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Solution 258.1 – Battersea Power Station
Assuming that the chimneys of Battersea Power Station are at
the corners of a 50 m× 160 m rectangle, from which points will
they appear regularly spaced along the skyline?

Robin Marks

David Singmaster asks: ‘. . .
It appears to me that there
will be some point where the
chimneys will appear regu-
larly spaced along the skyline
. . . I want to be able to go to
a correct viewpoint and take
a photo.’

Let O be the origin; O
is also the observation point
for looking at the power sta-
tion. The size of the rectangle
formed by chimneys A, B, C,
D is Lx by Ly. In this case
we have chosen O to be on the
line passing through the mid-
points of the short sides, at a
distance q away from the cen-
tre of one of the short sides,
and a distance p away from
the other short side. Let θ
be the angle between OA and
the abscissa. Let φ be the
minimum angle of view from
O containing all four chim-
neys.

Θ
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Φ�3

A

B

Ly

Lx�2

p

q

We can see that φ = π − 2θ. When the chimneys are all lined up such
that the three angles between adjacent chimneys are equal, the viewing angle
between any two adjacent chimneys is φ/3. This leads to two equations,

tan θ =
2q

Lx
and tan

(
θ +

φ

3

)
=

2p

Lx
;
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so

p− q = Ly =
Lx
2

(
tan

π − 2θ

3
− tan θ

)
;

hence
2Ly
Lx

= tan
π − 2θ

3
− tan θ.

Substituting Ly = 160 m and Lx = 50 m, and solving the equation using
Mathematica we get six solutions for θ, of which only two have an absolute
value of less than π.

First solution (left diagram, below):

θ = 71.9◦, φ/3 = 12.1◦, p = 236.5 m, q = 76.5 m.

Second solution (right):

θ = −80.1◦, φ/3 = 113.4◦, p = 16.4 m, q = −143.6 m.
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View from O in left-hand diagram,
above.
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It might seem difficult to take a single photograph of all four chimneys
from the roof of the power station. However it should be possible using the
setting ‘panoramic view’ on a camera or smartphone.

The other solutions to the equation do not lead to any further answers
to the question posed by David but they are interesting to look at.

Left, below:

θ = 278.2◦, φ/3 = −125.5◦, p = −12.9 m, q = −172.9 m;

right, below:

θ = −261.8◦, φ/3 = 234.5◦, p = −12.9 m, q = −172.9 m.
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Other solutions to the equation (but not to the physical problem) with
O on the line passing through the midpoints of the long sides:

θ = 319.046◦, q = −69.4298 m,
θ = −220.954◦, q = −69.4298 m,
θ = (515.477 + 107.112 i)◦, q = (−2.78508 + 77.4952 i) m,
θ = (515.477− 107.112 i)◦, q = (−2.78508− 77.4952 i) m,
θ = (−24.5231 + 107.112 i)◦, q = (−2.78508 + 77.4952 i) m,
θ = (−24.5231− 107.112 i)◦, q = (−2.78508− 77.4952 i) m.

The first two are illustrated on the next page. I would be interested if
anyone could interpret the solutions θ which are not real numbers.
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Tony Forbes
It is interesting to compute exact values for the solutions given in the pre-
vious article. They were obtained by Mathematica but required quite a
lot of cleaning up by hand before I felt they could be presented here. I shall
concentrate on q, the distance of the observer from AD.

There are three distinct values of q when the AD is the short side. Let

σ =
1 +
√

3i

2
,

the sixth root of 1 that has positive real and imaginary parts, and let

δ =

(
3696 +

5
√

4960941 i

9

)1/3

, δ =

(
3696− 5

√
4960941 i

9

)1/3

=
743

3δ
,

where in each case the cube root is the one nearest the real axis. Then

q =


5(δ + δ)− 80 ≈ 76.4627,

5(−σδ + σ2δ)− 80 ≈ − 143.583,

5(σ2δ − σδ)− 80 ≈ − 172.88.

