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Inverted triangles
Tommy Moorhouse
Inversion in the plane Consider the unit circle centred on the origin
in the plane R2. Inversion (denoted by the function i : R2 → R2) maps
the inside of the circle to the outside as follows. Given any point (x, y)
draw a line from the origin through the point, and draw the point (x/(x2 +
y2), y/(x2 +y2)), which lies on this line. The circle maps to itself, while the
map is not (yet) defined at the origin (we will look at this briefly later).

Inverting lines The inversion map has some fascinating properties, of
which we will consider just one: under inversion straight lines map to circles
(or circular arcs). To see this set up the x and y axes as usual, and consider
the line t→ (x0, t) for some range of t. Then

i((x0, t)) =

(
x0

x20 + t2
,

t

x20 + t2

)
.

Show that the image of the line lies on a circle of radius 1/(2x0) that (asymp-
totically) passes through the origin. More general lines can be considered
simply by changing x0 and rotating the plane. Lines that do not intersect
the circle are mapped to circles inside the unit circle. Those that intersect
the unit circle map to circles that pass through the origin and intersect the
unit circle in the same points as the straight line (a line tangent to the unit
circle furnishes an obvious special case).

Inverted triangle Now consider two equilateral triangles, one (‘I’) in-
scribed in the unit circle, the other (‘O’) circumscribed, with the vertices
of I touching the midpoints of the sides of O. Pick any of the outer three
small triangles (‘T’) defined by one vertex of O and two of I. Show that the
three vertices of the corresponding inverted triangle (i.e. the ‘triangle’ with
circular arcs for sides obtained by inverting the sides of T) are collinear.

Explore! The interested reader could explore the properties of the inverted
triangles (areas, perimeters) and other inverted polygons, with interesting
visual representations. More generally, inversion preserves angles, and it
is an interesting exercise to prove this. Inversion as defined here has the
property that i2 = 1 (the doubly inverted object is the same as the original):
what about inversion in one circle followed by inversion in a different circle?

Loose ends The ‘problem’ of the origin can be resolved in projective space
RP2 (which looks like R2 locally) by ‘blowing it up’ so that the origin is re-
placed by the set of directions defined by (unoriented) lines passing through
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it, and each point at infinity (defined by the class of parallel straight lines)
maps to a distinct point of this ‘origin’, making inversion well defined. In
this model any line approaching the origin passes through the point de-
fined by its direction and emerges on the other side as one would intuitively
expect. Alternatively, staying in ‘ordinary’ R2, adding a single point at in-
finity allows a well-defined inversion map. All straight lines meet the point
at infinity, and all the circular images under i pass through the origin.

Inversion preserves angles
Tommy Moorhouse
Inversion in the plane Previously we considered inversion i in the unit
circle centred on the origin in the plane R2. We asserted that this map
preserves angles. It is what is called a conformal map: the scalar product
of two vectors is preserved up to a scale factor. In this guided problem we
will consider a proof that inversion preserves angles and also find the scale
function.

Step 1 An angle can be defined by two straight lines meeting at a point.
Let the lines be parametrized by

γ1(t) = (t,m1t+ c1) ; γ2(t) = (t,m2t+ c2) .

Step 2 Show that the lines meet at

p =
1

m2 −m1
(c1 − c2, c1m2 − c2m1) ,

which we will write as
−1

δm
(δc, c×m) ,

where the minus sign reminds us that δm = m1 −m2.

Step 3 A vector V at a point p will be written Vp. Show that the tangent
vectors to the above lines have the representation

(γ̇i)p = (1, mi)p

and that the cosine of the angle between them is

1 +m1m2√
(1 +m2

1)(1 +m2
2)
.
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Step 4 Now we need to map the vectors under i∗. The map i∗ takes a
vector at the point p and maps it to a vector at the point i(p) as follows:

i∗(Vp) =

[
d

dt
i(p+ tV )

]
t=0

,

where p and tV are added component-wise and the point i(p) is understood.
Intuitively, as we move along the vector away from p by a small amount,
the image of the moving point defines the tangent vector to the image circle
at i(p). Show that

p+ tγ̇1 =
1

δm
(tδm− δc, m1δmt− c×m) ,

with an analogous expression for γ2.

