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Doing vector algebra properly
Dennis Morris
To be a vector, a mathematical object has to be part of a set of similar
objects that satisfy the axioms of a linear space. Indeed, linear spaces are
often called vector spaces. An algebraic field is such a linear space together
with a multiplication operation, and so it is no surprise to find that algebraic
fields can do everything that vectors can do and plus some.

Within physics, we often find the use of mathematical, arrow-like ob-
jects called vectors (usually written in boldface type or with a line under-
neath them) to describe various physical situations. These mathematical,
arrow-like objects, together with two operations called the dot product (also
known as inner product or scalar product) and the cross product (sometimes
known as the outer product or (technically erroneously) exterior product)
are referred to as vector algebra. This is a terminological inexactitude.
These objects and these two operations are not an algebra. Neither of the
two operations is a bona fide algebraic operation—neither of the operations
is closed, for a start. Vector algebra lacks a vector product whereby two
vectors multiplied together produce a vector. From a mathematical point
of view, so called vector algebra is not an algebra—it is a mess. The only
reason physicists like vector algebra is because it works perfectly1.

This is not news to mathematicians; they have known about this mess
since vectors were first invented (Grassman, 1845). Some 120 years ago,
William K. Clifford attempted to rectify the situation by inventing a vector
product and thereby producing the Clifford algebras. Unfortunately, the
Clifford (vector) product is not an algebraic multiplication operation. The
Clifford product multiplies two vectors together and produces both a real
number and a bivector. Since then, mathematicians have failed to find a
bona fide vector product and have had to content themselves with using the
‘mess’. This article rectifies that situation.

Since we have within the complex numbers the two-dimensional eu-
clidean space, and, since the complex numbers are an algebraic field, we
can do every bona fide thing with this algebra that can be done with two-
dimensional euclidean vectors. One of those bona fide things is multiply
two complex numbers together to produce another complex number. In ad-
dition to doing the bona fide things, it turns out that we can also construct
an operation resembling the dot product or cross product. This operation
is not an algebraic operation; it is no more than a calculative procedure

1And, for this price, they sell themselves—bunch of tarts!
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within the algebra.

There is a one-to-one correspondence between the two-dimensional vec-
tors and the complex number matrices:[

a b
−b a

]
↔

[
a
b

]
.

The complex number matrix, as well as being a complex number, is a posi-
tion vector matrix in two-dimensional euclidean space. The vector product
is simply the product of two complex numbers.

Nomenclature Vector matrix
All the natural algebras are such that there is a bijective mapping
between the algebraic matrix form and vectors of the same di-
mension. Thus, the term vector matrix means nothing more than
algebraic matrix form. However, out of politeness to the reader,
we use it when we are using the algebraic matrix forms as vectors.

We seek a means of calculating the angle subtended at the origin be-
tween two such position vectors. We take two position vector matrices:{[

a b
−b a

]
,

[
a+ c b+ d
−(b+ d) a+ c

]}
.

These matrices have polar forms:{[
r 0
0 r

] [
cos θ sin θ
− sin θ cos θ

]
,

[
s 0
0 s

] [
cos(θ + χ) sin(θ + χ)
− sin(θ + χ) cos(θ + χ)

]}
.

We normalize these position matrices by dividing by their respective lengths:{[
cos θ sin θ
− sin θ cos θ

]
,

[
cos(θ + χ) sin(θ + χ)
− sin(θ + χ) cos(θ + χ)

]}
.

These two matrices are now positions upon the unit circle about the origin.
The angle between these two position matrices is χ. We seek a way of
combining these two matrices, �, in such a way that the result is:[

cosχ sinχ
− sinχ cosχ

]
.

We will then be able to write[
cos θ sin θ
− sin θ cos θ

]
�
[

cos(θ + χ) sin(θ + χ)
− sin(θ + χ) cos(θ + χ)

]
=

[
cosχ sinχ
− sinχ cosχ

]
,
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and for any two such position matrices, we can calculate the angle between
them as {arccos, arcsin} of the elements in the matrix.

We have2{[
cos θ sin θ
− sin θ cos θ

]
,

[
cos θ cosχ− sin θ sinχ cos θ sinχ+ sin θ cosχ
−(cos θ sinχ+ sin θ cosχ) cos θ cosχ− sin θ sinχ

]}

=

{[
cos θ sin θ
− sin θ cos θ

]
,

[
cos θ sin θ
− sin θ cos θ

] [
cosχ sinχ
− sinχ cosχ

]}
.

