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Problem 259.8 – Binomial ratio, revisited
Let r and s be positive integers. Suppose p is prime and that
(ps − 1)/(pr − 1) is an integer. Is it (i) obviously true, or (ii)
true, or (iii) false that s/r is always an integer.

Tony Forbes
This is not a solution, just some remarks, further clarification and a new
problem to solve. For brevity, write

F (s, r;x) =
xs − 1

xr − 1
.

Someone sent in a solution claiming that the restriction of p to primes
was not necessary. Any integer p ≥ 2 would work. His argument, involving
the decomposition of xn − 1 into cyclotomic polynomials Q`(x),

xn − 1 =
∏
`|n

Q`(x),

and the irreducibility of Q`(x), proved that if s/r is not an integer, then
F (s, r;x) is not a polynomial in x with integer coefficients. However, I don’t
think this solves the problem. Even if F (s, r;x) reduces to the ratio of two
non-trivial polynomials, there is still the possibility of F (s, r; p) ∈ Z for
some specific integer p.

Let us fix a prime p. We know from the cyclotomic polynomial decom-
position of xn − 1 that r|s implies F (s, r; p) is an integer. The problem is
asking whether the converse is true. If F (s, r; p) is an integer, must r|s?

Conceding that the restriction to primes might have been a red herring,
we examine the possibility of extending the parameter p to an arbitrary
integer m. Obviously m = ±1 causes trouble and F (s, r; 0) is always equal
to 1. Moreover, when s is odd F (s, 2;−2) = ((−2)s− 1)/3 is an integer but
of course s/2 isn’t. If we exclude these exceptional values of m, I cannot find
any further examples where exactly one of F (s, r;m) and s/r is an integer.
So let’s scrap 259.8 and replace it with Problem 262.1, below.

I am now of the opinion that (i) is not the answer to the original problem!

Problem 262.1 – Binomial ratio
Let r and s be positive integers and suppose m is an integer other than

−2, −1, 0, 1. Show that
ms − 1

mr − 1
and

s

r
are either both integers or both

non-integers. Or find a counter-example.
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Equilateral triangles and the trisection of angles
Bryan Orman
The mathematical literature contains many interesting geometrical results
concerning triangles, and one very unusual theorem, said to be due to
Napoleon, is stated thus: For a given triangle, if three equilateral trian-
gles are constructed externally on its three sides, then the centres of these
three equilateral triangles form another equilateral triangle, as shown in the
following figure.

Alternatively, if the three equilateral triangles are constructed internally
on the three sides of the given triangle then their centres also form an
equilateral triangle.

The trisection of an angle can produce an equilateral triangle, and the
classic construction, due to Morley, is stated thus. Take any triangle, and if
its internal angles are trisected then three of the points where the trisectors
meet form an equilateral triangle, as shown in the following figure.



M500 262 Page 3

Alternatively, if the three external angles of the given triangle are trisected
then another three equilateral triangles are formed. (Constructing the sec-
ond set of equilateral triangles in both of the above figures is left as an
exercise!) So here the trisection of angles has produced an equilateral tri-
angle.

Is it possible to trisect an angle from the construction of an equilateral
triangle?

Consider the following.

Draw the rectangular hyperbola, xy = −ab, where a > 0 and b > 0.
Draw a line through the origin O with slope − arctan(b/a) to intersect the
hyperbola in two points, namely P = (−a, b) and Q = (a,−b). Then, with
centre Q draw a circle of radius |PQ| to intersect the hyperbola at P , and
at three further points A, B, and C. Finally construct the triangle ABC,
as shown in the following figure.

A

B

C
O

P

Q
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We now show that the triangle ABC is an equilateral triangle.

The equation of the hyperbola is xy = −ab and the equation of the
circle is (x− a)2 + (y+ b)2 = 4(a2 + b2) = 4c2, where 2c is the radius of the
circle. If this circle is parametrized by writing

x = a+ 2c cos θ, y = − b+ 2c sin θ,

then the polar angles of the points of intersection, relative to the centre of
the circle, are given by

(a+ 2c cos θ)(−b+ 2c sin θ) = − ab.

Putting γ = arctan(b/a), this reduces to sin(2θ) = sin(γ − θ), with general
solution

θ =
γ

3
+

2πk

3
, k = 0, ± 1, ± 2, . . . .

