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Solution 274.3 – A nine-sided die
A 9-sided die is made using stuff of uniform density by sticking
a regular tetrahedron of side 1 on to each end of a prism based
on an equilateral triangle of side 1. How long must the prism
be for the die to have zero probability of landing on a triangular
face? Also solve the problem for 12-sided and 15-sided dice
constructed in a similar manner from equilateral triangles and
a 4- or 5-sided prism.

Chris Pile
(a) For the problem as stated I offer diagrams of 3-, 4- and 5-sided prisms
terminated with equilateral triangular pyramids. The prisms must be longer
than the minimum lengths of
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respectively to ensure that they fall on to the face of the prism.

The resulting polyhedra make effectively a 3-, 4- or 5-sided die, although
a regular tetrahedron would make a simplex 4-sided die and the triangular
prism doesn’t roll very well! The method of using equilateral triangles at
the ends cannot be used for prisms with more than 5 sides. (With a little
patience you can balance a hexagonal pencil on its end!)

(b) If the prism length is fixed at 1 (square faces) and the ends are
terminated with isosceles triangular pyramids, the method can be extended
to prisms of more than 5 sides. The problem is now to find the length of
the sides of the triangular pyramids. For 3-, 4-, 5- and 7-sided square-faced
prisms, the minimum edge length of the triangular pyramids is

√
13/6 ≈

0.6009,
√

3/2 ≈ 0.8660, 1.2731 and 2.4446 respectively. For an n-sided
square-faced prism, the minimum length is

1

2

√
1 + cot2(π/n) cosec2(π/n).

(c) The prism could be removed (length = 0) with the polyhedra made
of two triangular pyramids of different lengths, arranged to fall on to the
longer triangular face.

(d) Further comments. The prism/pyramid method could be extended
to any odd (or even) number of sides. The regular polyhedra can be used
as dice for 4, 6, 8, 12 or 20 sides. Maybe these could be used as the basis for
more non-standard dice. The symmetry of each polyhedron ensures that the
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probability is the same for each of the faces on which it lands. The problem
requires the possibilities to be calculable. Are there any dice where the
probabilities are calculable but not equal? For example, consider a square
pyramid (one square face and 4 equilateral triangles) with the probability
of landing on the square or triangular face being S or T respectively. Then
S + 4T = 1, but what are the values of S and T? In my search through
back numbers of M500 I came across M500 174, ‘Non-regular dice’, by David
Singmaster. In your introduction to the article you mentioned the difficulty
of assigning probabilities to a cylinder or a brick. Has any progress been
made since them? To your objects I would add an idealized drawing pin
(thin disc with a central spike). What probabilities can be derived from
various ratios of ‘disc diameter’ to ‘spike length’ to cause the pin to fall
spike up or spike down?

(e) A one-sided die. Facetiously, objects which are usually cited as
landing on one side involve dropping a cat or a slice of buttered toast!
However, there exist unistable polyhedra (solids of uniform density) found
by Richard Guy [The Penguin Dictionary of Curious and Interesting Ge-
ometry by David Wells]. The first polyhedron found was a 17-sided prism
with obliquely cut ends, which rolls over on to one face. I have since learnt
that this has been ‘improved’ to a prism with 15 sides.

I enjoy making polyhedra (I have a large collection!), so I was happy
to take your suggestion and build the ‘dice’ to gain a better understanding
of their properties. It would be interesting (maybe!) to try to assign prob-
abilities to the Archimedean polyhedra with two or three regular polygon
faces.
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(f) Alternative dice with square faces on the prisms and isosceles trian-
gles at each end. The 3-sided die (middle) has triangle edge length

√
13/6

and hence median 1/3. The 4-sided die (right) has triangle edge length√
3/2 and median 1/

√
2. The 5-sided die (left) has triangle edge length

1.273 and median 1.1708.

A 3-sided die with 6 faces. This will land on the longer triangular face.
On the left is a regular tetrahedron, median

√
3/2, and on the right the

triangles have long side
√

3 and median 2
√

2/3.

A 7-sided die with a square-faced prism. The triangles have edge length
2.4446 and median 2.3929.
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The Chain Rule extended
Graham Lovegrove
Many will be familiar with the formula for differentiating a product of two
functions n times:

dn

dxn
(fg) =

dnf

dxn
g +

(
n

1

)
dn−1f

dxn−1
dg

dx
+ . . .+

(
n

r

)
dn−rf

dxn−r
drg

dxr
+ . . .+ f

dng

dxn
.

This is known as the Leibniz Rule, and is very similar to the Binomial
Theorem if multiple differentiation is substituted for powers. It is easily
proved by induction.

