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The Bedlam Cube

Rob Evans
This article shall mainly be about how to solve the so-called ‘Bedlam Cube’
puzzle. This puzzle requires that one constructs a 4× 4× 4 cube out of 13
different component pieces. See Figure BC on page 7 for illustrations of the
said pieces.

Readers of this magazine whose subscription goes back far enough can
confirm that this puzzle was referred to by Chris Pile in M500 134 and
written about at greater length by him in M500 152. The relevant articles
appeared respectively under the titles ‘Cube Dissection’ and ‘Pentacubes’.

In some ways the Bedlam Cube puzzle resembles the well-known 3 ×
3× 3 ‘Soma Cube’ puzzle. This other puzzle has only 7 component pieces.
Consequently, most intelligent people can solve it within 10 minutes and,
moreover, do so without using a computer. However, the same thing most
definitely cannot be said about the Bedlam Cube puzzle. Indeed, if one
attempts to solve this puzzle without using a computer then one is more
likely to be driven insane by it than to ever solve it!

In light of the last paragraph, let us agree to use a computer. That said,
we still need to think seriously about what program (i.e. algorithm) shall
ensure that our computer solves the puzzle efficiently. If we do this then
we are likely to come to the conclusion that the program needs to have an
appropriately designed recursive structure with as many levels as there are
pieces of the puzzle.

After a proverbial ‘month of Sundays’, I eventually came up with just
such a program. To cut a long story short, the said program was run on an
old Amstrad and threw up a solution within an hour or so! However, I do
not intend to give a complete listing of the program since it consists of hun-
dreds of lines of code and would require me to provide a lot of explanation
of all its details. Instead, I intend to present a very-much-simplified version
of the program that highlights its recursive structure and its other funda-
mental features. I say ‘a very-much-simplified version’ since I do not want
to give readers the impression that it can in some straightforward manner
be translated into a working computer program.

Associated with the underlying concepts of the program we have the
following useful notation:

C denotes an arbitrary fixed 4× 4× 4 cubical region of space;
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U(C) denotes the 64 unit cubes of which C is composed;

X denotes a 1×13 row matrix, each of whose entries x(1, 1), x(1, 2),
. . . , x(1, 13) is a variable that ranges over U(C);

P denotes the 13 pieces of the puzzle;

where P0 ∈ P, we have that U(P0) denotes the 4 or 5 unit cubes of
which P0 is composed.

Henceforth, all notation refers to how things are at a particular time in the
running of our program. Next:

L denotes the level of the recursive structure at which the computer
finds itself;

APC denotes {P ∈ P : P is configured so that U(P ) ⊆ U(C)}
(‘APC’ stands for ‘are properly configured’);

APO denotes
⋃

P∈APC U(P ) (‘APO’ stands for ‘are properly occu-
pied’).

Each time L increases / decreases in value by 1 an element of P is added
to / taken from APC and the corresponding 4 or 5 elements of U(C) are
added to / taken from APO. Next:

if P0 ∈ P \APC, then CONF(P0) denotes the configurations of P0

for which U(P0) ⊆ U(C) \APO;

if P0 ∈ P\APC and c0 ∈ U(C)\APO, then CONF(P0, c0) denotes
the configurations of P0 for which c0 ∈ U(P0) ⊆ U(C) \APO.

The respective contents of CONF(P0) and CONF(P0, c0) vary in accord
with the contents of APC and APO. However, at all times, by definition,
CONF(P0, c0) ⊆ CONF(P0).

Using these concepts and this notation, a very-much-simplified version
of our program is as follows.

Firstly, let APC = APO = ∅ and L = 0. Secondly, follow the
instructions that make up the content of the next paragraph.

Firstly, increase the value of L by 1.
Secondly, if APO 6= U(C) then choose an element from U(C)\APO
to assign to x(1, L) and follow the instruction that makes up the
content of the next paragraph. If, on the contrary, APO = U(C)



M500 282 Page 3

then print off the corresponding solution.
Thirdly, decrease the value of L by 1.