Specifically, the polar angles of A, B and C are respectively

γ

3
+

2π

3
,
γ

3
− 2π

3
, and

γ

3
,

with the point P having polar angle π − γ. The three chords of the circle
(the sides of the triangle) subtend equal angles at the centre of the circle so
the triangle is indeed equilateral.

And what about the trisection of an angle? With the information al-
ready obtained, the relevant angles in the previous figure can be readily
evaluated, as shown in the figure on the next page (with the now redun-
dant hyperbola removed). Here, for simplicity, the given angle γ has been
changed to 3α and a further angle 3φ has been identified in the figure. Note
that α + φ = π/6. The figure shows that the given angle 3α has been
trisected, with the angle α given by the slope of the radial line QC. Fur-
thermore, the complement 3φ has been trisected, the angle φ given by the
slope of the radial line BQ. Quite simply, the point B ‘trisects’ the angle
3φ and the point C ‘trisects’ the angle 3α.

Footnote: The trisection of an angle is one of the three classical ge-
ometrical problems of antiquity, the other two being the duplication of a
cube, and the squaring of a circle. The duplication of a cube is equivalent to
finding the cube root of 2, and the squaring of a circle to finding π. Each of
these three problems is to be solved by a geometrical construction involving
straight lines and circles, that is, by Euclidean geometry. Specifically by
‘rulers and compasses’. To trisect a given angle 3α we could start with the
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sine of the angle and solve the equation

sin 3α = 3 sinα− 4 sin3 α

for sinα, and this is a cubic equation. A construction using straight lines
(ax+ by = c) and circles (x2 + y2 + dx+ ey + f = 0) cannot be equivalent
to the solution of a cubic. However, if we allow conic sections, as in the
method given here with the hyperbola, then the trisection of an angle can
be achieved.

3Α

3Φ

4Φ

4Α

Φ

Α

A

B

CO

P

Q
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Hyperplanes that meet at a common point
Tony Forbes
Suppose C1, C2, . . . , Cn are n points in (n− 1)-dimensional space, and let
s1, s2, . . . , sn be any real numbers. Define the n× n matrix T by

T =


c1,1 c1,2 . . . c1,n−1 1
c2,1 c2,2 . . . c2,n−1 1

. . .
cn,1 cn,2 . . . cn,n−1 1

 ,
where ci,j are the coordinates of Ci:

Ci = (ci,1, ci,2, . . . , ci,n−1), i = 1, 2, . . . , n.

Let Tj denote the matrix obtained from T be replacing the entry in row i,
column j with si for i = 1, 2, . . . , n. Thus

T1 =


s1 c1,2 . . . c1,n−1 1
s2 c2,2 . . . c2,n−1 1

. . .
sn cn,2 . . . cn,n−1 1

 , T2 =


c1,1 s1 . . . c1,n−1 1
c2,1 s2 . . . c2,n−1 1

. . .
cn,1 sn . . . cn,n−1 1

 , . . . .
Theorem 1 Suppose C1, C2, . . . , Cn, s1, s2, . . . , sn, T1, T2, . . . , Tn−1 and
T are defined as above. Suppose also that det T 6= 0. For 1 ≤ i < j ≤ n,
let Li,j denote the hyperplane of dimension n− 2 defined by

Li,j : (x1, x2, . . . , xn−1) · (Ci − Cj) = si − sj .

Then (i) Li,j is orthogonal to the line CiCj . Moreover, (ii) the n(n− 1)/2
hyperplanes Li,j meet at a common point,

Q =

(
det T1
det T

,
det T2
det T

, . . . ,
det Tn−1

det T

)
.

Proof (i) As is well known, if A is a vector in Rn−1, the set of vectors X
such that the scalar product (Ci − Cj) · (X − A) = 0 defines the (n − 2)-
dimensional hyperplane through A that is orthogonal to the vector Ci−Cj .
In our case si − sj = (Ci − Cj) ·A.

(ii) Consider the system of linear equations

c1,1 x1 + c1,2 x2 + · · ·+ c1,n−1 xn−1 + xn = s1,

c2,1 x1 + c2,2 x2 + · · ·+ c2,n−1 xn−1 + xn = s2,

. . . , (1)

cn,1 x1 + cn,2 x2 + · · ·+ cn,n−1 xn−1 + xn = sn.
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The matrix of coefficients is T , and since T is non-singular the system has
a unique solution given by Cramer’s rule (Gabriel Cramer, 1750):

xi =
det Ti
det T

, i = 1, 2, . . . , n.