Recently, while wondering how to tackle a problem in M500 (Problem
279.1), I realized that I did not know of any counterpart of this for the
Chain Rule. The Chain Rule states that, if f is a function of g, and g is a
function of x, then

df(g(x))

dx
=

df

dg

dg

dx
.

The textbooks don’t seem to provide any general formulae to extend this in
a similar way to the Leibniz Rule, so I investigated a little further.

It will be helpful to switch to the notation where u
(n)
v stands for

dnu

dvn
.

Then in this notation the chain rule is written:

f (1)x = f (1)g g(1)x .

Applying it 2, 3, 4 and 5 times respectively, together with the product rule
as required, we obtain:

f (2)x = f (2)g

(
g(1)x

)2
+ f (1)g g(2)x ,

f (3)x = f (3)g

(
g(1)x

)3
+ 3f (2)g g(1)x g(2)x + f (1)g g(3)x ,

f (4)x = f (4)g

(
g(1)x

)4
+ 6f (3)g

(
g(1)x

)2
g(2)x + 3f (2)g

(
g(2)x

)2
+ 4f (2)g g(1)x g(3)x

+ f (1)g g(4)x ,

f (5)x = f (5)g

(
g(1)x

)5
+ 10f (4)g

(
g(1)x

)3
g(2)x + 15f (3)g g(1)x

(
g(2)x

)2
+ 10f (3)g

(
g(1)x

)2
g(3)x + 10f (2)g g(2)x g(3)x + 5f (2)g g(1)x g(4)x + f (1)g g(5)x .

From this we can notice several things.
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i The number of terms does not grow by the same number each time
as it does in the Leibnitz Rule.

ii The constant factors are not the binomial coefficients, although there
are similarities.

iii Whereas in the Leibnitz Rule each term consists of the product of a
constant, the (n− r)th derivative of f , and the rth derivative of g for
some r between 0 and n, each term here is rather more complicated.
It could be summarized as

Cf (κ)g

(
g(λ1)
x

)µ1
(
g(λ2)
x

)µ2

. . .
(
g(λp)
x

)µp

,

where C is a constant.

iv In each case, κ =
∑p
i=1 µi.

v In each case, n =
∑p
i=1 λiµi, that is, the λi, each repeated µi times,

represent a partition of n. So for instance the terms for n = 5 yield
the partitions: 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 2, 1 + 2 + 2, 1 + 1 + 3,
2+3, 1+4, and 5. These represent all the partitions of 5. A partition
is usually written for convenience in a power notation, viz. 15, 1321,
etc. The number of terms is then seen to be the number of partitions
of n.

So that explains everything about the nth derivative of f(g)(x), except for
the coefficients. The coefficients are the same whatever the functions f
and g, and it’s easy to see that the coefficients for the nth derivative can
be calculated by examining what happens when the (n− 1)th expression is
differentiated term by term.

Considering the typical term (where C stands for the corresponding
coefficient)

Cf (κ)g

(
g(λ1)
x

)µ1
(
g(λ2)
x

)µ2

. . .
(
g(λp)
x

)µp

,

differentiating it using the Chain and Product rules produces a number of
new terms, one for each factor in the original term.

First, using the chain rule on f
(κ)
g produces a term

Cf (κ+1)
g g(1)x

(
g(λ1)
x

)µ1
(
g(λ2)
x

)µ2

. . .
(
g(λp)
x

)µp

,
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and for each factor of the form
(
g
(λi)
x

)µi

, a term

µiCf
(κ)
g

(
g(λ1)
x

)µ1

. . .
(
g(λi)
x

)µi−1
g(λi+1)
x . . .

(
g(λp)
x

)µp

.

At this point, we need a notation for each constant. Instead of specifying
the λ and µ for each factor appearing in the term, we specify the value of
µ for every λ between 1 and n, putting µ = 0 where there is no factor for a
value of λ. Thus we denote the coefficients for n = 5 as

C5(5, 0, 0, 0, 0) = 1; C5(3, 1, 0, 0, 0) = 10; C5(1, 2, 0, 0, 0) = 15;
C5(0, 2, 1, 0, 0) = 10; C5(0, 1, 1, 0, 0) = 10; C5(1, 0, 0, 1, 0) = 5;
C5(0, 0, 0, 0, 1) = 1.

The value of κ for each term constant is the sum of the µ, as determined
above. We can now use the identities we have just derived to make a
recurrence relation between the constants for the (n − 1)th derivative and
the nth:

Cn(µ1, µ2, . . . , µn) = Cn−1(µ1 − 1, µ2, . . . , µn−1)

+
∑

µi>0, i<n−1
(µi−1 + 1)Cn−1(µ1, . . . , µi−1 + 1, µi − 1, . . . , µn−1)

+ (µn−1 + 1)Cn−1(µ1, µ2, . . . , µn−1 + 1),

where it is understood that the first term on the right-hand side is omitted
if µ1 = 0, and the last term is omitted if µn = 0. Also there will be no
corresponding term in the sum in the right-hand side if µi = 0.