Step 5 Find the square of the length of p + tγ̇1 and write it in the form
At2 − 2Bt + D, where A,B and D are expressions you will find in δm, δc
and so on (for example, D = δc2 + (c ×m)2). Find the image of p + tγ̇k
and carry out the differentiation—remembering that taking t = 0 at the
end allows some simplification. Conclude that

i∗(γ̇k)p =

(
δm

δc2 + (c×m)2

)2

(−E − 2mkF, mkE − 2F ) ,

where E = δc2 − (c×m)2 and F = δc(c×m). Notice that E2 + 4F 2 = D2.

Step 6 Finally, denoting the usual scalar product by 〈v, w〉, show that

〈i∗(γ̇1)p, i∗(γ̇2)p〉
|i∗(γ̇1)p||i∗(γ̇2)p|

=
1 +m1m2√

(1 +m2
1)(1 +m2

2)
.

Thus the angle between the image vectors is the same as that between the
original lines.

The scale factor To find the scale factor Ω((γ̇k)p) = |i∗(γ̇k)p|/|(γ̇k)p| we
rotate the axes so that γ(t) = (x0, t) . Then a straightforward calculation
gives

Ω(Vp) =
1

|p|2
.

The scale depends only on the position of the vector, not its direction or
size.

Conclusion We have shown that i is a conformal map and found the scale
factor.
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Inversion preserves angles: a geometric proof

Tommy Moorhouse

Inversion visualized Inversion i in the unit circle centred on the origin
in the plane R2 preserves angles, but the differential geometric proof using
tangent vectors may seem obscure. In fact there is a simple geometric
proof. Anyone who enjoys compass and ruler constructions can have a go
at it. There are three cases to consider—the first is outlined here.

L1

L2

L
~

1

L
~

2

∆
∆

∆ ∆

Step 1 Draw the unit circle (choosing a ‘unit’ that makes the rest of the
construction easy).

Step 2 Construct two intersecting lines L1 and L2 outside the circle by
drawing radial lines from the centre of the circle, measuring a distance along
the line and constructing the perpendiculars. The lines should intersect in
a convenient place.



M500 278 Page 5

Step 3 Construct the image circle of each line (say L̃1 and L̃2), using the
property that the images are circles centred on the radial line with radius
1/(2x).

Step 4 Construct the intersecting tangent lines to the image circles L̃1 and
L̃2. The centre of the unit circle is collinear with the intersection point of
L1 and L2 and that of L̃1 and L̃2.

Step 5 Denote by δ the smaller angle of intersection between L1 and L2

(perpendicular lines are a special case). The perpendicular to one of the
tangent lines at the point of intersection passes through the centre of the
corresponding circle, and plane geometry tells us that the angle formed by
this perpendicular and the line joining the centre of the unit circle to the
intersection points is δ.

Step 6 By ‘chasing’ the angles around the image intersection point deduce
that the tangent lines intersect at an angle of δ.

The other cases are: lines intersecting inside the unit circle, and lines
intersecting on the unit circle. These are left to the reader.

Conclusion We have shown using plane geometry that i preserves angles.

Problem 278.1 – Pistachio nuts
Tony Forbes
There is a bowl containing n pistachio nuts. How many times would you
expect to perform the following procedure in order to consume all of the
edible material in the bowl?

(i) You select uniformly at random one object from the bowl. It might
be a whole pistachio nut in its shell, or just half of a pistachio nut shell.

(ii) If it is a half-shell, you discard it.

(iii) Otherwise you split the shell into two halves, remove the kernel,
which you eat, and return the two shell fragments to the bowl.

This is like Problem 275.6 (see Tommy Moorhouse’s solution in this issue)
except that now we have adopted a more efficient nut-eating strategy.

Problem 278.2 – Symbols
There are q symbols. How many unordered n-tuples of symbols are there?
For instance, when q = 3 and n = 2 the answer is 6, AA, AB, AC, BB, BC,
CC.
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Problem 278.3 – Two circles and four lines
Tony Forbes
Motivated by the diagram on page 4, which, perhaps without the big circle,
must surely have been known to Archimedes, I offer the following interesting
exercise involving no more than high-school geometry.