So (x1, x2, . . . , xn−1) = Q and xn = (det Tn)/(det T ) satisfies (1). Since
Li,j is obtained from (1) by subtracting equation j from equation i and
thus eliminating variable xn, it must be that Q lies on Li,j . �

In what follows we show that Theorem 1, a fairly straightforward result
in linear algebra, provides us with a universal tool for proving things about
things intersecting in a common point. I expect you remember from your
high-school days all those constructions where you take a triangle, choose
three lines according to some prescription and then prove that they must
meet in a single point, which might or might not have a fancy name asso-
ciated with it. Well, we shall see that some of these proofs are covered by
Theorem 1 with n = 3. Also we can use Theorem 1 with n = 4 to get simi-
lar results about a tetrahedron and six planes. And then we could continue
with a 4-simplex and ten hyperplanes but by this time the mind is starting
to boggle. Instead we just proceed to consider some simple cases.

Example 1 Suppose s1 = s2 = · · · = sn. Then clearly Q = (0, 0, . . . , 0)
and the hyperplanes all pass through the origin.

Example 2 Hopefully more exciting than Example 1, we look at one of
the triangle theorems alluded to above. Suppose n = 3, and

s1 = − C2 · C3, s2 = − C1 · C3, s3 = − C1 · C2.

Then the Li,j are the altitudes of triangle C1C2C3. For instance, we know
from Theorem 1 that L2,3 is perpendicular to C2C3. Also L2,3 passes
through C1 since C1 · (C2 − C3) = s2 − s3. Thus Q, the common point
guaranteed by Theorem 1, is the orthocentre of 4C1C2C3.

Example 3 Again suppose n = 3 but this time let

s1 =
C1 · C1

4
−C2 · C3

2
, s2 =

C2 · C2

4
−C1 · C3

2
, s3 =

C3 · C3

4
−C1 · C2

2
.

Now the Li,j meet at the centre of the 9-point circle of 4C1C2C3. This is
the circle which passes through the feet of the altitudes of the triangle as
well as the midpoints of the sides and the midpoints of the lines joining the
orthocentre to the vertices—nine points altogether.
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To see this, observe that the 9-point circle is actually the circumcircle
of the midpoints of the sides of 4C1C2C3, and therefore its centre is on the
line M1, say, that is perpendicular to C2C3 and passes through the midpoint
of the line joining (C1 + C2)/2 to (C1 + C3)/2. So M1 has equation

M1 : (x, y) · (C2 − C3) =

(
C1 + C2

4
+
C1 + C3

4

)
· (C2 − C3).

But the right-hand side simplifies to s2−s3 by a straightforward calculation
and hence M1 is L2,3. So the meeting point of L1,2, L1,3 and L2,3 determined
by Theorem 1 is the centre of the 9-point circle. And with some extra work
(which I leave to the reader) one can prove that this circle really does go
through the other six points.

Example 4 Suppose n = 3 and

s1 =
C1 · C1 − C2 · C3

3
, s2 =

C2 · C2 − C1 · C3

3
, s3 =

C3 · C3 − C1 · C2

3
.

Then the Li,j meet at the the point (C1 + C2 + C3)/3, the centroid of
4C1C2C3. For instance, we have

C1 + C2 + C3

3
· (C1−C2) =

C1 · C1 − C2 · C2 + C1 · C3 − C2 · C3

3
= s1−s2,

confirming that L1,2 passes through the centroid.

Example 5 Suppose n = 3 and

s1 =
C1 · C1 − |C1 − C2||C1 − C3|

2
, s2 =

C2 · C2 − |C1 − C2||C2 − C3|
2

,

s3 =
C3 · C3 − |C1 − C3||C2 − C3|

2
.

Then the Li,j meet at the incentre of4C1C2C3. However, my proof is rather
messy and unfit for presentation here; so I will leave it for the reader.
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Example 6 Suppose n = 3 and

s1 =
C1 · C1

2
, s2 =

C2 · C2

2
, s3 =

C3 · C3

2
.

Observe that the line through (Ci +Cj)/2 perpendicular to CiCj has equa-
tion (

(x, y)− Ci + Cj
2

)
· (Ci − Cj) = 0.

On rearranging, this becomes

(x, y) · (Ci − Cj) =
Ci + Cj

2
· (Ci − Cj) =

Ci · Ci − Cj · Cj
2

= si − sj .

So Li,j is the perpendicular bisector of CiCj and Q, the meeting point given
by Theorem 1, is the circumcentre of triangle C1C2C3.