This recurrence relation can be used to calculate the coefficients for
the nth derivative of f(g)(x) from the coefficients for n − 1. But it is very
cumbersome, and it would be much better to have a formula to calculate
the coefficients directly. However, it is difficult to see how the recurrence
relation could be solved to construct the formula. Some other approach is
therefore necessary.

Since we only want the constants, we could perhaps try to find a par-

ticular pair of functions f and g for which we can express f
(n)
x in terms of

f
(i)
g , g

(j)
x , etc.

This is in fact what I did, but before proceeding we will need a brief
diversion to mention the Multinomial Theorem. This says that

(a1 + a2 + . . .+ ap)
N =

∑
∑
ti=N

Qt1,t2,...,tpa
t1
1 a

t2
2 . . . atpp ,
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where

Qt1,t2,...,tp =
N !

t1!t2! . . . tp!
, with

∑
ti = N.

These coefficients are the numbers of ways of dividing N identical objects
into piles of sizes t1, t2, . . . , tp, and the theorem is proved in a similar way
to the Binomial Theorem.

To find the coefficients for the extended Chain Rule, we select g to be

g = 1 + ν1x+
ν2x

2

2!
+
ν3x

3

3!
+ . . .+

νpx
p

p!
,

where ν1, ν2, . . . , νp are arbitrary parameters, and we choose f = gq, where
p and q are positive integers that are both larger than n.

We can use the Multinomial Theorem to express f(g)(x) as a polynomial
in x. We are going to calculate the coefficient of xn in this polynomial. The

reason for this is that the coefficient of xn is equal to
1

n!

dn

dxn
(fg) evaluated

at x = 0.

Expanding gq by the Multinomial Theorem, a typical term is of the
form

Qt0,t1,t2,...,tp
νt11 ν

t2
2 . . . ν

tp
p x

∑
iti

(1!)t1(2!)t2 . . . (p!)tp
=

q!νt11 ν
t2
2 . . . ν

tp
p x

∑
iti

t0!t1!t2! . . . tp! 1t0(1!)t1(2!)t2 . . . (p!)tp
,

where t0, t1, t2, etc., count the numbers of factors of type x0, ν1x
1, ν2x

2,
etc. present, and

∑p
i=0 ti = q. If x

∑
iti = n, then

∑
iti is a partition of n,

so the whole term in xn is the sum of a number of these terms, one for each
partition of n. Hence

1

n!

(
dn

dxn
(fg)

)
x=0

=
∑

∑
iti=n

q!νt11 ν
t2
2 . . . ν

tp
p

t0!t1!t2! . . . tp! 1t0(1!)t1(2!)t2 . . . (p!)tp
.

Now we note that νi = g
(i)
x=0. Also, t0 = q −

∑p
i=1 ti, so

q!

t0!
=

q!

(q −
∑p
i=1 ti)!

,

which is equal to
(
f
(
∑
ti)

g

)
g=1

, and g = 1 when x = 0. So

(
dn

dxn
(fg)

)
0

=
∑

∑
iti=n

n! ((g(1))0)t1((g(2))0)t2 . . . ((g(p))0)tp

t1!t2! . . . tp! (1!)t1(2!)t2 . . . (p!)tp

(
f
∑
ti

g

)
0
,
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where the suffix 0 denotes evaluation at x = 0. As we have assumed p > n
and

∑
iti = n, we can infer that tn+1 = tn+2 = . . . = tp = 0. From which

it is clear that

Cn(µ1, µ2, . . . , µn) =
n!

µ1!µ2! . . . µn! (1!)µ1(2!)µ2 . . . (n!)µn
,

where 1µ12µ2 . . . nµn is any partition of n. It is straightforward to show that
these coefficients satisfy the recurrence relation that was derived above, so
this is left as an exercise for the reader!

Problem 280.1 – Triangles
Tony Forbes
We know from Pick’s Theorem (see, for example, Theorem of the Day num-
ber 77, or M500 253) that a triangle drawn on an integer grid has area
which is half an integer. Moreover, its sides must be square roots of inte-
gers. Is the converse true? Well, no. For instance, a (

√
7,
√

7,
√

14) triangle
has area 7/2 but there is no way you can place its vertices on an integer
grid. This is because 7 = a2 + b2 has no solution in integers. Bearing that
in mind we ask:

Can a triangle with half-integer area and sides which are of the
form

√
a2 + b2, a, b integers, be placed in the (x, y)-plane such

that the coordinates of the three vertices are integers?