(∀P ∈ P\APC)(∀conf ∈ CONF(P, x(1, L))) (Firstly, realize conf
and make the corresponding changes in the respective contents of
APC and APO. Secondly, follow the instructions that make up the
content of the previous paragraph.)

Later in this article we shall state the criterion by which the computer
chooses an element from U(C) \ APO to assign to x(1, L). Until then,
everything to be said about our program holds irrespective of that criterion
(i.e. even if the said choices are made purely arbitrarily!).

Of course, the recursive structure of the program has 13 levels. But, in
the actual running of the program, the computer spends most of its time
moving up and down amongst the middle ones unable to ascend/descend
to the highest/lowest ones. Nevertheless, occasionally it manages to pass
through all 13 levels and print off a solution to the puzzle. Indeed, by the
time our program has stopped running, it prints off each solution to the
puzzle exactly 24 times! The unfortunate fact that the computer prints
off each solution exactly 24 times (rather than exactly once) derives from
the rotational symmetry of C. Later in this article, we shall modify our
program so as to break this symmetry and, thus, avoid the repetition that
corresponds to it.

Notwithstanding the repetition that was referred to in the last para-
graph, our program runs fairly efficiently. Of course, this efficiency derives
mainly from the fact that the program has an appropriate test at each level.
However, the efficiency also derives from the specifics of this test, namely
the requirement that conf ∈ CONF(P, x(1, L)).

If the said requirement were changed to conf ∈ CONF(P ) then the
computer would discover every solution to the puzzle no fewer than 24 ×
13! times. Interestingly, the extra repetition implied by the factor of 13!
would be avoided if the program as a whole required that the pieces of
the puzzle become properly configured in a predetermined order. However,
this alternative approach seems to leave no room for further significant
improvement, and for sure leaves no room for improvement of the kind to
be described next in this article!

Continuing from where we left off immediately prior to the last para-
graph, we shall now consider how our program can be made still more
efficient by ensuring the choice of an element from U(C) \ APO to assign
to x(1, L) is made wisely (rather than purely arbitrarily). Consequently, we
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now state the criterion for what constitutes the best choice here.

Where b denotes the best choice from U(C) \APO to assign to x(1, L),
we have ∑

P∈P\APC

#[CONF(P, c)] is minimized for c = b,

where c ranges over U(C) \APO.

If more than one b satisfies this criterion then the b can be chosen arbitrarily
from all the said bs.

Unfortunately, if this criterion were adopted then, in terms of the effi-
ciency of our program, the costs would quite likely outweigh the benefits!
(In my case, given the limited working memory on my old Amstrad I could
not have incorporated it into my working computer program even if I had
wanted to.) However, if we bear in mind the theoretical correctness of the
above criterion for b then we should be able to come up with a more prac-
tical criterion for a good enough choice of an element from U(C) \APO to
assign to x(1, L). And, fortunately, intuition suggested to me an obvious
example of such a criterion. In order to state this more practical criterion
in a succinct manner, we introduce the following additional notation.

Firstly, let c0 ∈ U(C). Then N(c0) denotes {c ∈ U(C) : c has a face in
common with c0}. Here, ‘N ’ stands for ‘neighbours’; #[N(c0)] ∈ {3,4,5,6}.

Using this notation, we now state the desired criterion. Where g denotes
the good enough choice from U(C) \APO to assign to x(1, L), we have

#[N(c) \APO] is minimized for c = g,

where c ranges over U(C) \APO.

If more than one g satisfies this criterion then the g can be chosen arbitrarily
from all the said gs.

Having presented the above very-much-simplified version of our program
and the above criterion for g we return to the unfortunate fact that the
computer prints off each solution exactly 24 times (rather than exactly
once). As mentioned before, this repetition derives from the rotational
symmetry of C and can be avoided by modifying our program so as to
break this symmetry. Fortunately the required modification can be made
very easily. In order to give the relevant details in a succinct manner, we
introduce the following additional notation.

Firstly, let S+(C) denote all rotational symmetries of C. Next, on the
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assumption that APC = APO = ∅ and P0 ∈ P let conf0 ∈ CONF(P0).
Then

orb(conf0) denotes {conf ∈ CONF(P0) : ∃σ ∈ S+(C)[conf = σ(conf0)]}.