When the observer is looking at the long side there is only one real value,

q = 5

(
ω

3
− 181

ω

)
− 25 ≈ − 69.4298,

where ω =
(
3(−10395 + 16

√
491583)

)1/3 ≈ 13.5162.
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Getting back to the original problem, there is one small point that is
bothering me. In his analysis, Robin is clearly making the assumption that
the observer must lie on the perpendicular bisector of one of the sides of the
rectangle formed by the four chimneys. Then, ignoring positions inside the
rectangle and positions where the chimneys are ordered in a bizarre manner,
there is essentially a unique solution, Robin’s first, where the observer is
5(δ + δ)− 80 ≈ 76.4627 m away from a short side.

What we seem to lack is a rigorous proof that there exist no others. So
I am leaving the problem open.

Prove that there are no further solutions to David Singmaster’s problem.

One might attempt to dismiss this possibility quickly by arguing that the
two chimneys furthest away from the observer always subtend a smaller
angle than the nearest pair. Unfortunately this doesn’t always work.

6y

-x

u

u

u

u
s

D

C
B

A

Q
Look at the diagram, where I
have placed the origin at the cen-
tre of the rectangle. Assume the
observer is at Q = (x, y) with
x > 25 and y > 80. Ignor-
ing ∠BQD, we want to solve the
equation ∠CQB = ∠DQA, or

arctan
x+ 25

y − 80
−arctan

x− 25

y − 80

= arctan
x+ 25

y + 80
−arctan

x− 25

y + 80
.

Some straightforward manipula-
tion using the sum formula

tan(α+ β) =
tanα+ tanβ

1− (tanα)(tanβ)
gives y2 = x2 + 5775. Hence,
for any point on the curve
(x,
√
x2 + 5775) and outside the

rectangle ABCD, the angles
subtended by AD and BC are
the same.
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We can perform a sim-
ilar exercise for the other
two pairs of angles. The
results are illustrated by
the diagram on the right.
I have assumed the ob-
server is in the wedge-
shaped region R2 defined
by 80 ≤ y ≤ 16x/5, where
he or she sees chimneys
ADBC in that order from
left to right.

There are three
curves. The leftmost one
(blue if you are watching
this in colour) is where
chimneys A, D and B
appear equally spaced,
and on the middle curve
(green) it is D, B and C
that are equally spaced.
The rightmost curve (red)
is the one we have dealt
with, where line segments
AD and BC subtend
equal angles at Q. From
the drawing I imagine one
could probably convince
oneself that the curves do
not meet in R2 except at
B; nevertheless I would
like to see a proof.

A

BC

D

Q

x

y

R4 R3 R2

R1

To complete the analysis we should also consider three more regions,

R1 = {{x, y} : x ≥ 25, 0 ≤ y ≤ 80} (ADCB),

R3 = {{x, y} : x ≥ 25, y ≥ 16x/5} (ABDC),

R4 = {{x, y} : 0 ≤ x ≤ 25, y ≥ 80} (BADC).

However it is all becoming rather messy—so I shall gladly leave it for some-
one else to find a neater solution.
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Ralph Hancock
Many thanks for M500 258. I was intrigued by David Singmaster’s Problem
258.1, as I often go past Battersea Power Station.

On the face of it, the question looks silly because, in a view such as
the one illustrated, the rear two chimneys are farther away from the viewer
than the front two and subtend a smaller angle of arc, so that their spacing
is closer to the viewer’s eye. The only way you could see an evenly spaced
set would be from an infinite distance.

The perspective in the view supplied looks wrong. I thought at first it
had been done from an architect’s axonometric drawing with the vertical
measurements fudged to create an illusion of natural perspective, but no, the
rear two chimneys are indeed closer together. I think it’s just inaccurately
drawn – note the rooflines of the main building and the side extension,
which are out of true with each other. Incidentally, it’s a view from the
south side, not from across the river.