Obviously this is true for any Pythagorean
triangle, (a, b,

√
a2 + b2), a, b integers. Less

obviously, we see that a (
√

5,
√

10,
√

13)
triangle has area 7/2 and with a bit of
experimentation—perhaps using a cardboard
cut-out as a guide—you find that you can, for
example, place the vertices at (0, 0), (3, 1) and
(2, 3). So in this particular case the assertion
is also true.

Problem 280.2 – Integral
Show that ∫ ∞

0

sinx

e2πx − 1
=

1

4
coth

1

2
− 1

2
≈ 0.0409884.
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Four blocks
Chris Pile
You may have seen The Crystal Maze, the Channel 4 television game show
in which Richard Ayoade sends the players through the maze’s Aztec, Me-
dieval, Industrial and Future zones to tackle tasks of various difficulties.
One member of the team is selected to attempt a task while the others
watch and give advice. One challenge is to stack four differently coloured
blocks to form a ‘totem pole’ in front of a fire-breathing dragon. The blocks
have to be in the ‘right’ order to win a crystal. At each attempt the dragon
is asked how many blocks are in the correct positions, and it responds with
one, two or three bursts of flame.

There are 24 permutations and the number of attempts is limited by the
speed of construction and the overall time limit of 3 minutes. The team is
not told which blocks are correct, and must remember the orders of previous
attempts as the structure is assembled to construct the next attempt. The
correct order can be found by good fortune or good reasoning, but the team
often fails after about seven attempts. Is there an optimum strategy? What
is the minimum number of attempts needed to ensure success?

Ignoring the time limit, the problem is, essentially, to find the ‘correct’
order for four objects in the least number of attempts. Of the 24 permu-
tations, 9 are all wrong, 8 have one correct and 6 have two correct. For
example, using playing cards from different suits, a typical situation might
look like this.

none correct one correct two correct target

♣ ♣ ♣ ♦ ♦ ♦ ♠ ♠ ♠ ♥ ♥ ♣ ♣ ♦ ♦ ♠ ♠ ♥ ♥ ♥ ♣ ♦ ♠ ♥
♥ ♦ ♠ ♥ ♠ ♠ ♥ ♦ ♦ ♦ ♠ ♦ ♠ ♥ ♣ ♥ ♣ ♣ ♦ ♠ ♥ ♣ ♣ ♣
♠ ♠ ♥ ♠ ♥ ♣ ♣ ♥ ♣ ♠ ♣ ♥ ♦ ♣ ♠ ♦ ♥ ♠ ♣ ♦ ♦ ♥ ♦ ♦
♦ ♥ ♦ ♣ ♣ ♥ ♦ ♣ ♥ ♣ ♦ ♠ ♥ ♠ ♥ ♣ ♦ ♦ ♠ ♣ ♠ ♠ ♥ ♠

I think five attempts are sufficient, and the majority of cases can be suc-
cessful after four or fewer. However, my ‘strategy’ is neither simple nor
elegant.

If the initial attempt is ‘all wrong’, it seems logical to change the posi-
tions of all four cards. If one is correct, then changing three or two may be
appropriate, and if two are correct, changing two cards would seem to be the
best option. (At least two cards must be changed!) The third attempt will
depend on the previous two attempts, etc. Is it worth considering extending
the problem to five objects (120 permutations) or more?
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Solution 274.5 – 27 cubes
There are 27 cubes each face of which is coloured either red, blue
or green. Moreover, the 27 cubes can be assembled in three ways
to form either a red, blue or green 3× 3× 3 cube. Interestingly,
this can be achieved in essentially only one way. How?

Chris Pile
I had a feeling of ‘déjà vu’ when I saw this problem! I consulted my back
numbers of M500 and I found it in M500 109 (September 1988!), and I was
among those who supplied a solution in M500 110. A general solution for
n3 cubes was given by John Reade in M500 111.

The 3× 3× 3 cube has 6 faces, each comprised of 9 faces of the smaller
cubes. Therefore 6 × 9 = 54 faces are either red, blue or green, and 54 ×
3 colours = 162 faces.

The 27 cubes each have 6 faces = 27 × 6 = 162 faces. Therefore each
face is displayed once and only once.

Each small cube has a vertex (V), edge (E) or face (F) on the 3× 3× 3
cube, with one small cube hidden internally. By symmetry, the hidden cube
must have only two colours (no face exposed on the 3 × 3 × 3 cube) and
must therefore be a vertex cube for the other two arrangements. Thus three
cubes of 27 are 2-colour vertex cubes.