Clearly, the operation we need involves the conjugate of the θ + χ matrix
or the conjugate of the θ matrix. That operation is[

cos θ sin θ
− sin θ cos θ

]
�
[

cos(θ + χ) sin(θ + χ)
− sin(θ + χ) cos(θ + χ)

]
=

[
cos θ sin θ
− sin θ cos θ

] [
cos(θ + χ) − sin(θ + χ)
sin(θ + χ) cos(θ + χ)

]
=

[
cos θ sin θ
− sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

] [
cosχ − sinχ
sinχ cosχ

]
=

[
cosχ − sinχ
sinχ cosχ

]
,

or[
cos θ sin θ
− sin θ cos θ

]
�
[

cos(θ + χ) sin(θ + χ)
− sin(θ + χ) cos(θ + χ)

]
=

[
cos θ − sin θ
sin θ cos θ

] [
cos(θ + χ) sin(θ + χ)
− sin(θ + χ) cos(θ + χ)

]
=

[
cos θ − sin θ
sin θ cos θ

] [
cos θ sin θ
− sin θ cos θ

] [
cosχ sinχ
− sinχ cosχ

]
=

[
cosχ sinχ
− sinχ cosχ

]
.

The two results are the conjugates of each other. Thus, in general, we have

[χ][θ] = [χ]� [θ], [χ][θ] = [χ]� [θ],

where the bar over the matrix represents the complex conjugate matrix.

We have

[χ]� [θ] = [θ]� [χ],

(α[χ] + β[λ])� [θ] = α[χ]� [θ] + β[λ]� [θ],

[χ]� [χ] = [det[χ]] > 0.

2The multiple angle trigonometric relations all derive from matrix multiplication of
two rotation matrices.
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Thus the operation satisfies the axioms of an inner product3. However,
there is more in this product than the conventional inner product, and
therefore we shall not refer to it as the inner product. We shall refer to it as
the angle product. This is a change of emphasis from conventional practice.
Conventionally, mathematicians take the view that they introduce angles
into a space by imposing an inner product upon that space. We already
have the angles; we simply need to be able to calculate their values. We
denote the angle product of two matrices {[A], [B]} by the notation [A]�[B].

Although we have gone through the above procedure with normalized
matrices in polar form, we did this only for simplicity of presentation. The
same procedure works with matrices that are not normalized or not in polar
form or both.

Examples:[
a b
−b a

]
�
[
c d
−d c

]
=

[
a b
−b a

]
�
[
c −d
d c

]
=

[
ac+ bd bc− ad
−(bc− ad) ac+ bd

]
,

[
c d
−d c

]
�
[
a b
−b a

]
=

[
c d
−d c

]
�
[
a −b
b a

]
=

[
ac+ bd −(bc− ad)
bc− ad ac+ bd

]
.

We found this inner product by seeking a way of calculating the angle be-
tween two position vectors. That method is:[
cosχ − sinχ
sinχ cosχ

]
=

[
cos θ sin θ
− sin θ cos θ

]
�
[

cosφ sinφ
− sinφ cosφ

]

=

[
r 0
0 r

] [
cos θ sin θ
− sin θ cos θ

]/[
r 0
0 r

]
�
[
s 0
0 s

] [
cosφ sinφ
− sinφ cosφ

]/[
s 0
0 s

]

=

[
a b
−b a

]/[√a2 + b2 0

0
√
a2 + b2

]
�
[
c d
−d c

]/[√c2 + d2 0

0
√
c2 + d2

]

=


a√

a2 + b2
b√

a2 + b2
−b√
a2 + b2

a√
a2 + b2

�


c√
c2 + d2

d√
c2 + d2

−d√
c2 + d2

c√
c2 + d2

,

leading to

3If anyone is interested, we thus have a complete Hilbert space.
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[
cosχ − sinχ
sinχ cosχ

]
=

[
a b
−b a

]
�
[
c d
−d c

]
√
a2 + b2

√
c2 + d2

=

[
a b
−b a

] [
c −d
d c

]
√
a2 + b2

√
c2 + d2

=

[
ac+ bd −(ad− bc)
ad− bc ac+ bd

]
√
a2 + b2

√
c2 + d2

,

giving

cosχ =
ac+ bd√

a2 + b2
√
c2 + d2

, sinχ =
ad− bc√

a2 + b2
√
c2 + d2

.