Example 7 More generally, suppose n = 3, let r1, r2 and r3 be non-
negative numbers, and imagine that there is a circle Si of radius ri centred
on Ci, i = 1, 2, 3. Suppose also that

si =
Ci · Ci − r2i

2
, i = 1, 2, 3.

If Si and Sj intersect in two points, then
Li,j is their common chord, i.e. the line
that passes through the two points of
intersection. In the special case where
there are three such chords the result is
sometimes known as Ollerenshaw’s the-
orem. However, it doesn’t matter if Si
and Sj do not intersect in two points.
The lines L1,2, L1,3 and L2,3 are al-
ways well defined and indeed meet at
the point given by Theorem 1.

Ci C j

ri r j

Aa
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In the diagram on the previous page we consider the line through A
perpendicular to CiCj . Let d = |Ci − Cj | and a = |Ci − A|. After some
triangle-bashing we get a/d = (d2 + r2i − r2j )/(2d2) and hence

A = Ci +
a

d
(Cj − Ci) =

Ci + Cj
2

+
r2i − r2j

2d2
(Cj − Ci).

Therefore the constant on the right of the definition of Li,j is

A · (Ci − Cj) =
Ci · Ci − Cj · Cj

2
−
r2i − r2j

2
= si − sj .

Thanks to Robin Whitty for drawing my attention to an item in The Times
of 3 October 2014, where Des MacHale of University College, Cork refers
to this result, at least in the case where the circles truly pairwise inter-
sect in exactly two points, as Ollerenshaw’s Theorem, after Dame Kathleen
Ollerenshaw, who died on 10 August 2014, aged 101.

If you don’t like computing determinants, there is alternative formula.
Suppose circle Ci has centre (xi, yi) and radius ri, i = 1, 2, 3. Let

X =

 x1x2
x3

, Y =

 y1y2
y3

, C =

 x21 + y21 − r21
x22 + y22 − r22
x23 + y23 − r23

, M =

 0 −1 1
1 0 −1
−1 1 0

.
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Then the three lines meet at(
CTM Y

2XTM Y
,
CTMTX

2XTM Y

)
. (2)

To give you some idea of what goes on if the circles fail to intersect, suppose
their centres are located at (−3, 1), (0,−2) and (5, 0), and their radii are
1, 2 and 1 respectively. Then a simple calculation using (2) shows that the
common point is at (9/7, 39/14).

Example 8 Even more generally, suppose r1, r2, . . . , rn are non-negative
numbers, and imagine a hypersphere Si of radius ri centred on Ci, i = 1, 2,
. . . , n. Suppose also that

si =
Ci · Ci − r2i

2
, i = 1, 2, . . . , n.

If Si and Sj intersect in more than a single point, then Li,j is the (n− 2)-
hyperplane that passes through Si ∩Sj . In the special case where there are
such intersections between every pair of hyperspheres, the result generalizes
Ollerenshaw’s three-circles theorem to n − 1 dimensions. The four spheres
case is illustrated on the cover. As before, it doesn’t matter if Si and Sj do
not intersect.
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Solution 259.1 – Four primes
Find a number n such that n is the product of four distinct
primes and every group of order n is Abelian.

Tommy Moorhouse

The strategy We need to find an integer n which is the product of four
consecutive primes and such that every group of order n is Abelian. The
strategy will be to show that we can choose the prime factors p such that
there is exactly one subgroup of each order p. By refining the choice of
factors, guided by some group theory, we can show that any group of order
n, where the factors of n are chosen in accordance with the criteria we
uncover, must be Abelian.

Sylow’s theorems We first invoke Sylow’s theorems. We use the standard
numbering of these theorems given in [Lederman]. Throughout we use the
symbol e to denote the identity element of a group. Let n = p1p2p3p4 where
the pi are consecutive primes. Then Sylow’s first theorem tells us that any
group of order n has at least one subgroup of order pi for each of p1 to p4.

Next we use Sylow’s third theorem, which tells us that the number of
distinct subgroups of order pi is an integer of the form ri = 1+kpi for some
k ≥ 0 and that ri divides n.

Suppose we can choose the set {pi} such that none of the integers 1+kpi
divides n for any k > 0. Then, by Sylow’s third theorem, there is exactly
one pi-subgroup for each pi. Each subgroup is Abelian, being cyclic. Note
that there is a non-Abelian group of order 6, so some other criterion must
be applied before we can deduce anything about the existence or otherwise
of non-Abelain subgroups.