Here is a photograph of the north side taken from roughly the same
angle, and from the Embankment just east of Chelsea Bridge. It is about
as close as you will get to even spacing. It is tempting to think that if you
hooked up your helium-filled pig and advanced across the river towards the
near corner of the building, your changing angle to the front of the building
would bring the leftmost chimney in closer and you could find an equally
spaced view. But I think that is an illusion: if you can only see the chimneys
equally spaced from infinity, and the spacing gets more uneven as you get
closer, getting closer still is not going to take you to a sweet spot where the
spacing corrects itself.

There is one way to do it,
which is to start at the midpoint
of any side and advance towards
the building until the rear pair of
chimneys is framed by the front
pair in such a way that the spac-
ing is equal. If you did this while
standing on the ground, the vast
bulk of the building would prob-
ably hide the rear pair of chim-
neys, so you would need to be in
midair.

Unfortunately Ralph’s photograph was not suitable for publication; so I substituted one of my
own, taken from the eastern edge of the railway crossing downstream from Chelsea Bridge.—TF
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Solution 259.5 – Two darts
Two darts are thrown and hit a dartboard of radius r at random.
By this we mean that for each dart’s landing point (x, y), x and
y are chosen independently and uniformly at random on the
interval [−r, r] subject to x2+y2 ≤ r2. Show that the probability
of the darts’ separation exceeding r is 3

√
3/(4π).

Reinhardt Messerschmidt
The dartboard can be represented as a circle with centre at the origin and
radius r.

Step 1. We will first find the conditional probability that the darts are
more than r apart, given that the distance of the first dart from the origin
is s. Rotate the dartboard so that the first dart is at A = (s, 0) and draw
a circle with centre at A and radius r.

O A
C

B

D

r r

θ

If B = (x, y) then

x2 + y2 = (x− s)2 + y2 = r2;

therefore s2 − 2sx = 0; therefore s = 0 or s = 2x; therefore the length of
AC is s/2. It follows that

θ = arccos(s/(2r));

length of AC = r cos θ; length of BC = r sin θ;

area of slice BAD of circle A = (2θ/(2π))πr2 = θr2;

area of triangle ABD = (r sin θ)(r cos θ) = r2 sin θ cos θ;

area of intersection of circle O and circle A = 2(θr2 − r2 sin θ cos θ).
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The conditional probability is

1− Area of intersection of circle O and circle A

Area of circle O
= 1− 2θ − sin(2θ)

π
,

where θ = arccos(s/(2r)).

Step 2. Let S be the random variable for the distance of the first dart
from the origin, and let Θ = arccos(S/(2r)). We will find the probability
density function fΘ of Θ. If s ∈ [0, r] then

P[S ≤ s] =
Area of a circle with radius s

Area of a circle with radius r
=

s2

r2
.

Note that

P[Θ ≤ θ] = P[S ≥ 2r cos θ] = 1− P[S < 2r cos θ].

It follows that if θ ∈ [π/3, π/2] then

P[Θ ≤ θ] = 1− (2r cos θ)2

r2
= 1− 4 cos2 θ

and

fΘ(θ) =
d

dθ
P[Θ ≤ θ] = 8 cos θ sin θ = 4 sin(2θ).

Step 3. The probability that the darts are more than r apart is∫ π/2

π/3

(
1− 2θ − sin(2θ)

π

)
4 sin(2θ) dθ

= 1− 8

π

∫ π/2

π/3

θ sin(2θ) dθ +
4

π

∫ π/2

π/3

sin2(2θ) dθ

= 1− 2

π

[
sin(2θ)− 2θ cos(2θ)

]∣∣∣∣π/2
π/3

+
1

2π

[
4θ − sin(4θ)

]∣∣∣∣π/2
π/3

= 1− 2

π

(
π −
√

3

2
− π

3

)
+

1

2π

(
2π − 4π

3
−
√

3

2

)
=

3
√

3

4π
.
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Prime density and centre of mass
Robin Whitty
Suppose that (x, y) is the centre of mass of the arc of the log curve in the
interval [1, x]. We denote by π(x) the number of primes not exceeding x.
We observe that 1

2π(x) is asymptotic to x/y.