Suppose there are two distinct circles, with centres C1 and C2, that
intersect at points Q1 and Q2. Let δ = ∠C1Q1C2 = ∠C1Q2C2. Let P be a
point on the line defined by Q1 and Q2. For i, j = 1, 2, let Li,j be the line
that passes through P and is perpendicular to the line QiCj . Show that for
i = 1, 2, the lines Li,1 and Li,2 intersect at angle δ.

Note that if Q1 and Q2 are not distinct, then δ = 0 and the four lines
Li,j degenerate into one, the common tangent to the circles at Q1 = Q2.

L1,1

L1,2

L2,1

L2,2
P

∆

∆

∆

∆

C1

C2

Q1

Q2
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Equilateral triangles
Chris Pile
We answer the questions posed by Tommy Moorhouse in ‘Equilateral trian-
gles’, M500 275, p. 22. In each of the three diagrams, below, the bordering
square has side 1.

(i) Figure 1 clearly shows that the area of an equilateral triangle is equal
to the shaded area and therefore is less than half the area of a square with
the same side length.

(ii) If an equilateral triangle has area 1/2, height p and side length 2b,

then p = b
√

3, pb = 1/2 and therefore 2b =
√

2/
√

3. If the triangle is

positioned as in Figure 2, then 4b2 = a2 + 1, and hence a2 = 2/
√

3 − 1.
The part of the triangle in the a × 1 rectangle is less than half the area.
Therefore the part of the triangle in the (1−a)×1 rectangle must be greater
than half the area. So from the diagram (Figure 2) it is clear that the third
vertex is outside the square.

(iii) With the equilateral triangle positioned as in Figure 3, p =
√

2−b =
b
√

3. Therefore b =
√

2/(1 +
√

3) and p =
√

6/(1 +
√

3). Hence the area of
the triangle is pb = 2

√
3− 3 ≈ 0.4641.

(iv) The smallest equilateral triangle with all three vertices touching
the square must have side long enough to touch opposite sides; therefore
the smallest is a unit equilateral triangle. From Figure 3, the area of the
triangle is pb = b2

√
3 =

√
3(1 + a2)/4, which reaches its minimum when

a = 0 and b = 1/2, as in Figure 1.

a
a

p b

2b 2b

Figure 1 Figure 2 Figure 3
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An interesting series
Abdul Ahad
The series is a sum of reciprocal squares all the way to infinity that is dealt
with in an alternating fashion: adding and subtracting consecutive terms
in the ratio 2:1, respectively. The series was first stated by the author on
the Math forum, [1], as follows: For n = 1 to infinity, starting with 1 the
next two consecutive terms of 1/n2 are added, then the next term of 1/n2

is subtracted, the following two consecutive terms of 1/n2 are added, the
subsequent term of 1/n2 is subtracted, . . . , repeating like that all the way
to infinity. Thus

S = 1 +
1

22
+

1

32
− 1

42
+

1

52
+

1

62
− 1

72
+ . . . . (1)

The sum of reciprocal squares, as first stated and solved by Euler, [2], adds
all terms and converges exactly to π2/6. Hence, by algebraic manipulation,
the sum of series (1) can be rewritten as a difference of the original sum of
reciprocal squares and the new sum expressed as an exact result:

S =
π2

6
− 2

∞∑
n=1

1

(3n+ 1)2
. (2)

By calculating the first 40 consecutive terms and plotting their cumu-
lative sums on a graph it is clear that the series is convergent and that the
limit exists.

10 20 30 40

1.1

1.2

1.3

1.4
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We note that the sum appears to be tending to a limiting value of around
1.4. Convergence can also be proved analytically by using an appropriate
test. The comparison test in particular is used as follows.

The first term in (2) is a constant, so all we need to prove is that the
sum in the second term converges. This can be compared with a similar
series:

∞∑
n=1

1

(3n+ 1)2
<

∞∑
n=1

1

n2
. (3)

Since

∞∑
n=1

1

n2
converges absolutely the new series also converges absolutely.

Inputting the series into Wolfram Alpha, [3], the sum value (taken to
infinity) is computed to be approximately 1.4014680389755. . . . This ap-
pears to be an irrational number by comparison to sums of other similar
series. We note that the construct of the sum on the left of (3) bears a close
resemblance to each of the following series that have been proved to have
irrational sums related to π.

∞∑
n=0

(−1)n

2n+ 1
=

π

4
,

∞∑
n=0

(−1)n

(2n+ 1)3
=

π3

32
,

∞∑
n=0

1

(2n+ 1)2
=

π2

8
.