In each 3 × 3 × 3 cube, six small cubes have only one face displayed.
The other five faces must therefore form one vertex cube and one edge
cube in different colours. This accounts for 6 × 3 = 18 small cubes. The
remaining six small cubes must therefore be edge cubes in each of the 3×3×3
arrangements. The cubes are coloured thus:

VV: RRRBBB, RRRGGG, GGGBBB;

VEF: RRRGGB × 6, BBBRRG × 6, GGGBBR × 6;

EEE: RRBBGG × 6.

The colours of the 18 VEF cubes can be permuted as long as each cube has
a vertex, edge and face in a different colour, and there are six of each.

Problem 280.3 – Digits
Tony Forbes
List all the d-digit numbers in base d + 1 (actually any base larger than d
will do) that satisfy all of the following. (i) The digits are in non-increasing
order reading left to right, (ii) the difference between consecutive digits is
either 0 or 1; (iii) the units digit is 0 or 1. How long is the list?
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Solution 277.2 – Circle

The points A and B lie
on the circle with equa-
tion

x2 + y2 = 25.

The tangents to the
circle at A and B meet
at the point P = (1, 7).
Show that the chord
AB has equation

x+ 7y = 25.

In what ratio does this
chord divide the area
of the circle?

A

B

P

O

Edward Stansfield
I find that sometimes a problem looks easy to solve until I start to work on
a solution—and then I give up as it becomes too difficult. This one nagged
me for days as I was sure there was an easy solution—and my persistence
prevailed because there is an easy solution. Here goes.

Referring to the diagram, the length of the line OP is
√

12 + 72 = 5
√

2.
The tangents to the circle of radius 5 at points A and B are necessarily
at right angles to the lines OA and OB. Applying Pythagoras’s Theorem
to the right angled triangles OAP and OBP , we deduce that the lines AP
and BP are both of length 5, and hence the rectangle OAPB is a square of
side 5.

The line OP has slope 7, and since chord AB is orthogonal to OP , it
must have slope −1/7. The equation of a line along AB is thus given by

y = − x

7
+ constant, or x+ 7y = c.

The point Q on AB lies is at the mid-point of the line OP , and hence has
the coordinates Q = (1/2, 7/2). Substituting this point into the equation
determines the constant c to be given by

c =
1

2
+ 7 · 7

2
= 25.



Page 12 M500 280

Hence the chord AB has the equation x+ 7y = 25, as was to be shown.

Since the area of OAPB is 52 = 25, the area of the triangle OAB is
25/2. The area of the circle is 25π and the square OAPB covers exactly
one quarter of this. Hence the area of the circle segment above the chord
AB is

25π

4
− 25

2
=

25(π − 2)

4
.

The ratio of the area of this segment to that of the whole circle is therefore
(π − 2)/(4π).

I hope M500 readers agree with me that, unlike many other maths
problems, this one really was easy! Q.E.D. (Quite Easily Done!)

Solved in a similar manner by Bruce Roth and Ted Gore.

John C. Davidson
The circle has the equation

x2 + y2 = 25 (1)

and hence
dy

dx
= − x

y
. (2)

Since the tangents to the circle pass through the point P = (1, 7), it follows
from (2) that

−xA
yA

=
7− yA
1− xA

⇒ xA + 7yA = x2A + y2A. (3)

Since A is a point on the circle, it follows from (1) and (3) that

xA + 7yA = 25 ⇒ xA = 25− 7yA. (4)

Substituting (4) in (3):

7yA − 25

yA
=

7− yA
1− (25− 7yA)

⇒ y2A − 7yA + 12 = 0. (5)

The two roots of equation (5) are 3 and 4, so (from the sketch on page 11)
yA = 4 and yB = 3. It follows from (4) that xA = −3 and xB = 4. The
gradient mAB is then given by

mAB =
3− 4

4 + 3
= − 1

7
,
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so the equation of AB is

y − 3 = − 1

7
(x− 4) ⇒ x+ 7y = 25, Q.E.D.

It is clear from equation (1) that the centre O of the circle is the origin
(0, 0). Since A is the point (−3, 4) and B is the point (4, 3), OA = −3i+4j,
OB = 4i + 3j and |OA| = |OB| = 5 = r. Expanding the scalar product:

OA ·OB = |OA| |OB| cos
∧

AOB

⇒ 0 = 25 cos
∧

AOB ⇒
∧

AOB =
π

2
,

and so the region AO
_

BA is a quadrant of the circle with area πr2/4. Also,
the area of right-angled 4AOB = r2/2 and the area of the minor segment
is

1

4
πr2 − 1

2
r2 =

(π − 2)r2

4
. (6)

The area of the major segment is

πr2 − (π − 2)r2

4
=

(3π + 2)r2

4
. (7)

From (6) and (7) it follows that the chord AB divides the area of the circle
in the ratio (π − 2)/(3π + 2) ≈ 0.1.