This follows from the prime number theorem π(x) ∼ x/ log x and the
fact that (x, y) = (x/2,−1 + log x), in the limit, as x→∞. This is presum-
ably a well-known fact but perhaps not an obvious one without recourse to
mathematical software.

The centres of mass of arcs on log(x) shadow the log curve. The centres
of mass for the integers 2, . . . , 100 are plotted against log x in the first picture
below, with the centre for x = 100 plotted in the second picture.

20 40 60 80 100

1

2

3

4

20 40 60 80 100

1

2

3

4

We apply the formulae

x =
1

L

∫ b

a

x

√
1 +

(
dy

dx

)2

dx, y =
1

L

∫ b

a

y

√
1 +

(
dy

dx

)2

dx



M500 260 Page 11

to the curve y = log x, where L is arc length in the interval [a, b]. In our
ratio x/y the 1/L factors cancel, but it seems worthwhile to investigate the
two coordinates separately. Calculating from 1 to x:

x =

∫ x
1
t
√

1 + 1/t2 dt∫ x
1

√
1 + 1/t2 dt

and y =

∫ x
1

log t
√

1 + 1/t2 dt∫ x
1

√
1 + 1/t2 dt

.

The common integrand in the denominators has an elementary antideriva-
tive which, with the assumption that t > 0, and ignoring the constant of
integration, may be expressed as:∫ √

1 + 1/t2 dt =
√

1 + t2 − tanh−1
(

1/
√

1 + t2
)

=
√

1 + t2 − 1

2
log

(
1 +
√

1 + t2

−1 +
√

1 + t2

)
=

√
1 + t2 − log

(
1 +

√
1 + t2

)
+ log t.

We observe that

lim
t→∞

(
−t+

√
1 + t2 − log

(
1 +

√
1 + t2

)
+ log t

)
= 0,

so that
∫ x

1

√
1 + 1/t2 dt may be replaced with x + C in the limit, for a

constant C.

The numerator of x, again because t > 0, simplifies to∫ x

1

√
1 + t2 dt =

1

2

[
t
√

1 + t2 + sinh−1 t
]x

1
.

Since lim
x→∞

sinh−1 x

x
= 0 we find that, in the limit, x is x/2.

The integrand in the numerator of y does not have a closed form an-
tiderivative; however Mathematica offers one involving a hypergeometric
series:∫

log t
√

1 + 1/t2 dt = log(t)

(
t

√
1 +

1

t2
− sinh−1

(
1

t

))

−t · 3F2

(
−1

2
,−1

2
,−1

2
;

1

2
,

1

2
;− 1

t2

)
= log(t)

(√
1 + t2 − log

(
1 +

√
1 + t2

)
+ log t

)
−t · 3F2

(
−1

2
,−1

2
,−1

2
;

1

2
,

1

2
;− 1

t2

)
(t > 0).
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Now

lim
t→∞ 3F2

(
−1

2
,−1

2
,−1

2
;

1

2
,

1

2
;− 1

t2

)
= 1,

so
∫ x

1
log t

√
1 + 1/t2 dt may be replaced, in the limit, with x log x − x + D

for D a constant.

We conclude that, in the limit,

y → x log x− x+D

x+ C
→ − 1 + log x.

The ratio x/(−1 + log x) is preferred as an estimate for π(x) over the
classic x/ log x of the Prime Number Theorem, but obviously does not com-
pete with Li(x) for large x.

Solution 258.5 – Integral
Suppose a, b > 0. Show that

I(a, b) =

∫ ∞
0

cos ax− cos bx

x
dx = log

b

a
.