References
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Problem 278.4 – Polynomial integration
(i) Find a polynomial Q(x, y) of degree 2 in x and y such that for any
quadratic P (x), ∫ 1

−1
P (x)Q(x, y) dx = P (y). (1)

(ii) Find a polynomial Q(x, y) of degree 1 in x and y such that (1) holds for
any linear function P (x). Hint: Do (ii) first.
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Solution 276.7 – Three primes
If p and p2 + 8 are both prime, prove that p3 + 4 is also prime.

Stuart Walmsley
The initial statement: p and p2 + 8 are both primes.

If p = 2, then p2+8 (= 12) is not prime, therefore p = 2 does not satisfy
the initial statement.

If p = 3, then p2 + 8 (= 17) is prime, therefore p = 3 does satisfy the
initial statement.

For all p > 3, p is either one greater than a multiple of 3 or one less
than a multiple of 3: p = 3m± 1. Then

p2 + 8 = (3m± 1)2 + 8 = 9m2 ± 6m+ 1 + 8 = 3(3m2 ± 2m+ 3).

So p2 + 8 is a multiple of 3 and hence not a prime.

Therefore the initial statement, p and p2 + 8 are both primes, is only
true if p = 3. For p = 3, p3 + 4 = 31, a prime. Therefore if p and p2 + 8 are
both primes, p3 + 4 is also prime.

Ledger White
Proof 1 Clearly p2 + 8 = p2 − 1 + 9 and (p2 − 1) = (p + 1)(p − 1) for all
p 6= 3. If p is not divisible by 3, then p − 1 or p + 1 must be divisible by
3. Then p2 − 1 is divisible by 3 and so also p2 − 1 + 9. Therefore p2 + 8 is
never prime; it is always divisible by 3.

Proof 2 Look at the squares of n:

n 0 1 2 3 4 5 6 . . .
n2 0 1 4 9 16 25 36 . . .
n2 − (n− 1)2 0 1 3 5 7 9 11 . . .

To find the square of n simply add the first n odd numbers. Reformat the
series like this:

n 1 2 3 4 5 6 7 8 9 . . .
n2 1 4 9 16 25 36 49 64 81 . . .
difference 1 3 5 7 9 11 19 21 3 . . .

A gentle study of the reformatted table shows the following. The table
continues in the same way for all n. In column 1 and column 2 all the
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squares have a remainder of 1 when divided by 3. Squares in column 3 are
all multiples of 3. Therefore all squares are (a) multiples of 3 or (b) have a
remainder of 1 when divided by 3. Adding 8 to those gives a number which
is divisible by 3. The n in columns 1 and 2 include all primes other than 3.
Therefore for all primes other than 3, p2 + 8 is never a prime; it is divisible
by 3.

Tommy Moorhouse
The proof for M500 readers The strange thing about this problem is
that it invites a search for a general solution. In fact this is a distraction.
Consider the number p2 +8, which is prime by assumption. Reduce modulo
3, observing that for any p 6= 3 we have p2 ≡ 1 (mod 3):

p2 + 8 ≡ 0 (mod 3).

This tells us at once that p = 3, and we find that p3 + 8 = 31 is indeed
prime. By finding the only example we have proved the assertion.

The proof in everyday language Start by trying a simple experiment.
Take any number, multiply this number by itself, and find the remainder
when dividing by 3. For example 47 × 47 = 2209 = 3 × 736 + 1. In fact if
the number you start with is not divisible by 3 then the remainder is always
1. The proof is a matter of writing out the two possible cases: case one is
that for which the number you start with leaves remainder 1 when divided
by 3; in the second case it leaves remainder 2.

Now assume that the number p is prime, and form the number p2 + 8.
Dividing by 3 we find that we have a remainder from each term: 1 from p2

and 2 from 8 (8 = 3 × 2 + 2). These remainders can be added together to
give another 3, so the sum p2 + 8 is a multiple of 3. But hold on! if p = 3
(and only then) this argument fails, and p2 + 8 = 17 is indeed prime. In
this case p3 + 4 = 31 is prime as well.

In the only case allowing p2 + 8 to be prime we have shown that p3 + 4
is also prime. Thus we are allowed to say we have proved the statement in
general.