Finally, choose each p|n such that p does not divide any of pi−1, pipj−1,
pipjpk−1, where pi, pj and pk are distinct factors of n and the indices range
over the set {1,2,3,4}. We assert that in this case every group of order n is
Abelian (and in fact cyclic).

The details Suppose on the contrary that G is non-Abelian. Then there
exist elements a, b of G such that ab 6= ba. Not both of these elements can
have order n because in that case each of a and b would be equal to a power
of the other, and so the elements would commute. In fact we can choose
the orders of a and b to be prime factors of n. For suppose that the element
c of order p1p2 does not comute with b, say. The element cp1 has order p2.
Suppose that it commutes with b. As p1 and p2 are relatively prime we can
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write
1 = sp1 + tp2

for relatively prime integers s and t. Now

cbc−1 = csp1ctp2bc−tp2c−sp1 = ctp2bc−tp2 .

Since c does not commute with b we see that ctp2 also does not commute
with b, and this element is another element of order p1. Thus we might
as well take the non-commuting elements to be from different subgroups of
prime order. This simplification is not essential, but it allows us to avoid
questions of the existence of subgroups of G of order other than prime order.
Suppose that the order of a, |a| = pa (that is, apa = 1) so that a generates
the cyclic group Cpa . We denote this group A for brevity. Now consider the
elements e, bab−1, ba2b−1 and so on. These elements are distinct and form
a subgroup of G of order pa as is easily seen by direct multiplication. We
denote this subgroup bAb−1. Let |b| = pb. Both pa and pb are prime factors
of n. This subgroup must be equal to A since we have noted that there is
only one subgroup belonging to each p.

The idea now is that if G is non-Abelian then it is possible that
bAb−1 6= A. If the groups are equal, as they must be for our choice of
n, then conjugation by b permutes the elements of A, preserving the sub-
group structure. This means that bab−1 = ak for some k > 1. But since
ba2b−1 = a2k and so on we see, by repeatedly conjugating with b, that
bpa−1ab−(pa−1) = a so that bpa−1 commutes with a. Two cases are possible:
either pb|pa − 1 (so that bpa−1 = e), alternatively gcd(pb, pa − 1) = 1.

Suppose first that gcd(pb, pa−1) = 1 and bpa−1 6= e. It follows from the
fact that bpa−1 commutes with a that bk(pa−1) also commutes with a for all
k > 0. Since gcd(pb, pa − 1) = 1 we can write spb + t(pa − 1) = 1 for some
integers s and t. Then bt(pa−1) = b so that b commutes with a. In this case
A and bAb−1 are equal. This does not introduce any additional restrictions
on the factors of n.

This leaves us with the possibility that pb divides pa − 1, in which
case it is possible that b and a do not commute. We avoid this possibility
by choosing n such that none of p1, . . . , p4 divides any of the expressions
pi − 1, pipj − 1, pipjpk − 1 where pi|n. This means that all possible non-
commuting pairs of elements are absent and we see that any group of this
order is Abelian.
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Four primes A check on sets of small consecutive primes confirms that
the set {19, 23, 29, 31} satisfies the restrictions above, so that all groups of
order 392863 are Abelian.

References There is a wealth of literature on elementary group theory.
The book referred to above is a ‘classic’ text: [Ledermann] W. Ledermann,
Introduction to Group Theory, Longman, 1973 (reprinted 1977).

Problem 262.2 – Digit sum ratio
Vincent Lynch
I regularly visit the Missouri state university maths problem website and of-
ten send solutions. The challenge page is at http://people.missouristate.edu/
lesreid/Challenge.html. Here is an example of a challenge problem.

Let S(n) denote the sum of the (base 10) digits of n. Show that for any
positive integer m there is an n such that m = S(n2)/S(n). For example,
when m = 4, n = 13 works since 132 = 169 and S(169)/S(13) = 16/4 = 4.

In addition, M500 readers might like to investigate bases other than 10.
Do all number bases b = 2, 3, . . . have the stated property?

Backward number words
Ken Greatrix
I spotted this one in the Mail on Sunday, Sept 28th 2014, on page 55 in the
pub quiz section.

What number, when spelt out, is the only word in English to have all of
its letters in reverse alphabetical order? (Of course, there are lots of words
in which the letters are in reverse alphabetical order, e.g. ‘toe’, but I think
they mean only words describing numbers.)