John Davidson
Define

J(a, b, c) =

∫ ∞
0

e−cx(cos ax− cos bx)

x
dx, (1)

where c ≥ 0. Then
lim
c→∞

J(a, b, c) = 0 (2)

and
J(a, b, 0) = I(a, b). (3)

From (1),
∂J

∂c
= −

∫ ∞
0

e−cx(cos ax− cos bx) dx. (4)

It is readily shown that∫ ∞
0

e−cx cos px dx =
c

p2 + c2
(5)

and ∫
c

p2 + c2
dc =

1

2
log(p2 + c2) +A(p). (6)
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Substituting equation (5) in equation (4):

∂J

∂c
=

c

b2 + c2
− c

a2 + c2
. (7)

Integrating equation (7) and making use of equation (6):

J(a, b, c) =
1

2
log(b2 + c2)− 1

2
log(a2 + c2) +A(a, b)

= log

√
b2 + c2

a2 + c2
+A(a, b). (8)

Using the condition (2) in equation (8) and noting that

lim
c→∞

log

√
b2 + c2

a2 + c2
= 0,

we have A(a, b) = 0 and so from (8)

J(a, b, c) = log

√
b2 + c2

a2 + c2
. (9)

Setting c = 0 in equation (9) and using (3), it follows that

I(a, b) = log

√
b2

a2
= log

b

a
.

Problem 260.1 – Iterated trigonometric integral
Tony Forbes
For positive integer n, define Fn(x) by

F1(x) = sin(arctanx), Fn+1(x) = sin(arctanFn(x)).

Show that for a ≥ 0, ∫ a

0

Fn(x) dx =

√
na2 + 1− 1

n
.

Mathematician: “Look at all these awards we can get nowadays – Nevan-
linna, Gauss, Abel, Wolf, etc. etc.”

Another mathematician: “Yes – I can remember when it was just
Fields around here.”

[Sent by Jeremy Humphries]
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Rational fundamental constants
Tony Forbes
Recall (from Wikipedia, or elsewhere) that (i) one metre is the distance
travelled by light in a vacuum in 1/299792458 seconds, (ii) one second is
the total time elapsed by 9192631770 periods of the radiation corresponding
to the transition between the two hyperfine levels of the ground state of
caesium-133, and (iii) one kilogram is the mass of a certain collection of
atoms, the international prototype kilogram, consisting of 90% platinum,
10% iridium and approximately 0% impurities (mainly oxides of platinum
and iridium as well as a small amount of Os-186 from the decay of Pt-190).

Therefore c, the speed of light, is rational when measured in metres per
second. Is it possible there might be other fundamental constants that are
rational, or rational expressions involving π, say?

Well, it seems that we can look forward to seeing a few more if a sug-
gestion arising from the 2011 meeting of the Conférence Générale des Poids
et Mesures goes ahead. Amongst their recommendations is a proposal to
abandon (iii) above as well as the present SI definitions of the ampere, kelvin
and mole, and instead assert the following equalities:

(1) Planck’s constant h is exactly 6.62606X× 10−34 joule–seconds,

(2) the electron charge e is exactly 1.60217X× 10−19 coulombs,

(3) Boltzmann’s constant k is exactly 1.38065X× 10−23 joules per kelvin,

(4) Avogadro’s number NA is exactly 6.02214X× 1023 mole−1,

in each case the X denoting 0 or more possible additional digits that the
CGPM have yet to decide. And presumably once the Xs have been deter-
mined, the fundamental constants h, e, k and NA (as well as c) will be fixed
for the rest of eternity—provided new physics does not discover anything
that would excessively compromise their static nature. Four new rational
numbers! Thus Planck’s constant (1) together with (i) and (ii) will provide a
new SI definition of the kilogram. And with this in place, new SI definitions
of the ampere, kelvin and mole arise from e, k and NA respectively.

In common with just about everyone else with a scientific mind, I have
often puzzled about the nature of the dimensionless number α, the fine
structure constant. Is it rational, or perhaps some rational expression in-
volving mathematical objects like π, e (not the electron charge) and possibly
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Euler’s constant,

γ = lim
n→∞

(1 + 1/2 + · · ·+ 1/n− log n) ≈ 0.57721566 ?

Nobody knows, although Eddington [1] once built a substantial cosmological
theory from first principles on the basis that α = 1/137.