Problem 278.5 – Tan-gled trigonometry
William Bell
Find the general solution of the equation

tan 9x− tan 2x = tan 9x tan 6x tan 3x+ tan 6x tan 4x tan 2x.
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Solution 275.6 – Pistachio nuts
There is a bowl containing n pistachio nuts. How many times
would you expect to perform the following procedure in order to
consume all of the edible material in the bowl?

(i) You select uniformly at random one object from the bowl.
It might be a whole pistachio nut in its shell, or it might be half
of a pistachio nut shell.

(ii) If it is a half-shell, you just return it to the bowl.
(iii) Otherwise you split the shell into two halves, remove the

kernel, which you eat, and return the two shell fragments to the
bowl.

Tommy Moorhouse
An interesting point is how we quantify the idea of expectation here. One
approach, the one taken below, is to say that if the probability of completing
the task after N moves is greater than 1/2 we would expect, on average, to
be successful after N moves. More sophisticated measures could be used.

Consider the simplest nontrivial case, that of two nuts in the bowl. The
first nut is eaten (probability 1) and now there is one nut and two half shells.
On the next try we might pick up a nut (probability 1/3) and finish, or pick
a shell and be no better off (probability 2/3).

Continuing with this argument we conclude that the probability of fin-
ishing the nuts after k + 1 ‘dips’ is zero if k = 0 and otherwise

p(k + 1) =
1

3

(
1 +

2

3
+

(
2

3

)2

+ · · ·+
(

2

3

)k−1
)

and we find that p(2) < 1/2 but p(k + 1) ≥ 5/9 > 1/2 when k > 2, so that,
most of the time, after three dips we will have eaten all the nuts.

The general case of n nuts in the bowl initially is more complicated. Let
us denote the ‘state’ of the bowl with n−k nuts and 2k shells as (n−k, 2k).
The probability of picking a nut is clearly (n− k)/(n+ k), after which the
state will be (n− (k + 1), 2(k + 1)). The probability of picking a shell and
staying in state (n− k, 2k) is 2k/(n+ k).

To keep track of the probabilities involved we will work as follows. We
know that p(k + 1) = 0 if k + 1 < n, so we calculate below p(n), the
probability of eating all the nuts in n dips. A longer sequence of dips will
generally be required, because we can get stuck in any of the earlier states,
so we consider the total probability of eating all the nuts after N ≥ n dips,
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that is after exactly n dips or after exactly n + 1 dips or ... or exactly N
dips.

We can think of a sequence of dips as a path through the states (try
drawing a diagram consisting of dots representing the states and lines joining
the dots to represent the act of selecting an item from the bowl to see how it
works: then a loop starting and ending at the same state represents picking
a half-shell). The total probability of eating all the nuts after N dips, or
equivalently reaching the state (0, 2n) after N moves, is thus

p(N) =
1(

2n−1
n

)P (N)

where P (N) is a function we will now investigate and the factor in front
of P (N) is the probability p(n) of going directly through all the states (i.e.
eating all the nuts). This factor occurs for every successful path and can be
extracted as above.

The function P (N) can be derived from the probabilities for getting
stuck in a given state. Rather than try counting the number of possible
paths a little trial convinces us that the function can be found from the
coefficients of a rational function of a dummy variable x. Consider the
functions

fk(x) =
1

1− 2kx/(n+ k)
.

The expansion in x gives the probability of getting stuck in the kth state
for m dips as the coefficient of xm. Then the function

∏n−1
k=0 fk(x) covers

the whole set of probabilities of getting stuck in any set of states along the
path. To extract the coefficients of x we use the operator

F (x) →
[

1

k!

dkF

dxk

]
x=0

.

Finally we have

p(N) =
1(

2n−1
n

) N−n∑
k=0

1

k!

[
dk

dxk

n−1∏
m=0

1

1− 2mx/(n+m)

]
x=0

.

Here the sum for N < n is zero. We now need to find the smallest value
of N that gives p(N) > 1/2. This can be done on a case by case basis and
is possibly a task for a computer or a keen reader. Starting with five nuts,
sixteen dips will give a better than even chance of finishing the nuts, while
seven nuts requires twenty six dips on average.
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Problem 278.6 – Rugby conversions
John Bull
A rugby pitch, defined as a rectangle ABCD, has goal lines AB and CD.
Line CD has goal posts at E and F .

