 11), or −2− 1 + 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 3 + 4 + 5 + 6 + 7 + 8
(j = 11, k = 3). It can be shown that once cancellations have been carried
out between corresponding positive and negative integers, the number of
consecutive integers left, j∗ = 2k, is bound to be greater than 3 for non-
primes with odd factors.

If j is even then z = j
(
k + 1

2

)
. For any odd prime p we have p = 2·(p/2)

(j = 2, m = k + 1
2 ), so that k = (p− 1)/2, k + 1 = (p+ 1)/2 and

p =
p− 1

2
+
p+ 1

2
.

For any power of two we have 2s = 2t ·2s−t, so that 2s−t = k+ 1
2 , which

can only be true if k = 0 and j∗ = 2
(
k + 1

2

)
= 1. Thus 2s can only be

expressed (trivially) as one consecutive integer.

In summary: (a) Any non-prime with an odd factor (not less than 3)
can be expressed as the sum of three or more consecutive integers. (b) Odd
primes can be expressed as the sum of two consecutive integers. (c) Powers
of 2 cannot be expressed as sums of two or more consecutive integers.
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Solution 197.6 – 36 circles

Look at the dia-
gram on the right.
The innermost cir-
cle has radius 1, the
circles in the inner
ring have radius a,
the circles in the
middle ring have ra-
dius b and the cir-
cles in the outer
ring have radius c.
Determine a, b and
c.

Basil Thompson
Inspired by the front cover of issue 198 I decided to have a go. I am unable
to find any simple sequence or connection between the radii, apart from, of
course, the tangent formula used for a, b, c, etc. Instead I worked them all
out to five decimal places hoping for inspiration.

1
a a

b
b c

c d
d

O A B C D
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Referring to the diagram, we have OA =
√

2a+ 1, AB = 2
√
ab, BC =

2
√
bc, CD = 2

√
cd, and so on. Also sin 36◦ = a/(1 + a); hence

a =
sin 36◦

1− sin 36◦
≈ 1.42592.

For b, we have

tan 18◦ =
b

√
2a+ 1 + 2

√
ab

and on substituting the values for a and tan 18◦ we obtain this equation,

0.63769 + 0.77600
√
b = b, (1)

which on rearranging and squaring becomes

b2 − 1.87754b+ 0.40665 = 0.

This equation has two solutions:

b ≈ 1.62771 and b ≈ 0.24983.

The correct value to use is b ≈ 1.62771; the other one, generated by the
squaring process, is not a valid solution of (1).

To calculate c, we have

tan 9◦ =
b

√
2a+ 1 + 2

√
ab+ 2

√
bc

and this time we get

0.79344 + 0.40414
√
c = c,

which has the solution c ≈ 1.24423. Similarly,

tan 4 1
2

◦
=

b
√

2a+ 1 + 2
√
ab+ 2

√
bc+ 2

√
cd
,

0.61826 + 0.17558
√
d = d,

d ≈ 0.77259. The formula used to find b, c and d can be extended. From
the diagram it can be seen that the circles get smaller after B.
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Tony Forbes
I am inclined to agree with Basil’s observation that there is no simple for-
mula for the radii as the circles get further from the centre—in spite of a
promising start. Using the formula

sin 36◦ = 1
2

√
1
2

(
5−
√

5
)

we obtain this expression:

a = 5− 2
√

5 +

√
50− 22

√
5.

Curiously, a− 1 is very nearly equal to 113/55. A coincidence, surely.

Thereafter things get horribly messy. With a certain amount of effort
it is possible to get exact formulae for b and c. Having done the work I feel
obliged to pass on the results of my labours. It is not sensible to include all
the intermediate details, so I just quote the final answer:

b = 16− 7
√

5 +

√
554− 1238√

5
+ 2

√
259− 579√

5
+

4

5

√
209050− 93490

√
5

and

c = 98− 47
√

5 + (17 + 6
√

5)j2 +

(
12 +

34√
5

)
j3

+ j

(
57− 27

√
5− 6

(
1 +

1√
5

)
j3

)

+
2√
5

√(
97710− 43614

√
5 + 32(103 + 45

√
5) j1

+ 20(73−
√

5)j2 + 8
(
73
√

5− 5 + (225 + 103
√

5)j2
)
j3

+ j
(

123(535− 241
√

5)− 4
(
275− 77

√
5 + (155 + 63

√
5)j2

)
j3

))
,

where

j =
√

5 + 2
√

5, j1 =
√

209050− 93490
√

5,

j2 =
√

554− 1238/
√

5 and j3 =
√

1295− 579
√

5 + 4j1.