The good news is that with the new definitions of h and e (assuming
for now there are no new digits X in each case) as well as the current value
of the permeability of free space, a rational multiple of π,

µ0 = 4π × 10−7 henries per metre,

we can show that fine structure constant is also a rational multiple of π:

α =
e2cµ0

2h
=

549679902143612483π

236645000000000000000
= 0.007297303312558175398 . . . .

Great news indeed! The nature of the mysterious α is determined.

And now the bad news. This is nonsense. The number α is handed
to us by God and mere mortals have no business meddling around with
it. So obviously something has gone wrong. Readers might like to pause
here and ponder for a few trillion Cs-133 hyperfine transition periods before
continuing.

In fact it didn’t take me more than a day or two of concentrated effort to
realize that µ0 = 4π×10−7 H/m is simply incompatible with the new h and
e. It will have a slightly different value in terms of the new kilogram and
ampere (together with the old metre and second). If we work backwards
from the currently accepted value of the fine structure constant, which I
quote from Wikipedia,

α ≈ 0.0072973525698,

we find that (1) and (2) imply 107µ0 ≈ 12.566455438, differing significantly
from the true value of 4π ≈ 12.566370614. So the obvious rationality of
µ0/π when expressed in current SI units must be sacrificed along with that
of its companion, πε0, where ε0 = 1/(µ0c

2), the permittivity of free space.

Finally, I offer this meaningless curiosity for you to think about:

chkN2
A =

124328694237299052844323664719

125000000000000000000000000000
≈ 0.99463

kg2m5

mol2s4K
.

[1] Arthur S. Eddington, Fundamental Theory, Cambridge, 1953.
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Solving a nonlinear ordinary differential equation
Tommy Moorhouse
We consider a transformation that allows a class of first order inhomoge-
neous nonlinear ordinary differential equations (ODEs) to be solved. The
first order nonlinear equation becomes a second order homogeneous linear
equation, which we know how to solve using elementary or special functions.

The class of equations to be considered here is defined by

u̇ = au2 + bu+ c.

Here u = u(t) is a function of t and the dot denotes differentiation with
respect to t. Also a cannot be zero, otherwise the equation is linear. We
take a to be independent of t. The substitution

u = α
ψ̇

ψ
,

where α is a constant to be determined later, leads to

α
ψ̈

ψ
− αψ̇

2

ψ2
= aα2 ψ̇

2

ψ2
+ bα

ψ̇

ψ
+ c.

Choosing α = −1/a we find that the squared terms cancel and we can
rearrange to get

ψ̈ − bψ̇ + acψ = 0.

Up to this point we have not stipulated the properties of b and c. The
above substitution works if b and c are functions of t, and a slight general-
ization allows a to depend on t. If a, b and c are in fact constants we can
solve the linear equation for ψ to find

ψ = A+ exp(ρ+t) +A− exp(ρ−t),

where ρ± are the solutions to λ2 − bλ+ ac = 0 and A± are constants. This
leads to

u = − 1

a

A+ρ+ exp(ρ+t) +A−ρ− exp(ρ−t)

A+ exp(ρ+t) +A− exp(ρ−t)
.

As usual if there is a repeated root (ρ+ = ρ− ≡ ρ) we get the solution
ψ = (A+Bt) exp(ρt) and

u = − 1

a

B + (A+Bt)ρ

(A+Bt)
.
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It isn’t too hard to check that this is indeed a solution (try a = 1, b = 2, c = 1
for a simple case).

If we allow b and c to be functions of t we can still use our substitution
and see whether the equation for ψ is a familiar one. As an example take

u̇ = n(n+ 1)u2 +
2t

1− t2
u+

1

1− t2

for −1 < t < 1. We find

(1− t2)ψ̈ − 2tψ̇ + n(n+ 1)ψ = 0,

which is the differential equation for the Legendre polynomials. For exam-
ple, if n = 2 we have ψ(t) = P2(t) = (3t2 − 1)/2 and u = −t/(3t2 − 1); u
satisfies the nonlinear equation

u̇ = 6u2 +
2t

1− t2
u+

1

1− t2
.