A player scores a try by touching the ball down at point X, outside the
goal posts. To convert the try, he walks back from X towards AB along
the line parallel to DA and stops at point G. He scores the conversion by
kicking the ball between the goal posts. This will be easier when angle EGF
is greatest.

How far should the player walk to see the largest angle EGF?

Rugby fans please note that in
the interests of mathematical clarity
the distance between the goal posts
has been exaggerated. - TF

A

B C

D

E

F

G X

Problem 278.7 – Two circles and an ellipse
What is the smallest area of an ellipse containing two unit circles?
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Solution 276.8 – Obdurate integral
Evaluate

I =

∫ √
a2 + b2 cos2 x

cosx
dx.

Graham Lovegrove
Clearly

I =

∫ √
a2sec2x+ b2 dx.

Put c2 = a2 + b2. The two simple substitutions

a2 sec2 x+ b2 = t2, and t =
c(u+ u−1)

2

can be concatenated into one:

tanx =
c(u− u−1)

2a
,

dx

du
=

c(u+ u−1)

2au sec2 x
.

It will be convenient to abbreviate (u+ u−1) to v in the following manipu-
lation. So

dx

du
=

2acv

u(c2v2 − 4b2)
.

With this substitution, the integral becomes

I = a

∫
c2v2

u(c2v2 − 4b2)
du = a

∫
1

u

[
1 +

4b2

c2v2 − 4b2

]
du

= a ln(u) + a

∫
4b2du

u(c2v2 − 4b2)

= a ln(u) + ab

∫ [
1

u(cv − 2b)
− 1

u(cv + 2b)

]
du

= a ln(u) + ab

∫ [
1

cu2 − 2bu+ c
− 1

cu2 + 2bu+ c

]
du

= a ln(u) + b arctan

[
cu− b
a

]
− b arctan

[
cu+ b

a

]
,

which can then be written in terms of x by substituting

u =
a tanx+

√
a2 sec2 x+ b2

c
.
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Richard Gould
To integrate

I =

∫ √
a2 + b2 cos2 x

cosx
dx,

proceed as follows, starting with the substitution u = b sinx:

I = b

∫ √
a2 + b2 − u2
b2 − u2

du = b

∫
a2 + b2 − u2

(b2 − u2)
√
a2 + b2 − u2

du

= a2b

∫
du

(b2 − u2)
√
a2 + b2 − u2

+ b

∫
du√

a2 + b2 − u2
.

Now use
b

b2 − u2
=

1

2

(
1

b+ u
+

1

b− u

)
to give

I =
a2

2

∫
du

(b+ u)
√
a2 + b2 − u2

+
a2

2

∫
du

(b− u)
√
a2 + b2 − u2

+ b

∫
du√

a2 + b2 − u2
= I1 + I2 + I3.

For I1, let v = 1/(b+ u). Then u = 1/v − b and du = −dv/v2.

I1 =
a2

2

∫
−dv/v√

a2 + b2 − 1/v2 + 2b/v − b2

= −a
2

2

∫
dv√

a2v2 + 2bv − 1

= −a
2

∫
dv√

v2 + 2bv/a2 − 1/a2
(1)

= −a
2

∫
dv√

(v + b/a2)2 − (a2 + b2)/a4
.

Now use the standard integral∫
dv√

(v + α)2 − β2
= arccosh

(
v + α

β

)
= ln

∣∣∣∣v + α+
√

(v + α)2 − β2

β

∣∣∣∣
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with

v + α = v +
b

a2
=

1

b+ u
+

b

a2
=

a2 + b2 + bu

a2(b+ u)

and√
(v + α)2 − β2 =

√
1

(b+ u)2
+

2b

a2(b+ u)
− 1

a2
=

√
a2 + b2 − u2
a(b+ u)

(from (1)) to give

I1 = − a

2
ln

∣∣∣∣a2 + b2 + bu+ a
√
a2 + b2 − u2

a2(b+ u)
× 1

β

∣∣∣∣.
Similarly

I2 =
a

2
ln

∣∣∣∣a2 + b2 − bu+ a
√
a2 + b2 − u2

a2(b− u)
× 1

β

∣∣∣∣.
Setting z =

√
a2 + b2 − u2 gives

I1 + I2 =
a

2
ln

∣∣∣∣ (b+ u)
(
a2 + b2 − bu+ az

)
(b− u)