The answer given is ‘one’, but I have realized that there’s at least one
other. Would anyone like to guess what it is before looking at equation (1)
on page 19? Are there any more?

Problem 262.3 – Binomial coefficient sum
Show that

∞∑
n=2

(2n− 3)!

4n(n− 1)!n!
=

log 4− 1

8
.
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Problem 262.4 – Rational integral
Tony Forbes
Suppose a and b are positive integers and that r > 1 is a rational number.
Show that ∫ 1

0

(rb(1− x1/a) + x1/a)1/b dx

is rational. Hopefully it can be done without actually evaluating the inte-
gral. I say this because I computed some non-trivial cases and all I could
do was observe the results with horror. For instance, when a = 4 and b = 7
you get this diabolical expression:

7
(
343r36 − 343r29 − 1595r28 + 4147r21 − 4292r14 + 2180r7 − 440

)
3190 (r7 − 1)

5 .

Problem 262.5 – HH or TH
During one of his visits to M500, David Singmaster suggested this interesting
opportunity for possible wealth enhancement.

‘We all know that in tossing a fair coin you are just as likely to get a
head followed by a head as a tail followed by a head. So what can the harm
be in accepting this offer of a simple game? You will toss a coin repeatedly
until you get a head followed by a head or a tail followed by a head. If it’s
a head followed by a head, I’ll give you £2. If it’s a tail followed by a head,
you give me a £1.’

Was it wise to take up his kind offer?

Cube
How many faces of a cube can you see at once, assuming:

(i) the faces are not opaque;
(ii) you have x-ray vision;

(iii) there is a convenient mirror nearby;
(iv) you are inside the cube;
(v) none of the above.

Before you put the cube away, here’s another. Draw a diagonal line across
one of the faces. Now choose one end of that line and from there draw a
diagonal across another face. What’s the angle between the two lines you
drew? (By the way, we think the answer to (v) could be 5.)
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Solution 259.2 – Triangle

A
r

B
r

Cr

Dr
E
r

Fr
Xr

(i) In the diagram |AB| = |AC|, ∠BAC = ∠ACE = 20◦ and
∠ABD = 10◦. What is ∠AED?

(ii) Let ζ = eπi/18. Show that

ζ3(ζ2 − ζ10 + ζ12 − 1)

ζ4 + 2ζ8 − 2ζ10 − ζ14 − 3
=

1√
3
.

Steve Moon
Clearly |AE| = |EC| and using basic angle sum properties we quickly get

∠ACB = ∠CBA = 80◦, ∠ECB = 60◦, ∠CBD = 70◦, ∠CFB = 50◦,

∠CFD = 130◦, ∠FEB = 40◦ and ∠CDF = 30◦.

Let ∠AED = θ. Then ∠CDE = θ + 20◦. Construct EX perpendicular
to AC and note that X bisects AC. [Here, you might want to think seri-
ously about annotating the diagram with known angles and line segment
equalities. Or not, if you wish to test your powers of concentration whilst
following the rest of the article. — TF]

Part (i) To simplify the next steps, assume |AE| = |EC| = 1. Then

|AX| = |XC| = cos 20◦, and |XE| = sin 20◦. (1)

Using the sine rule,

|AD|
sin 20◦

=
|AB|
150◦

= 2|AB| ⇒ |AD| = 4 cos 10◦ cos 20◦.

Therefore

|DX| = |AX| − |AD| = cos 20◦ − 4 cos 10◦ cos 20◦
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and

|XE| = |DX| tan(∠CDE) = (cos 20◦−4 cos 10◦ cos 20◦) tan(θ+20◦). (2)

So, putting (1) and (2) together, we have

tan(θ + 20◦) =
tan 20◦

1− 4 sin 10◦
.

Using the formula tan(x+y) = (tanx+tan y)/(1−tanx tan y) this becomes

tan θ =
4 sin 10◦ tan 20◦

1− 4 sin 10◦ + tan2 20◦
. (3)

At this point it is tempting to resort to a calculator, but pressing on:

tan θ =
4 sin 10◦ sin 20◦ cos 20◦

cos2 20◦ − 4 sin 10◦ cos2 20◦ + sin2 20◦

=
2 sin 10◦ sin 40◦

1− 2 cos 20◦(sin 30◦ − sin 10◦)
=

cos 30◦ − cos 50◦

1− cos 20◦ + 2 cos 20◦ sin 10◦

=

√
3/2− cos 50◦

3/2− cos 20◦ − sin 10◦
=

√
3/2− sin 40◦

3/2− (sin 10◦ + cos 20◦)

=

√
3/2− sin 40◦

3/2− 2 sin 40◦ cos 30◦
=

√
3/2− sin 40◦

3/2−
√

3 sin 40◦
=

1√
3

using a lot of standard trigonometric identities. Hence θ = 30◦. I do wonder
if there is somewhere a handy geometry theorem I have overlooked.