Many second degree nonlinear first order ODEs can be solved using this
transformation. Applied Complex Variables by John W. Dettman (Dover,
1970) gives some background on special second order ODEs.

Problem 260.2 – Right-angled triangle
Show that for |a| < 1,

arctan a ≈ 3a

1 + 2
√

1 + a2
.

If you prefer not to work in radians, show that there is an even better
approximation:

arctan a ≈ 172a

1 + 2
√

1 + a2
degrees.

Observe that this gives a convenient way of calculating the angle opposite
the smallest side of a right-angled triangle with sides a, b, c, a ≤ b ≤ c:

arctan
a

b
≈ 172a

b+ 2c
degrees.

For example, with a (3, 4, 5) triangle the angle we want will be arctan 3/4 ≈
258◦/7, about 36.8571◦, the true value being nearer 36.8699◦.
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Fork handles revisited
Tony Forbes
Attach two candles to each other with sticky tape and bring their wicks
together so that when lit they produce a single flame. Recall that in M500
241 Judith Furner’s young grand-niece Lily asked: Is the light from this ar-
rangement significantly brighter than the combined light from two separated
candles?

Then a few years later I discovered amongst my possessions four candles
of no great value to me. So I was willing to sacrifice them in the interests
of scientific enquiry. Behold the illustrations below. Even from just the
first picture (where the candles are about 20 cm long) you can see that
the massive single flame on the left must surely outshine the other two.
So Lily’s question seems to have a positive answer. However, without an
accurate illumination-measuring device to verify this observation, I thought
it would be a good idea to continue the experiment for a few tens of minutes
and thereby confirm that the big flame does indeed consume the wax in its
candles more rapidly than the other two. It is pleasing to conduct a scientific
experiment and get the result you want first time and without cheating.

You might notice that the fourth candle is not necessary if you only want
to measure the rates of burning. I included it because I was quite keen to
get a rough visual indication of the relative brightness—and of course the
Two Ronnies joke won’t work without it.
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Solution 252.1 – Three pieces
Divide a square into three same-shape pieces but different sizes.

Steve Moon
I offer one possible division into three
similar rectangles. Consider the unit
square on the right. To establish the
longer and shorter sides of each rectan-
gle we need b > a > 1/2. Then

1

a
=

b

1− a
=

1− a
1− b

for similarity. Hence b = (1− a)/a and
(1− a)2 = b(1− b). Therefore

a

6

?

b� -

a3 − a2 + 2a− 1 = 0,

which has solution

a =

(√
23

108
+

11

54

)1/3

−

(√
23

108
− 11

54

)1/3

+
1

3
,

giving a ≈ 0.57 and b ≈ 0.75.

Problem 260.3 – Three dice
Tony Forbes
One lasting memory of my visit to a summer fête in Guernsey was of bois-
terous, overweight and not exceedingly intelligent punters gambling quite
large amounts of money at the Crown and Anchor stalls of which there were
considerably more than a just a few. In this game players bet on numbers
1–6 (usually represented by ace, king, queen, jack, crown and anchor) and
three dice are thrown. If a player has bet x on n, and n appears i times
amongst the three dice, he loses x if i = 0 and wins ix if i > 0.

As is well known, the game is hideously biased against the player, which
does not readily explain its popularity in places where it is legal. So to
redress the balance we alter the rules. Now players bet on numbers 1–5
and, as before, three dice are thrown. But if a 6 shows, everyone loses.
Otherwise, a successful player wins double the amount, 2ix instead of ix.
Analyse the game and hopefully deduce that it is much less unfair.