(
a2 + b2 + bu+ az

) ∣∣∣∣.
Which reduces to

I1 + I2 =
a

2
ln

∣∣∣∣bz2 + a(b+ u)z + a2u

bz2 + a(b− u)z − a2u

∣∣∣∣ =
a

2
ln

∣∣∣∣ (bz + au)(z + a)

(bz − au)(z + a)

∣∣∣∣
=

a

2
ln

∣∣∣∣b√a2 + b2 − u2 + au

b
√
a2 + b2 − u2 − au

∣∣∣∣ (z 6= −a)

=
a

2
ln

∣∣∣∣√a2 + b2 cos2 x+ a sinx√
a2 + b2 cos2 x− a sinx

∣∣∣∣.
The third, I3, is a standard integral giving

I3 = b arcsin

(
u√

a2 + b2

)
= b arcsin

(
b sinx√
a2 + b2

)
,

and

I = b arcsin

(
b sinx√
a2 + b2

)
+
a

2
ln

∣∣∣∣√a2 + b2 cos2 x+ a sinx√
a2 + b2 cos2 x− a sinx

∣∣∣∣.
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Solution 276.4 – Symmetric binary matrix
Let B be a symmetric {0, 1} matrix with diagonal elements d.
Show that Bx ≡ d (mod 2) is solvable for x, or find a counter-
example.

Tony Forbes
If B is non-singular (mod 2), then x ≡ B−1d (mod 2) and there is nothing
more to say. So we need only consider singular (mod 2) B; however, I cannot
immediately see how that helps. The problem is actually well known (to
everyone except me) and the following is based on a neat solution attributed
to Noga Alon. Thanks to Robin Whitty for my enlightenment.

We attempt to solve

Bx ≡ d (mod 2) (1)

by reducing the augmented matrix [B d] to row echelon form modulo 2 by
repeated use of the operation of adding one row to another row (mod 2).

If you have done any linear algebra, you might recall that a {0, 1}matrix
is in row echelon form when (i) treating them as binary numbers, the rows
are sorted into non-increasing order, and (ii) if a row has a 1 in it, then all
entries below the leading 1 are zero. To illustrate this important concept
we show a typical augmented binary symmetric matrix on the left, below,
and a row echelon form on the right. Here you would begin by adding row
1 to rows 2, 5 and 6, then swap rows 2 and 3, add row 2 to rows 5, 6 and
7, add row 3 to rows 4, 5, 6, 7, 8 and 14, add row 4 to rows 6, 7, 9 and 13,
add row 5 to rows 7, 8, 10 and 14, swap rows 6 and 13, add row 6 to row
14, swap rows 7 and 14, swap rows 8 and 11, . . . , you get the idea.

1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1



→



1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


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Observe that (i) a row echelon form obtained in this manner is not nec-
essarily unique (in our example we could have begun by swapping rows 1
and 2), (ii) each row of a row echelon form is a linear combination of rows of
the original matrix, and (iii) we haven’t really introduced a new operation—
to swap rows a and b, you add row a to row b, then row b to row a, then
row a to row b.

We now return to the original problem. The only way (1) can fail to have
a solution is if a row echelon form of [B d] contains the row [0 0 . . . 0 1].
We therefore want to show that this cannot happen. So let us suppose that
it does. Then there is a vector z such that

zT[B d] ≡ [0 0 . . . 0 1] (mod 2).

Therefore

zTB ≡ [0 0 . . . 0] and zTd ≡ 1 (mod 2).

On the other hand,

zTBz =
∑
i,j

ziBi,jzj =
∑
i

ziBi,izi +
∑
i<j

ziBi,jzj +
∑
i>j

ziBi,jzj

=
∑
i

ziBi,izi +
∑
i<j

ziBi,jzj +
∑
i<j

ziBi,jzj (2)

≡
∑
i

Bi,i z
2
i ≡

∑
i

Bi,izi ≡ zTd ≡ 1 (mod 2),

where to get (2) we have used the fact that B is symmetric. Hence

zTB 6≡ [0 0 . . . 0] (mod 2),

a contradiction.