The reader should compare this to the expression in two-dimensional eu-
clidean vector algebra for the angle between two vectors, {~x = [a, b], ~y =
[c, d]}:

cosχ =
〈~x, ~y〉
|~x||~y|

=
ac+ bd√

a2 + b2
√
c2 + d2

.

The expression in two-dimensional euclidean vector algebra for the mag-
nitude of the cross product of two vectors is

|~x× ~y| = |~x||~y| sinχ, sinχ =
|~x× ~y|
|~x||~y|

.

In the case where the two vectors are coplanar, we have[
a b 0

]
×
[
c d 0

]
= (ad− bc)

[
0 0 1

]
,

sinχ =
ad− bc√

a2 + b2
√
c2 + d2

.

It might seem that we have found both the vector dot product and the
vector cross product within our angle product operation. This, however,
is not so. The space we have found within the complex numbers is two-
dimensional euclidean space; it has no third dimension. In keeping with the
mathematics of Clifford algebras and the exterior algebra, we will refer to
this ‘cross product’ as the wedge product and denote it by[

a
b

]
∧
[
c
d

]
.

We note that: [
a
b

]
∧
[
c
d

]
= −

[
c
d

]
∧
[
a
b

]
.
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The wedge product has the same magnitude as the cross product but is
within the two-dimensional space. This is another way of saying that spatial
curvature is intrinsic to the space (theorema egregium), or, equivalently,
the equations of spatial curvature are ‘mathematically isomorphic’ to the
equations of spatial stretchiness. The general angle product is thus

〈[
a b
−b a

]
,

[
c d
−d c

]〉
=


[
a
b

]
�

[
c
d

] [
a
b

]
∧
[
c
d

]
[
c
d

]
∧
[
a
b

] [
a
b

]
�

[
c
d

]
 .

Since the trigonometric functions are projections on to the axes from
the unit circle, the dot product is the projection from the normalized [a b]
vector on to the normalized [c d] vector and vice-versa, and the wedge
product is the perpendicular distance from the normalized [a b] vector on
to the normalized [c d] vector and vice-versa. The expression ad − bc is

the determinant of the matrix

[
a b
c d

]
and is thus the (oriented) area of the

parallelogram formed by the vectors {[a b], [c d]}.
In the Clifford algebra, cl2, we have the Clifford (vector) product:

(a1 ~e1 + a2 ~e2) (b1 ~e1 + b2 ~e2) = a1b1 ~e1 ~e1 + a1b2 ~e1 ~e2 + a2b1 ~e2 ~e1 + a2b2 ~e2 ~e2

= (a1b1 + a2b2) + (a1b2 − a2b1) ~e1 ~e2 =

[
a1
a2

]
�

[
b1
b2

]
+

[
a1
a2

]
∧
[
b1
b2

]
.

The angle product is thus the vector product of this Clifford algebra.

The important point is that both the dot product and the wedge
product fall out of the algebra. They do not need to be imposed
upon the space by a mathematician.

Thus, we have sorted out the vector algebra and constructed it properly
as an algebraic field. It is now a bona fide algebra. The role of the vector
product (the usual matrix multiplication) is to create the space. The dot
product and the wedge product are simply calculative procedures.

The general form of the two-dimensional natural algebras is[
a b
jb a

]
: j 6= 0 : |a| > |b| if j > 0.
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The general conjugate4 is [
a −b
−jb a

]
.

The general angle product is[
a b
jb a

]
�
[
c −d
−jd c

]
=

[
ac− jbd bc− ad
j(bc− ad) ac− jbd

]
.

The general rotation matrix is cosh
(√
jθ
) 1√

j
sinh

(√
jθ
)

j
1√
j

sinh
(√
jθ
)

cosh
(√
jθ
)
 ,

leading to the two-dimensional general dot product

cosh
(√

jθ
)

=
ac− jbd√

a2 − jb2
√
c2 − jd2

and the general two-dimensional wedge product

1√
j

sinh
(√

jθ
)

=
bc− ad√

a2 − jb2
√
c2 − jd2

.

When j = 1, we have the Minkowski space–time of special relativity. The
Minkowski dot product is

cosh(−θ) = cosh θ =
ac− bd√

a2 − b2
√
c2 − d2

and the wedge product is

± sinh(±θ) =
bc− ad√

a2 − b2
√
c2 − d2

.

The Minkowski dot product is established mathematics. I can find no ref-
erence to the Minkowski cross product or wedge product.

In the spaces of the three-dimensional natural algebras, similar pro-
cedures produce three angle identities corresponding to the three three-
dimensional trigonometric functions of a particular space. The pattern con-
tinues upward into the higher-dimensional spaces.