Part (ii) Given ζ = eπi/18, we have

ζn = (cos 10◦ + i sin 10◦)n = cos 10n◦ + i sin 10n◦,

and we will need these readily calculable expressions at some stage:

ζ3 = cos 30◦ + i sin 30◦ =

√
3 + i

2
, ζ6 = cos 60◦ + i sin 60◦ =

1 +
√

3i

2
,

ζ9 = i, ζ12 =
−1

ζ6
=
−1 +

√
3i

2
, ζ15 =

−1

ζ3
=
−
√

3 + i

2
.

Consider the numerator and denominator separately. Thus

N = ζ3(ζ2 − ζ10 + ζ12 − 1) = ζ2ζ3 − ζζ12 + ζ15 − ζ3

=
1

2

(
ζ2(
√

3 + i)− ζ(−1 +
√

3i)−
√

3 + i−
√

3− i
)

=
1

2

(
ζ2(
√

3 + i) + ζ(1−
√

3i)− 2
√

3
)



Page 18 M500 262

and

D = ζ4 + 2ζ8 − 2ζ10 − ζ14 − 3 = ζζ3 + 2ζ2ζ6 − 2ζζ9 − ζ2ζ12 − 3

=
1

2

(
ζ(
√

3 + i) + 2ζ2(1 +
√

3i)− 4iζ − ζ2(−1 +
√

3i)− 6
)

=
1

2

(
ζ2(3 +

√
3i) + ζ(

√
3− 3i)− 6

)
.

Dividing N by D yields 1/
√

3, as required.

Tony Forbes
The two parts are closely related. From Steve Moon’s analysis of the triangle
we have

tan θ =
4 sin 10◦ tan 20◦

1− 4 sin 10◦ + tan2 20◦
=

4 sin(π/18) tan(π/9)

1− 4 sin(π/18) + tan2(π/9)
, (4)

which is (3) together with its translation from degrees to radians. How-
ever, when Dick Boardman, who drew my attention to this problem, asked
Mathematica to simplify the expression on the right of (4) it produced

tan θ =
(−1)1/6

(
−1 + (−1)1/9 − (−1)5/9 + (−1)2/3

)
−3 + (−1)2/9 + 2(−1)4/9 − 2(−1)5/9 − (−1)7/9

. (5)

On substituting ζ18 for −1 we get the expression in part (ii) of the problem.
And, as we have seen, both (tan θ)s are equal to 1/

√
3. Nevertheless a

question is raised. How did Mathematica get from (4) to (5)?

Problem 262.6 – Tans
Bryan Orman
Establish the following result:

tan
π

20

tan3 3π

20

=
10 +

√
50− 22

√
5

10−
√

50− 22
√

5
.
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Solution 241.6 – Flagpole
Denote the radius of the (perfectly spherical) Earth by R. A
flagpole of height 1 is observed at a time chosen at random on a
sunny day. What is the expected length of its shadow? Assume
that this takes place near the equator on a day when the sun is
directly overhead at midday.

Tony Forbes
Readers may recall that this was solved by Vincent Lynch in M500 244 at
various levels of approximation. The length of the shadow is

L =
2

π

(∫ α

0

Rθ dθ +

∫ π/2

α

Rt dθ

)
=

Rα2

π
+

2R

π

∫ π/2

α

t dθ, (1)

where

α = arccos
R

R+ 1
, t = θ − arccos

(
R+ 1

R
cos θ

)
. (2)

With R = 6378137 numerical integration in (1) gives

L ≈ 0.63662 + 4.88973 ≈ 5.52635.