Incidentally, we appear to have solved Problem 276.5 – Put that light
out! Suppose there are n lamps, let I be the n× n identity matrix and let
A be the adjacency matrix of the graph G representing the arrangement of
the switches. Thus Ai,j = 1 if {i, j} is an edge of G, Ai,j = 0 otherwise.
Then Problem 276.5 is equivalent to showing that

(A + I) x = [1 1 . . . 1]T (3)

always has a solution. And when you have solved (3) you operate the
switches indicated by the vector x.



Page 20 M500 278

Solution 276.5 – Put that light out!
An illumination facility is based on a simple graph G with n
vertices. With each vertex v of G we associate a lamp and a
push-button switch. When the switch at v is operated the lamps
at v and all the neighbours of v change their states, on to off,
off to on. The picture shows a typical graph with 20 vertices
after switches 1, 4, 9 and 16 have been operated. Prove that,
whatever the graph, if all the lights are initially on, there is a
set of vertices such that pushing their buttons will turn all the
lights off.

1

2

3

4

5

6

7
8

9
10

11

12

13

14

15

16

17
18

19
20

Graham Lovegrove
To shorten the explanation, we shall refer to a combination of key presses
that toggles all the lights in a chosen subgraph as a keying of that subgraph.
The proof is by induction. The proposition is easily checked to be true for
all graphs of order n = 1, 2, 3.

First of all let n be even, and assume that the proposition is true for
all graphs of order n − 1. Then for each subgraph of n − 1 vertices, there
is a keying that turns all the lights off. If for one of these subgraphs, the
keying also turns off the remaining vertex, we are done. So assume none
of the keyings turns off the light of any remaining vertex. Perform all the
keyings in turn. Since each vertex is toggled an odd number of times, every
light in the graph will be turned off.

Now consider the case of n odd, and again assume that there is a keying
to toggle every subgraph of n − 1 lights. Once again we can assume that
none of the keyings that toggle n−1 lights toggles the remaining light. Since
the number of vertices is odd, there exists a vertex v of even degree, say
2m, since as is well known the sum of the degrees of any graph is equal to
twice the number of edges. Consider the 2m+ 1 keyings for the subgraphs
that exclude in turn v and each of the vertices in its neighbourhood. Apply
all of these keyings. Since 2m + 1 is odd, all of the remaining lights are
toggled off. However, the lights for vertex v and its 2m neighbours remain
on, since each is toggled only 2m times. Now push the button on v to turn
off its own light and the lights of all its neighbours, and we are done.
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Things you can’t buy in shops
You are innocently wasting time in a shop, idly browsing and minding your
own business, when suddenly you are awakened by that dreaded question,
“Can I help you?” Here are some suggestions of useful, everyday items you
might want to try asking for.

A protractor marked in radians
A hand-held geiger counter
A thermometer marked in kelvins
An anticlockwise pencil sharpener
Green flowers
An ultra-violet torch
An Ordnance Survey map of the moon
A set of left-handed drill bits
A wristwatch that runs on petrol
A scientific calculator that has at least 12 digits precision

I (TF) am most interested in the last one. I’ve looked everywhere, includ-
ing online, but without success—except in charity shops, where old 12-digit
models do turn up from time to time. And by ‘12 digits’ I really do mean
12 digits. If I enter 999999 × 999999, I expect to see the exact answer,
999998000001, including the 1 at the end. I say this because retailers who
describe their products as ‘12-digit calculators’ are often making claims that
are consistent with my understanding of falsehood. I believe the economy
will collapse when consumers eventually discover that suppliers are not sup-
plying the things they actually want to buy.

M500 Winter Weekend 2018
The thirty-seventh M500 Society Winter Weekend will be held at

Florence Boot Hall, Nottingham University

Friday 5th – Sunday 7th January 2018.

Cost: £215 to M500 members, £220 to non-members. This includes accom-
modation and all meals from dinner on Friday to lunch on Sunday. You can
obtain a booking form either from the M500 web site,

http://www.m500.org.uk,

or by emailing the Winter Weekend Organizer.

The Winter Weekend provides you with an opportunity to do some
non-module-based, recreational maths with a friendly group of like-minded
people. The relaxed and social approach delivers maths for fun. And as well
as a complete programme of mathematical entertainments, on Saturday we
will be running a pub quiz with Valuable Prizes.
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