4The conjugate is always the adjoint matrix within the natural algebras.
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The box problem
Some thoughts in and outside the box

Ian Adamson
The classical integral cuboid has integral edges and integral face diagonals.
The perfect integral cuboid also has an integral internal diagonal; it is the
existence or not of this latter which we discuss here. We may seek sets
S = {x, y, z} of integers where (A) the sums of the squares of any two of S
are square and (B) the sum of the squares of all three is square.

To satisfy (A), sets of equations in two or three parameters have been
given by Saunderson (1740), Euler (1770 and 1772), Kraitchik (1943) and
others. Colman has shown (1988) that there exists an infinite set of two-
parameter formulae, but that no finite set generates all, which means that
we cannot use them with constraint (B) to demonstrate non-existence of
the perfect cuboid.

Clearly, {y, z}, {z, x}, {x, y} are pairs of legs of Pythagorean triples,
not necessarily primitive. Necessarily and sufficiently the legs are ti{p2i −
q2i , 2piqi} where (C) ti, pi, qi > 1, are integers and pi > qi are coprime and
not both odd. Existence of an S implies its existence when gcd(x, y, z) = 1
so we shall assume this and, without loss of generality, that x is odd. In
any triple no two legs are both odd; so y and z are even. We therefore have
satisfying (A):

x = t2(p22 − q22) = t3(p23 − q23),

y = 2t3p3q3 = t1(p21 − q21) [or 2t1p1q1],

z = 2t1p1q1 [or t1(p21 − q21)] = 2t2p2q2,

where t1 is even and t2, t3 are odd and we may ignore the alternatives.

To satisfy (B) also we have an additional constraint that for integral d,

d2 = t21(p21 ± q21)2 + t22(p22 ∓ q22)2, (1)

whose average is
d2 = t21(p41 + q41) + t22(p42 + q42),

which we may reformulate as

D2 =
d2p21q

2
1

t22
= p22q

2
2(p41 + q41) + p21q

2
1(p42 + q42),

which, when factored, gives

D2 = (p21p
2
2 + q21q

2
2)(p21q

2
2 + q21p

2
2). (2)
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Then, using Lagrange’s relation, or (1),

D2 = p22q
2
2(p21 ± q21)2 + p21q

2
1(p22 ∓ q22)2. (3)

We could of course have first considered condition (B), as complete
solutions for finding the sum of three squares equal to a square have been
given by Desboves (1886), Mohapatra & Somayajulu (1967) and Bradley
(1985), and then added the constraint (A).

All that needs to be done now is to find T = {pi, qi, i = 1, 2} ignor-
ing conditions (C) such that (2) or equivalently (3) is an integral square:
assuming that the perfect integral cuboid exists. It would then be an easy
exercise to determine S.

The only other conclusion is that it doesn’t exist, which we can demon-
strate (if decidable) by showing that equation (2) (or (3)), in four parame-
ters, cannot be solved. Let us, for the sake of argument, assume decidability.
Here we are helped by the constraints of conditions (C) since the set T is
restricted. We could for example replace pi by 2pi and assume qi to be
odd, where again gcd(pi, qi) = 1. But we would lose the assumption of the
necessary positivity of some integral quantities with the ‘risk’ of varying the
values of some residues as s ≡ −s (mod 2n) necessarily only when n = 1.

To give a perfect cuboid (to date classical, not perfect, cuboids whose
odd sides exceed 10 billion have been investigated) or show its non-existence,
we may be aided by noting that (p21p

2
2 + q21q

2
2)/t0 and (p21q

2
2 + q21p

2
2)/t0 are

both perfect squares, and consequently (p21p
2
2 + q21q

2
2)/(p21q

2
2 + q21p

2
2) is a ra-

tional square, which one may think simpler than the necessary and sufficient
equation given by Leech (1977), p2q2(p21 + q21)/t and p1q1(p22− q22)/t are legs
of a primitive Pythagorean triple. Here, t0 = gcd(p21p

2
2 + q21q

2
2 , p

2
1q

2
2 + q21p

2
2)

and t = gcd(p2q2(p21 + q21), p1q1(p22 − q22)).