Vincent also showed that since R is large we can replace (2) by

α ≈
√

2

R
, t ≈ tan θ −

√
tan2 θ − α2, (3)

and again numerical integration gives L ≈ 5.52635. But now the integral
on the right of (1) is doable. So we set it as Problem 244.6 and in M500
258 Steve Moon obtained the exact solution∫ π/2

α

(
tan θ −

√
tan2 θ − α2

)
dθ = log

sinα+
√

sin2 α− α2 cos2 α

2

+

√
1 + α2

2
log

(1 +
√

1 + α2)
(√

sin2 α− α2 cos2 α−
√

1 + α2 sinα
)

(1−
√

1 + α2)
(√

sin2 α− α2 cos2 α+
√

1 + α2 sinα
)

(after correcting my obvious misprint in equation (7) on page 8 of issue 258).
I then wondered if the integral can be easily computed approximately on
the assumption that α is small. To test this idea I got Mathematica to
compute the approximation
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∫ π/2

α

(
tan θ −

√
tan2 θ − α2

)
dθ =

−2 logα+ log 4− 1

4
α2 +O(α4), (4)

which is sufficiently accurate to solve the original flagpole problem to 5
decimal places. Being somewhat surprised to see the weird form of the
coefficient of α2 I offered yet another problem to M500 readers: Prove (4)
by hand.

Well, here goes. Calling the integral T , expanding the square root and
observing that the two tan θ terms cancel gives

T =

∫ π/2

α

(
tan θ − (tan θ)

√
1− α2 cot2 θ

)
dθ

=

∫ π/2

α

(
1

2
α2 cot θ +

∞∑
n=2

(2n− 3)!

22n−2(n− 2)!n!
α2n cot2n−1 θ

)
dθ. (5)

Integrating a general power of cot θ is possible but messy. However, for small
θ there is the approximation cot θ = 1/θ + O(θ) and since α is small the
important part of the integral is near the lower limit, where cot θ is large.
So perhaps we can get away with replacing cot2n−1 θ in (5) by 1/θ2n−1.
Then

T ≈
∫ π/2

α

(
1

2
α2 cot θ +

∞∑
n=2

(2n− 3)!

22n−2(n− 2)!n!
· α

2n

θ2n−1

)
dθ

= α2

(
− log sinα

2
+

∞∑
n=2

(2n− 3)!

22n−2(n− 2)!n!

∫ π/2

α

α2n−2

θ2n−1
d θ

)

= α2

(
− logα

2
+

∞∑
n=2

(2n− 3)!

22n−2(n− 2)!n!
· 1

2n− 2

)
+O(α4)

since the upper limit of the final integration involves a power of α2 and can
therefore be ignored. But

∞∑
n=2

(2n− 3)!

22n−2(n− 2)!n!
· 1

2n− 2
=

∞∑
n=2

(2n− 3)!

22n−1(n− 1)!n!
=

log 4− 1

4

(see page 14). Hence

T = α2

(
− logα

2
+

log 4− 1

4

)
+O(α4),

as required.
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M500 Mathematics Revision Weekend 2015
The M500 Revision Weekend 2015 will be held at

Yarnfield Park Training and Conference Centre,

Yarnfield, Staffordshire ST15 0NL

between Friday 15th and Sunday 17th May 2015.

The standard cost, including accommodation (with en suite facilities) and
all meals from dinner on Friday evening to lunch on Sunday is £285. The
standard cost for non-residents, including Saturday and Sunday lunch, is
£170. There will be an early booking period up to the 16th April with a
discount of £20 for both members and non-members.

Members may make a reservation with a £25 deposit, with the balance
payable at the end of February. Non-members must pay in full at the time
of application and all applications received after the 28th February must be
paid in full before the booking is confirmed. Members will be entitled to a
discount of £15 for all applications.

A shuttle bus service will be provided between Stone station and Yarn-
field Park on Friday and Sunday. This will be free of charge, but seats will
be allocated for each service and must be requested before 1st May. There
is free on-site parking for those travelling by private transport.

For full details and an application form see the Society’s web site at
www.m500.org.uk.

The Weekend is open to all Open University students, and is designed
to help with revision and exam preparation. We expect to offer tutorials for
most undergraduate and postgraduate mathematics OU modules, subject
to the availability of tutors and sufficient applications.

Triskaidekaphobia
Eddie Kent
Arnold Schoenberg was fascinated by numerology. He was born on 13
September (in 1874) and always remained wary of the 13th of any month.
In 1951 a friend pointed out that this year he would be 76, and 7 + 6 = 13,
which he hadn’t noticed. When he also discovered that in July the 13th
fell on a Friday he decided to spend the day in bed, to be safe. At shortly
before midnight his wife looked in on him to point out how foolish he’d
been; he just said ‘Harmony’ and died. It was 13 minutes to midnight on
Friday 13th in his 76th year. There’s glory for you!
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