Page 20 M500 260

Simon Singh, his book
Eddie Kent
Readers might be interested to know that Simon Singh, an old friend of
M500, has produced another volume to go with Fermat’s Last Theorem (or
Fermat’s Enigma: The Epic Quest to Solve the World’s Greatest Mathemat-
ical Problem in the US), The Code Book, Big Bang and Trick or Treatment?
Alternative Medicine on Trial. This new book is called The Simpsons and
their Mathematical Secrets. I have not read it yet (and I really mean yet) but
have seen a review of it in the London Mathematical Society’s Newsletter
(no. 437, 2014).

Among the facts and numbers included, we are told, are that many
of the Simpsons’ writers have advanced degrees in mathematics and re-
lated fields: Harvard, Princeton and Berkeley are involved. Also that, as
a counterexample to Andrew Wiles’s efforts, Homer Simpson showed that
398712 + 436512 = 447212. Of course this isn’t exactly true but it ain’t half
close. More numbers that are used include 87539319 which (cf Hardy and
Ramanujan) is the smallest number that is the sum of two cubes in three
different ways, and 8191, 8128 and 8208—given as the multiple-choice pos-
sible numbers of people attending a particular ball game. You might notice
that 8191 = 213 − 1 and is thus Mersenne, that 8128 is the fourth perfect
number (being 2 · 2 · 2 · 2 · 2 · 2 · 127) and is also the sum of the first 127
integers, and that 8208 = 84 + 24 + 04 + 84, which makes it narcissistic.

What is more, although Homer’s daughter Lisa is the most gifted math-
ematically of the Simpsons, she has to disguise herself as a boy in order to
attend maths classes. She then wins the prize, so it turns out that ‘The
best math student in the whole school is a girl!’, thus mirroring the case of
Sophie Germain who had to pretend to be a man in order to get her results
in number theory accepted. Simon uses the maths in The Simpsons to ex-
plain some topics in an elementary way, including prime numbers, perfect
numbers, topology, higher-dimensional geometry, P v NP, countability. I
expect, therefore, that it won’t be greatly useful as a textbook to a maths
undergraduate; but it all sounds great fun. It is published by Bloomsbury
at £12.91 or £6.29 paper.

My memory was jogged. Then I did a search through back numbers and
found another almost-counter-example to Fermat’s Last Theorem at the
bottom of page 15 in M500 221: 178212 + 184112 = 192212, nearly, the
difference being only about 7× 1029. And just in case you were wondering,
87539319 = 1673 + 4363 = 2283 + 4233 = 2553 + 4143. — TF
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M500 Winter Weekend 2015
The thirty-fourth M500 Society Winter Weekend will be held at

Florence Boot Hall, Nottingham University

from Friday 9th to Sunday 11th January 2015.

Cost: £205 to M500 members, £210 to non-members. This includes accom-
modation and all meals from dinner on Friday to lunch on Sunday. You can
obtain a booking form either from the M500 web site,

http://www.m500.org.uk/winter/booking.pdf,

or by emailing the Winter Weekend Organizer at winter@m500.org.uk.

The Winter Weekend provides you with an opportunity to do some
non module based, recreational maths with a friendly group of like-minded
people. The relaxed and social approach delivers maths for fun. And as well
as a complete programme of mathematical entertainments, on Saturday we
will be running a pub quiz with Valuable Prizes.

M500 Mathematics Revision Weekend 2015
The M500 Revision Weekend 2015 will be held at

Yarnfield Park Training and Conference Centre,

Yarnfield

Staffordshire ST15 0NL

from Friday 15th to Sunday 17th May 2015.

We expect to offer tutorials for most undergraduate and postgraduate math-
ematics Open University modules, subject to the availability of tutors and
sufficient applications. Application forms will be sent via email to all mem-
bers who included an email address with their membership application or
renewal form, and are included with this magazine mailing for those who
did not.

Contact the Revision Weekend Organizer, Judith Furner, if you have
any queries about this event. (Please note that the organizer is different
from last year.)

Alpha particle: “Doctor, doctor, I’ve just discovered I am missing a
couple of electrons.”

Doctor: “Are you sure?”

Alpha particle: “I’m positive.”
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curves. See pages 1–7.