Does the perfect integral cuboid exist? In other words: Should we (i)
try to find it or (ii) try to show that it doesn’t exist? If (i) we may never
succeed as it might be too big. Recall that Euler’s conjecture took over 200
years for a relatively small counter-example: that (20, 615, 673)4 is the sum
of three fourth powers was discovered by Elkies (1988). If (ii), why didn’t
Euler accomplish this? He was no stranger to the use of elliptic functions,
continued fractions, infinite descent and so on. But in an eighteenth century
context. So we might consider such methods (known to Euler) with twenty-
first century knowledge or some techniques as yet unknown.
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A curious definition of a real number
Sebastian Hayes
‘(2.1) Definition. A sequence (xn) of rational numbers is regular if

|xm − xn| ≤
1

m
+

1

n
, m, n ∈ Z+.

A real number is a regular sequence of rational numbers.’ (E. Bishop, Foun-
dations of Constructive Analysis, p. 18)

If m = n, the result is trivial. But 1/m+ 1/n = (m+n)/mn is greatest
when mn is least and if m > n, this means m ≥ n + 1. Thus, for given n,
with m,n ∈ Z+ and m > n,

1

m
+

1

n
≤ 2n+ 1

n(n+ 1)
.

The sequence (x+ n) is Cauchy. For given k > 0, we choose j from Z+

such that j is the first integer greater than 1/k. Setting n = N = 2j, we
have

xm − xn <
1

m
+

1

N
<

2N + 1

N(N + 1)
=

4j + 1

4j2 + 2j
<

1

j
< k

since 4j + 1 < 4j + 2 = (4j2 + 2j)/j. Thus we have found an N such that
xm − xn < k whenever m,n > N .

This is the definition of a real number used in the Intuitionist School
of Mathematics founded by Brouwer. It still has a few followers in Holland
but never caught on much in the English speaking countries. This school
differs from all others by its insistence that a number, or other mathematical
entity, be ‘constructible’—though it is not always clear what ‘constructible’
means and why, for example, the above definition leads more readily to
‘constructed’ real numbers than the usual one.

Problem 212.1 – Fibonacci numbers
Tony Forbes
Let F1, F2, F3, . . . denote the Fibonacci sequence, 1, 1, 2, 3, 5, 8, 13, . . .
and let f(x) = cos(arctan(sin(arccotx))). Show that

f(f(. . . f(x) . . . )) =

√
F2n−1x

2 + F2n

F2nx2 + F2n+1
,

with n iterations of f .
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Problem 212.2 – Area of a triangle
Draw a triangle with side
lengths a, b and c. Ex-
tend the sides to infinity
in both directions. (Not
literally—just as far as
necessary for the rest of
the construction to work.)
Draw the four circles each
of which touches the three
(extended) sides. One of
these is inside the trian-
gle (the in-circle); let this
have radius r. The other
three circles lie outside the
triangles; join their cen-
tres to make a big triangle.
Prove that the new trian-
gle has area abc/(2r).

Problem 212.3 – 100 seats
There are 100 seats on a plane, and 100 people have booked (different)
seats. They form a queue. The first person to board the plane ignores the
instructions on his ticket and chooses a seat at random. Thereafter each
passenger goes to his/her allocated seat if it is unoccupied and otherwise
chooses an unoccupied seat at random. What is the probability that the
last person gets her booked seat?

Problem 212.4 – Integer density
ADF
Let β(x) denote the number of positive integers n ≤ x such that

n = 3a0pa11 p
a2
2 . . . parr

for some r ≥ 1 and primes p1, p2, . . . , pr ≡ 3 (mod 4), where a0 ≥ a1 + a2 +
· · ·+ ar.

Compute limx→∞ β(x)/x.
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Solution 209.4 – Ladder
A ladder of length 1 stands against a ver-
tical wall just touching a shed of height
and width b. Find d, the distance of the
ladder bottom from the shed.

Steve Moon

By similar triangles, ADE and ABC,

x =
b2

d
.

Then Pythagoras on 4ABC gives

(b+ d)2 + (b+ b2/d)2 = 1.

Hence

�
�
�
�
�
�
�
�
�
�
�
�
�
��

d� - b� -

x

?

6

b

?

6

A C

D

E

B

(d+ b)4 − 2db(d+ b)2 − d2 = 0, (1)

a quadratic in (d+ b)2, which has solution

(d+ b)2 = d(b±
√
b2 + 1). (2)

But
√
b2 + 1 > b; so we take the positive square root in (2):

d+ b =
√
d

√
b+

√
b2 + 1.