William R. Bell
The first result can be shown via implicit differentiation of the circle equa-
tion, or (more elegantly) by a geometric argument. In the second part, one
finds the desired ratio as (π − 2) : (3π + 2).

This is an original problem of mine, which draws on knowledge from
the core A-Level mathematics syllabus, although it requires a little more
thought than a standard problem. Those starting a degree in mathematics
should certainly find this interesting.

Tony Forbes
Let A = (xA, yA) and B = (xB , yB) and suppose the chord AB has equation
x + my = c. The points where the line x + my = c meets the circle
x2 + y2 = 25 are obtained by solving (c−my)2 + y2 = 25 for y:

yA =
cm+

√
25− c2 + 25m2

1 +m2
, yB =

cm−
√

25− c2 + 25m2

1 +m2
. (1)
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Implicit differentiation of the circle equation gives dy/dx = −x/y. Therefore

−c−myA
yA

=
7− yA

1− (c−myA)
, and − c−myB

yB
=

7− yB
1− (c−myB)

.

Using yA, yB from (1) and solving for m and c gives three solutions:

m = 7, c = 25, xA = −3, yA = 4, xB = 4, yB = 3,
m = −3/4, c = −25/3, xA = −3, yA = 4, xB = −3, yB = 4,
m = 3/4, c = 25/4, xA = 4, yA = 3, xB = 4, yB = 3.

The first solution, the only case where A and B are actually distinct, is the
one we want to solve the problem.

The reader might find it instructive to draw the diagrams corresponding
to the second and third solutions.

Problem 280.4 – Mud
Tony Forbes
There is a circular field of radius 1. The
field is quite muddy on its circumference
and the muddiness increases as you go to-
wards the centre. More precisely, if x is
the distance from the centre of the field,
the muddiness (in some suitable units) is
given by

m(x) =


12(π − 2)(1− x)

5(1 + x)4
+ 1, x < 1,

1, x ≥ 1.

I

II

III

In particular, at the centre of the field m(0) = (12π−19)/5 ≈ 3.73982. You
want to get from a point on the circumference to the diametrically opposite
point. What path will minimize your exposure to mud?

The picture shows some typical routes. Your exposure to mud whilst

walking in a straight line across the diameter (I) is 2
∫ 1

0
m(x)dx = π, the

same as by going around the circumference (II); hence the bizarre nature
of the formula for m(x). But if you combine two straight paths and a
semicircle, you can do better (III). However, the optimum route is likely to
be of a completely different nature.
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Solution 277.1 – Cooling towers
Why do power station cooling towers have the shape that they
have?

Ralph Hancock
Problem 277.1 – Cooling towers reminded me of a QBasic program I wrote
with Eddie Kent’s help many years ago called SHAPE.BAS, which drew a
curve based on one of several simple mathematical operations and rotated
it to create a perspective drawing on the screen. I managed to make quite
a convincing cooling tower by inputting the variable R to this:

200 * R / (SIN(N + 1)).

The value I chose for R was 0.004, so the actual calculation was 0.8/ sin(N+
1). The shape is too wide because the simple program has no control over
the radius of the circle.

I attach the drawing that the program made. I’m keeping my old QBa-
sic programs alive, as far as possible, with the QB64 program that compiles
them in Windows.

The reason cooling towers are this shape is that it keeps the reinforced
concrete of which they are made in compression all the way down the struc-
ture, thus allowing the tower to be made with a minimum of material.

The trouble about old programs is that when you look at them again
you have completely forgotten what’s going on.
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Solution 275.6 – Pistachio nuts
There is a bowl containing n pistachio nuts. How many times
would you expect to perform the following procedure in order to
consume all of the edible material in the bowl?

(i) You select uniformly at random one object from the bowl.
It might be a whole pistachio nut in its shell, or it might be half
of a pistachio nut shell.

(ii) If it is a half-shell, you just return it to the bowl.
(iii) Otherwise you split the shell into two halves, remove the

kernel, which you eat, and return the two shell fragments to the
bowl.

Graham Lovegrove
If a number m nuts have already been consumed, then the probability that

the next selection will be a nut is pm =
n−m
n+m

, and the probability that

it will be a half-shell is qm =
2m

n+m
. So the probability of a particular

‘scenario’, in which there are k1 unsuccessful selections after the first nut,
k2 after the second, etc., until all the nuts are consumed is

Prk1,k2,...,kn−1
= p0p1 . . . pn−1 q

k1
1 q

k2
2 . . . q

kn−1

n−1 .