By the way, in case you are worried about your eyesight, staring at the
36 circles diagram does have a dizzying effect. All those circular tangents
seem to confuse the brain, and the eyes are unable to focus correctly.
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Highest common factor
John Byrne

In M500 198, page 21, the problem you pose is to find the prime factors of
a and b, where

a = 3 94020 06196 39447 92330 46804 46811 60078 93398 29458
92387 22475 04307 08947 55507 64181 30273 08398 62936 98852
77753 11113 49458 02497

and

b = 3 94020 06196 39447 92330 46804 48005 17655 67233 17400
56861 65122 75841 35826 02387 09158 68013 02250 74049 82336
01099 13554 78053 53497.

The common factors are 7922 81625 14264 33760 39837 22123 and 7922
81625 14264 33760 39837 22127. The additional factors for a are 7922
81625 14264 33760 39837 22117 and 7922 81625 14264 33760 39837 22121.
The additional factors for b are 7922 81625 14264 33760 39837 22129 and
7922 81625 14264 33760 39837 22133. Such is the wonder of computers.

ADF writes—You may have noticed that there is not much difference
between the prime factors. In fact we have here a modest example of a prime
sextuplet, six primes in a range of 16. (You can’t get closer than 16 except
for a few special cases at the beginning of the prime number sequence.)
Thus

a = P (P + 4)(P + 6)(P + 10),

b = (P + 6)(P + 10)(P + 12)(P + 16)

and
g = gcd(a, b) = (P + 6)(P + 10),

where P = 79228162514264337603983722117.

I realized after M500 198 went to press that it is possible (though some-
what laborious) to factorize g, a/g and b/g by hand—provided you attack
them in the right manner. The trick is to use Fermat’s method. Take g, for
instance. Trying y = 1, 2, 3, . . . in turn, we test g+ 1, g+ 4, g+ 9, . . . until
we find a perfect square, g + y2 = x2, say. Then g = (x + y)(x − y). The
method succeeds because the factors of g are so close together. Indeed, you
only need to go as far as y = 2, at which point you discover that g + 4 is a
square, (P + 8)2.
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Letter to the Editor
Dear Tony,

For a moment I thought that our amazing M500 magazine had answered
my question before I had asked it. It involved a test for division by 7. We
had just been on holiday with a friend, who said that she was taught a
method at school. Sadly, she cannot remember it and I couldn’t work
out anything quicker than an essentially modular approach. Even then, I
think children would find it easier to work through the two digits at a time
knocking out multiples of 7. Dennis Morris’s article looked as if it would
solve the problem but 7 is sadly missing. Since 10 ≡ 3 (mod 7) there is still
a lot of work to do. Does any M500 reader have a simpler approach?

He doesn’t point out that since 10 ≡ 1 (mod 3), the same test applies
for division by 3, a fact that people who know the test for 9 don’t always
realize. As 7 is so important in our calendar system, you would expect some
simple test to have emerged.

The other intriguing feature of 7 is the decimal version of the basic
fractions all consisting of the digits 142857 recurring with the initial digit
varying. Can anyone explain why this strange pattern appears in the dec-
imal system and why 0, 3, 6 and 9 do not appear, although all ten digits
from 0 to 9 appear in multiples of 7?

I also enjoyed Dennis’s article on φ in the previous edition 198. He calls
it the golden ratio without actually describing it in terms of dividing a line
in the ratio φ : 1 or the ‘golden rectangle’ with sides in the same ratio such
that 1/φ = φ/(φ+ 1), which immediately gives the equation φ2 = φ+ 1 and
so the values 1

2 (1±
√

5).