Rearranging, we have

d−
√
d

√
b+

√
b2 + 1 + b = 0,

a quadratic in
√
d with solution

√
d =

√
b+
√
b2 + 1±

√√
b2 + 1− 3b

2
. (3)

On squaring and simplifying, we obtain

d =

√
b2 + 1− b±

√
1− 2b2 − 2b

√
b2 + 1

2
. (4)

For real d we require
√
b2 + 1 ≥ 3b to prevent the ± term in (3) from

becoming negative. Hence b ≤ 1/(2
√

2). When b = 1/(2
√

2) the ladder is
at 45◦ and d = b.



M500 212 Page 13

Tony Forbes
Equation (1) is a quartic and therefore it must have exactly four solutions
(even if some of them are equal). But, as we have seen, half of the solutions
get spirited away when you take the positive square root in (2). Well, curios-
ity got the better of me; “What happens if you do consider all solutions?”
I asked myself.

In fact, what happens is that you get two more solutions, just like the
ones in (4) except that the first occurrence of

√
b2 + 1 becomes −

√
b2 + 1.

For instance, when b = 0.25 the full solution set is (approximately)

d = − 1.22996, − 0.0508146, 0.09055, 0.690226.

The last two correspond to the ladder leaning against the shed at angles
70.0896◦ and 19.9104◦, two symmetrically opposite positions, and they are
the ones obtained by plugging 0.25 into (4).

The first solution has the ladder leaning against the wall on the opposite
side to the shed. The point D, where the roof and the flank wall of the shed
meet, is collinear with the ladder but some way off it.

In the second solution the ladder is on the same side as the shed but
entirely underneath it. One end of the ladder is between E and C, and some
way below C the other end touches the wall’s foundations, which we assume
go quite deep. Again, D is collinear but not incident with the ladder.

Ralph Hancock
To answer Tony’s question under Problem 209.4 – Ladder:

Welded rail is actually quite flexible—indeed, if it weren’t, it would soon
break in service. Also, consider that points are shifted by flexing a section
of rail. Hundred-metre lengths are simply carried on a series of long wagons,
on which they are restrained by a strong transverse grid at each end, and
they bend (with a certain amount of jostling) when the train goes round
a curve. I have often been in a passenger train overtaking a rail-carrying
train, and you can see the lengths of rail flexing with the swaying of the
wagons.

The rails are loaded by dragging them endwise off the ground and on to
the train. You can see a rail being unloaded at www.lalrr.com/photos.html;
note how much it curves.



Page 14 M500 212

Hugh McIntyre
Norman Graham’s ladder problem fair takes me back. In the drawing office,
before I went to sea as an engineer, we often knocked our heads against that
and other problems in lieu of useful work. I don’t recall ever solving it. At
an OU Maths Summer School in Stirling a bright spark posted the problem
on the notice board, asking a tutor in rather provocative terms if he could
solve it. ‘I can—can you?’ was the posted up response.

In the 80s I was engaged on the design of automatic access hatches to an
equipment decontamination area at Torness and Heysham Nuclear Power
Stations. The firm declined to pay a representative to stay on site looking
intelligent, hence information didn’t always come through when needed.
So one day, on a site visit, I noted that the large ‘entrance door’ we and
others had been using for equipment access was no longer there, having
been replaced by a small man-sized door. The ‘entrance door’ had been an
entire wall left unbuilt for convenience—a fine time to find that out. The
small door gave entry to a narrowish corridor with a right angle corner part
way along, and a daunting notice saying radioactivity might be present due
to testing. In the vicinity of the door were various long bits and pieces
belonging to various sub-contractors caught out by the disappearance of
the usual way in. What they did I never learned—what I did was introduce
a bolted flange at the appropriate point on a couple of the long bits, to
enable them to be taken round the corner in two sections. Not possible
with railway lines. Happy days.

There’s one problem from my drawing office days that might interest
some. It’s more a case of setting the conditions than solving a problem.
Consider a ship floating in an enclosed dock (e.g. a filled dry dock with the
gate closed). A weight is removed from the ship and dropped into the water.
Under what conditions will the dock water level rise, fall, or stay the same?

Dingbats (Eddie Kent)

(i) SENSATION
WORLD

(ii) ME HISTO HELES

(iii) dlrowehtfopotnognileeF
dekciwehtrofecaepoN
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Problem 212.5 – Truncated icosahedron
ADF
Behold, four views of a truncated icosahedron, the football-like Archimedean
solid involving 12 pentagons and 20 hexagons. The top row shows the thing
from above a pentagon and above a hexagon as it would appear infinitely
far away (through a very powerful telescope). Bottom left shows the solid
as viewed from the special distance D1 where five hexagons clearly visible
in the upper picture have degenerated into lines. Similarly, in bottom right
the view is from distance D2 where three pentagons have become lines.