This scenario sees the nuts consumed in n+
∑n−1
i=1 ki moves. The probability

that the nuts will be consumed in a certain number of moves is the sum
of these probabilities over all scenarios with the same number of moves.
We want to find a way of generating all these sums and calculating the
expectation for the number of moves required. Consider the function

F (x) = p1p2 . . . pn−1 x
nQ1(x)Q2(x) . . . Qn−1(x),

where

Qi(x) = 1 + xqi + (xqi)
2 + . . . (xqi)

k + . . . =
1

(1− xqi)
=

n+ i

n+ i− 2ix

since Qi(x) is the sum of an infinite geometric progression, which converges
when x = 1, as qi < 1 for all i. It is quite easy to see from what we have
said above that the coefficient of xk in F (x) is the probability that all the
nuts will be consumed in k moves. Note that k ≥ n because of the initial
factor of xn. So

F (x) =

∞∑
k=n

xkPk,
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where Pk represents the probability that all the nuts will be consumed in k
moves.

Now we want to know the expected number of moves,

E(n) =

∞∑
k=n

k · Pk,

which is F ′(1). We calculate this by the product rule:

F ′(1) = p1p2 . . . pn−1Q1(1)Q2(1) . . . Qn−1(1)

(
n+

n−1∑
i=1

Q′i(1)

Qi(1)

)
.

But

Qi(1) =
n+ i

n− i
=

1

pi
, and Q′i(x) =

2i(n+ i)

(n+ i− 2ix)2
;

so
Q′i(1)

Qi(1)
=

2i

n− i
.

Thus

E(n) = F ′(1) = n+ 2

n−1∑
i=1

i

(n− i)
.

This yields E(2) = 4, E(3) = 8, E(4) = 122/3, etc.

Problem 280.5 – Pistachio nuts
For completeness, here is our third (the other two being Problems 275.6
and 278.1 for which we have had solutions to 275.6 (Tommy Moorhouse,
278 and Graham Lovegrove, this issue (above)) but not yet 278.1) and final
version of the pistachio nuts problem. We again modify the eating strategy.

There is a bowl containing n pistachio nuts. How many times would
you expect to perform the following procedure in order to consume all of
the edible material in the bowl?

(i) You select uniformly at random one object from the bowl. It might
be a whole pistachio nut in its shell, or just half of a pistachio nut shell.

(ii) If it is a half-shell, you return it to the bowl.

(iii) Otherwise you split the shell into two halves, remove the kernel,
which you eat, and discard the two shell fragments.
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Solution 278.5 – Tan-gled trigonometry
Find the general solution of the equation

tan 9x− tan 2x = tan 9x tan 6x tan 3x+ tan 6x tan 4x tan 2x.

Bruce Roth
Rearranging the original equality gives

tan 9x(1− tan 6x tan 3x) = (tan 2x)(tan 6x tan 4x+ 1).

Using the compound angle formula

tan(A±B) =
tanA± tanB

1∓ tanA tanB

gives
tan 6x+ tan 3x = tan 6x− tan 4x,

or
tan 3x = − tan 4x.

Therefore
sin 3x cos 4x+ sin 4x cos 3x = 0.

Using the compound angle formula

sin(A+B) = sinA cosB + sinB cosA

gives sin 7x = 0, and therefore 7x = nπ, n ∈ Z. So the general solution is

x =
nπ

7
, n ∈ Z.

Solved in an almost identical manner by William Bell, the problem’s orig-
inator.

Problem 280.6 – Four numbers
Find all solutions in positive integers a, b, c, d of

a

b+ c
+

b

a+ c
+

c

a+ b
= d.
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Problem 280.7 – Convex to concave
Tony Forbes
Let w be a positive number and consider the mappings fw(t) defined by

fw(t) =

(
1− t2

1 + t2
,

2t

1 + wt2

)
.

To show you what they look like, we have plotted fw(t), −∞ < t < ∞,
for w = 1, 2, . . . , 20. Recall that f1(t) gives the familiar parametrization
of a circle of radius 1 centred at (0, 0), and this is indeed the outermost
closed curve in the picture. Thereafter the curves shrink as the parameter
w increases.

Observe that the first few curves are convex and the last few are not.
So there must be a special number W , where the curve is convex if w < W
and not if w > W . What is the value of W?

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
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Problem 280.8 – Regular graphs of girth 5
Tony Forbes
Suppose k ≥ 2 and let A be the adjacency matrix of a simple graph G. Show
that G is k-regular (each vertex has k neighbours) and has girth at least 5
(no triangles, no squares) if and only if each row of A2 − A has precisely k
occurrences of −1, one of k, k(k − 1) of 1, and whatever is left over, if any,
of 0. Or find a counter-example.