Its continued fraction form φ = [1; 1, 1, 1, . . . ] demonstrates its claim to
be the most irrational number since it converges most slowly to its ultimate
value, where φ = 1 + 1/φ. Its successive values give precisely the successive
Fibonacci ratios, 1

1 ,
2
1 ,

3
2 ,

5
3 , . . . . An alternative approach using the matrix[

1 1
1 0

]
, setting up the Fibonacci numbers from any initial pair of numbers,

explains why it is so amazing that the ratios converge towards φ. The

ultimate value depends on the eigenvalues of

[
1 1
1 0

]
. (Can someone fill in

the details as I can no longer remember them or work them out.) By the

usual calculation, they come from

[
1− λ 1

1 λ

]
= 0, giving λ2 − λ − 1 = 0;

so λ = 1
2 (1±

√
5), as we had before.
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Finally, looking back a long time to the 12 pennies problem and Ian
Stewart’s laboured approach [Telegraph, 8 February 2003] for which you
gave a much more systematic method [M500 191], can you tell me how
you reached the array you proposed? I was working on a similar array by
eliminating redundant arrangements from all possible ones but I ran into
problems. Can you put me out of my misery?

Many thanks for all you do to keep the magazine going—I do enjoy it.

Yours,

John V. Budd

Tony Forbes writes — In all probability there does not exist a divisi-
bility test for 7 of the same simplicity and elegance as that for 3, say, or even
11. Once one notices that 1001 ≡ 0 (mod 7), one can devise the following,
which is similar to the test for 11:

Split the number into groups of three digits, starting from the
units. Alternately add and subtract the resulting three-digit
numbers. If the sum is divisible by 7, so is the original number.

In case this description is too obscure, let us work through a typical example.
Is 314 159 265 divisible by 7? Yes, because 265 − 159 + 314 = 420 and 420
is a multiple of 7. The main problem is the committing to memory of the
seven times table all the way up to 142 × 7 = 994. However, you don’t
have to go any further. For if the number is large, you can perform the test
iteratively. Thus 314 159 265 358 979 323 846 264 338 → 338 − 264 + 846 −
323 + 979 − 358 + 265 − 159 + 314 = 1638. Then 1 638 → 638 − 1 = 637,
and 637 is divisible by 7.

The same test works for 13 as well. Also, since 1001 = 7 · 11 · 13, it
works for 11—but of course we already have a simpler test for that num-
ber. Similarly, if you form groups of four digits instead of three, you have
divisibility tests for 73 and 137 should you ever need them.

With regard to the twelve tarts solution in M500 191, I have to admit
that there is no subtlety here. I arrived at the weighing instructions by
brute force—simply trying out possible combinations until I found one which
worked. That is why I gave no explanation. It’s rather like the way a
professional mathematician solves a quadratic equation which factorizes.

(i) Use the formula (−b±
√
b2 − 4ac)/(2a).

(ii) Notice that the solutions are rational.
(iii) Solve by factorizing the equation.
(iv) Erase all evidence that you did (i).
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An exponential sum
Tony Forbes
Look at the front cover of this issue. Yes, I’m afraid that like 36 circles on
page 18, this picture also seems to make the brain go dizzy. I am sure we
would be interested if there any psychologists out there who can offer an
explanation of this phenomenon. Anyway, the cover picture is a plot of the
first 20000 partial sums of

SN =

N∑
n=1

n200πi. (1)

That is, for each N from 1 to 20000, you plot a point at SN in the complex
plane.

As you can see from the blow-up of the hole in the middle of the dark
area (upper plot on the next page), the centre of the thing, z0, say, is
at approximately z0 = −7.07 + 4.80 i. I have no idea why this point is
significant. Also I notice that the diameter of the hole is 1, at least very
nearly. Therefore it seems that the first 20000 partial sums of (1) avoid the
region |z − z0| < 1

2 . I suggest two problems.

(i) Find the correct exact expression for z0, the centre of the hole.

(ii) Either prove that SN lies outside the region |z − z0| < 1
2 for all

positive integers N , or find a counter-example.

The smudgy bit to the south-east of the centre represents the first few
partial sums of (1) before it settles down to produce the more regular part
of the pattern. This is illustrated by lower plot on the next page, which
shows S1, S2, . . . , S1000.

Reflecting on the form of (1), I feel that I ought to explain my choice of
the exponent 200πi. All I can suggest is that it is a special case of a general
type of exponential sum,

N∑
n=1

exp(2πif(n)) =

N∑
n=1

(cos 2πf(n) + i sin 2πf(n)),

where f(n) is a given real function. The presence of the factor i =
√
−1

ensures that each term of the sum has absolute value 1. In fact, what we
are really doing is joining together matchsticks where f(n) determines the
angle (as a fraction of 360 degrees) between the nth matchstick and the
positive real axis. Here I have chosen f(n) = 100 log n.
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