Assuming side length 1, what are D1 and D2? I am curious. After a
little experimentation I see that D1 ≈ D2.
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Solution 204.4 – Ones
Show that

11

10
·1111

1110
·111111

111110
·11111111

11111110
·. . . = 1.101001000100001000001 . . . .

Show that this is true in any number base, not just 10. For
example, when the base is 2 we have (using decimal notation)

3

2
· 15

14
· 63

62
· 255

254
· . . . =

∞∑
n=0

2−n(n+1)/2.

Tony Forbes
Although it appears in M500 204 sandwiched between two straightforward
high-school geometry problems, this is a difficult one—especially if you
haven’t seen it before.

The problem is a special case of

∞∏
n=1

1− q2n

1− q2n−1
=

∞∑
k=0

qk(k+1)/2, (1)

obtained by setting the number base to 1/q. In fact (1) holds for any
complex q, |q| < 1. It occurs as Entry 22(ii) in Chapter 16 of Ramanujan’s
second notebook and is in turn a special case of Jacobi’s triple product
identity,

∞∏
n=1

(
1− x2n

) (
1 + zx2n−1

)(
1 +

x2n−1

z

)
=

∞∑
k=−∞

xk
2

zk, (2)

valid for |x| < 1.

Actually, getting from (2) to (1) is by no means a trivial exercise. To
make a start, observe that for the substitutions x = qα and z = qβ to match
the exponent of q on the right of (1) we need to put x = z =

√
q. Then (2)

becomes
∞∏
n=1

(1− qn) (1 + qn)
(
1 + qn−1

)
=

∞∑
k=−∞

qk(k+1)/2,

or after some gathering together of factors on the left and terms on the
right,

∞∏
n=1

(
1− q2n

) (
1 + qn−1

)
= 2

∞∑
k=0

qk(k+1)/2, (3)
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which is beginning to look vaguely like (1). In fact (3) will look exactly like
(1) if we can prove that

∞∏
n=1

(1 + qn−1)(1− q2n−1) = 2. (4)

This is one of those product formulae where the proof consists of writing
down the factors and looking at them until it becomes obvious how it works.
If you multiply out the left-hand side of (4) to yield

2(1− q)(1 + q)(1− q3)(1 + q2)(1− q5)(1 + q3)(1− q7)(1 + q4)(1− q9) . . . ,

I think you should be able to see what is happening. The factors 1 − q,
1 + q, 1 + q2, 1 + q4, . . . , 1 + q2

m

combine to make 1− q2m+1

, which tends to
1 as m tends to infinity. So (1− q)(1 + q)(1 + q2)(1 + q4) · · · = 1. Similarly,
(1−q3)(1+q3)(1+q6)(1+q12) · · · = 1, (1−q5)(1+q5)(1+q10)(1+q20) · · · = 1,
and so on.

Thus (4) is proved. So we can plug it into (3) to get (1). Hence (2)
implies (1). As for the hard part, Jacobi’s formula, (2), there is a proof in
G. H. Hardy & E. M. Wright, An Introduction to the Theory of Numbers.
Alternatively, you could sign up for the Open University M.Sc. course in
analytic number theory, the one based on the text by Tom Apostol, Intro-
duction to Analytic Number Theory. Here, (2) is Theorem 14.6 with a proof
that goes something like this.

Put w =
√
z,

Fx(w) =

∞∏
n=1

(1 + x2n−1w2)(1 + x2n−1w−2) (5)

and

Gx(w) = Fx(w)

∞∏
n=1

(1− x2n). (6)

Then one can quite easily prove the identity xw2Fx(xw) = Fx(w) from
which it follows that

xw2Gx(xw) = Gx(w). (7)

Now Gx(w) is the left-hand side of (2) and moreover it has a Laurent ex-
pansion of the form

Gx(w) =

∞∑
k=−∞

ak(x)w2k, (8)
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where the coefficients ak(x) are functions of x which satisfy a−k(x) = ak(x)
(since Gx(w) = Gx(w−1)). But from (7) and (8) we see that the ak(x)
satisfy the recursion

ak(x) = x2k−1ak−1(x).