Proverbs and well-known sayings
Continuing a trend we started some time ago (M500 192, 194, 211) . . .

1. Whilst performing financial calculations it is always sufficient to work
modulo 1.

2. It is wise to preserve a significant proportion of ones liquid assets in order
to deal with the consequences of the onset of precipitation.

3. Utilization of the appropriate Macintosh computer application will serve
to create the required daily exclusion order against the Medical Officer.

4. A doubling in ornithological-annihilation efficiency can be achieved with
suitable common-place geological material.

5. With regard to financial calculations, one has to question the wisdom of
working modulo 1 and the foolishness of applying the floor function.

One day I (TF) noticed that my W-10 computer was plagued by frequent
short-duration stoppages, where the keyboard and mouse freeze for a few
seconds—not a minor inconvenience you may well imagine. Task Manager
shows WMI Provider Host hogging an entire core. Whilst researching the
problem I found a 6-minute You-Tube video explaining what to do. And in
the Comments section someone suggested you can save yourself the trouble
of watching the video by reading these simple instructions.

run services.msc

right click Windows Management Instrumentation

select Restart

That’s 9 words (counting services.msc as one). Assuming 25 frames per
second, 6 minutes of film works out at 9000 pictures. So here we have an
interesting example of that well-known saying:

A word is worth a thousand pictures.

{An Apple a day keeps the doctor away; Look after the pennies, the pounds will take care of themselves;
Penny wise, pound foolish; Kill two birds with one stone; Save for a rainy day}
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M500 Mathematics Revision Weekend 2018

The forty-fourth M500 Revision Weekend will be held at

Yarnfield Park Training and Conference Centre,

Yarnfield, Staffordshire ST15 0NL

from Friday 18th to Sunday 20th May 2018.

The standard cost, including accommodation (with en suite facilities) and
all meals from dinner on Friday evening to lunch on Sunday is £265 for
single occupancy, or £230 per person for two students sharing in either a
double or twin bedded room. The standard cost for non-residents, including
Saturday and Sunday lunch, is £150.

Members may make a reservation with a £25 deposit, with the balance
payable at the end of February. Non-members must pay in full at the time
of application and all applications received after 28th February 2018 must
be paid in full before the booking is confirmed. Members will be entitled to
a discount of £15 for all applications received before 18th April 2018. The
Late Booking Fee for applications received after 18th April 2018 is £20,
with no membership discount applicable.

A shuttle bus service will be provided between Stone station and Yarn-
field Park on Friday and Sunday. This will be free of charge, but seats will
be allocated for each service and must be requested before 1st May.

There is free on-site parking for those travelling by private transport.
For full details and an application form after 1st November, see the Society’s
web site:

www.m500.org.uk.

The Weekend is open to all Open University students, and is designed
to help with revision and exam preparation. We expect to offer tutorials for
most undergraduate and postgraduate mathematics OU modules, subject
to the availability of tutors and sufficient applications.

Please note that the venue is not the same as last year. We go back to
the 2016 location.

Die Mathematiker sind eine Art Franzosen; redet man zu ihnen so
übersetzen sie es in ihrer Sprache und dann ist es alsobald etwas anders.’

— Goethe

[The mathematician is a type of Frenchman; If you talk to them, they
translate it into their language and then it is something different.]



Contents M500 280 – February 2018

Solution 274.3 – A nine-sided die

Chris Pile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

The Chain Rule extended

Graham Lovegrove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

Problem 280.1 – Triangles

Tony Forbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Problem 280.2 – Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Four blocks

Chris Pile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Solution 274.5 – 27 cubes

Chris Pile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Problem 280.3 – Digits

Tony Forbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Solution 277.2 – Circle

Edward Stansfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

John C. Davidson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

William R. Bell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Tony Forbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Problem 280.4 – Mud

Tony Forbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Solution 277.1 – Cooling towers

Ralph Hancock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Solution 275.6 – Pistachio nuts

Graham Lovegrove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

Problem 280.5 – Pistachio nuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Solution 278.5 – Tan-gled trigonometry

Bruce Roth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Problem 280.6 – Four numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Problem 280.7 – Convex to concave

Tony Forbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Problem 280.8 – Regular graphs of girth 5

Tony Forbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Proverbs and well-known sayings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

M500 Mathematics Revision Weekend 2018 . . . . . . . . . . . . . . . . . 21
04.00

Front cover Dice which can’t make up their minds whether to land on a
square or a triangle. See page 1.