Therefore ak(x) = a0(x)xk
2

. Hence

Gx(w) = a0(x)

∞∑
k=−∞

xk
2

w2k, (9)

and therefore

∞∏
n=1

(1− x2n)(1 + x2n−1z)(1 + x2n−1z−1) = Gx(
√
z) = a0(x)

∞∑
k=−∞

xk
2

zk,

which is (2) provided we can prove that a0(x) = 1 for |x| < 1.

Put w =
√
i in (9) to get

Gx(
√
i)

a0(x)
=

∞∑
k=−∞

xk
2

ik =

∞∑
m=−∞

(−1)mx4m
2

=
Gx4(i)

a0(x4)
. (10)

Then from (5) and (6) we have

Gx(
√
i) =

∞∏
n=1

(1− x2n)(1 + x4n−2)

=

∞∏
n=1

(1− x4n)(1− x4n−2)(1 + x4n−2)

=

∞∏
n=1

(1− x4n)(1− x8n−4)

=

∞∏
n=1

(1− x8n)(1− x8n−4)(1− x8n−4) = Gx4(i).

Hence (10) implies a0(x) = a0(x4), and therefore a0(x) = a0(x4
m

) for m =
1, 2, . . . . Furthermore, |x| < 1 implies x4

m → 0 as m→∞. Hence a0(x) =
a0(0).

To finish, therefore, all we have to do is show that a0(0) = 1. But this
follows by putting x = 0 in (9) since, by (5) and (6), G0(w) = 1.
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Problem 211.6 – Sudoku verification
Tony Forbes
Here’s a sudoku puzzle. Fill in the blanks such that each of the 27 regions
(rows, columns, 3× 3 boxes) contains the symbols {1, 2, . . . , 9}.

1

7 8 6

5 7

1

9 3

4

7

1

3 7

4

2

1

8 3

6

8 1

1 9 3

2

Now for the problem. Wise sudoku fans are well aware of the importance of
checking a region as soon as it is completed just to make sure that it really
does contain precisely one each of the symbols 1 to 9.

But suppose you are given a completed puzzle. What is the minimum
number of regions you must check to verify that a completed sudoku grid is
a valid solution?

[Hint: the answer is ≤ 26.]

Problem 212.7 – Dice

Start by throwing 6 (or n, if you prefer) dice and remove any that have
landed six-side up. Repeat until no more dice are left. What is the expected
number of throws?

Algebra is X minus Y equals Z plus Y—and things like that. And all that
time you are saying they are equal, you feel in your heart, ‘Why should they
be?’ [J. M. Barrie]
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Problem 208.3 – Concentric circles, revisited
Recall that I (ADF) asked for an explanation of the circles in the cyclic
representation of the complete graph Kn. One or two people stated the
fact, which I now realize is more or less obvious, that the sets of chords of
constant length define a sequence of concentric ‘best fit’ circles which tend
to become less well-defined as the radius increases.

But look at K29, below. It is plain that the fourth circle from the centre
is significantly more prominent than the others, and the same is true for
the third circle of K23 [M500 208]. Also the 5th circle of K39 and the 6th
of K49, to give two more examples. So now I ask a harder question: Where
do these circles come from?
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M500 Winter Weekend 2007
The twenty-sixth M500 Society Winter Weekend will be held on Friday 5th
to Sunday 7th January 2007 at NOTTINGHAM UNIVERSITY.

This is an annual residential weekend to dispel the withdrawal symptoms
due to courses finishing in October and not starting again until February.
It’s an excellent opportunity to get together with acquaintances, new and
old, and do some interesting mathematics in a leisurely and friendly atmo-
sphere. We are trying something new this year. There will be no overall
theme—instead we will be providing a mix of mathematical attractions from
amongst ourselves.

Cost: £185.00. This includes standard accommodation and all meals
from dinner on Friday to lunch on Sunday. M500 members get a £5 discount.
For full details and a booking form, send a stamped, addressed envelope to

Diana Maxwell.

E-mail enquiries to diana@m500.org.uk. Full details and a booking form are
available at www.m500.org.uk.

2 7 9

6

9 7

4 2

3

4 6 8

A quasi-magic sudoku-like
puzzle. Fill in the blanks
according to the usual rules
({1, 2, . . . , 9} in every row,
column and 3×3 box) with
the further constraint that
within each 3 × 3 box the
rows, columns and diago-
nals sum to any of the num-
bers 13, 14, 15, 16 or 17 (i.e.
15 ± 2). So you can think
of the little boxes as quasi-
magic squares of order 3.

Tony Forbes

Hint: 5s must go in either box centres or

box corners.
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