In turn, ORB[CONF(P0)] denotes {orb(conf) : conf ∈ CONF(P0)}.
Using this notation and our previous notation, we now give the details of

the required modification. Between the existing first and second paragraphs
of our program insert the following new paragraph.

Firstly, increase the value of L by 1.

Secondly, choose an element from P, say P ∗.

Thirdly, (∀orb[conf ] ∈ ORB[CONF(P ∗)]) (Firstly, choose an ele-
ment from orb[conf ], say conf∗. Secondly, realize conf∗ and make
the corresponding changes in the respective contents of APC and
APO. Thirdly, follow the instructions that make up the content of
the next paragraph.)

This wording of the required modification has deliberately been made to
conform as far as possible with the general style of the above wording of the
original (i.e. unmodified) program. However, when it comes to writing a
working computer program we save ourselves a lot of trouble if, instead, we
make a predetermined choice of P ∗ from P and, in turn, a predetermined
choice of conf∗ from orb[conf ] for each orb[conf ] ∈ ORB[CONF(P ∗)].
And, of course, this predetermined choice of P ∗ from P should be made
wisely (rather than purely arbitrarily). Consequently, we now state the
criterion for what constitutes the best choice here.

Where B denotes the best choice of P ∗ from P, we have

#(ORB[CONF(P )]) is minimized for P = B,

where P ranges over P.

If more than one B satisfies this criterion then the B can be chosen arbi-
trarily from all the said Bs.

A few straightforward calculations are (as readers can confirm) suffi-
cient to demonstrate that B is in fact the piece with the shape of a three-
dimensional plus sign. Specifically, we have that #(ORB[CONF(B)]) = 2.
In other words for L = 1, there are just two configurations of B that we
need to consider.

A possible clue that the approach taken by this article is the one in-
tended by the inventor of the Bedlam Cube puzzle comes from a remarkable
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number coincidence. The fact that we have adopted the above modifica-
tion means that the recursive structure of our program now has only 12
levels—the same as the maximum number allowed for a general recursive
structure in Basic 2 (the programming language in which I wrote my work-
ing computer program!). “Not much of a number coincidence,” I hear you
say? However, I suspect that this programming language (unlike many more
modern ones) was in existence when the Bedlam Cube puzzle was conceived.
Moreover, I suspect that with respect to the relevant capability most of the
programming languages that were available then were identical.

Next, we consider a somewhat subtle point that has up to now been
conveniently overlooked. Throughout this article we have assumed that if
the pieces of the Bedlam Cube puzzle can be put together à la Star Trek
then they can be put together (with the same spatial relationships amongst
them) without them leaving ordinary three-dimensional space. But, I am
not 100 per cent sure that this claim is true! After all one can easily imagine
a similar puzzle where this claim is false. (See Figure 2P for a puzzle with
just two pieces, where this claim is obviously false.) In the fictional world
of Star Trek each of the pieces could first be dematerialized and then be
rematerialized in the right place! However, in the real world we come up
against the obvious constraints implied by material solidity of the pieces.

With regards to the point discussed in the last paragraph, readers shall
no doubt be relieved to learn that for each of the solutions that my working
computer program came up with during the time that it was run for I was
able to put together (with the corresponding spatial relationships amongst
them) the materially solid pieces of the Bedlam Cube puzzle without them
leaving ordinary three-dimensional space!

Lastly, should some readers
think that the whole of this
article should be dismissed as
recreational they might like to
consider the fact that problems
of three-dimensional tessellation
(that are similar in some ways to
the Bedlam Cube puzzle) have
been faced by those with the
challenge of assembling detector
equipment for use in physics ex-
periments at the Large Hadron
Collider facility in Switzerland.

Figure 2P
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Figure BC
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Solution 280.4 – Mud
There is a circular field of radius 1.
The field is quite muddy on its circum-
ference and the muddiness increases as
you go towards the centre. More pre-
cisely, if x is the distance from the cen-
tre of the field, the muddiness (in some
suitable units) is given by

m(x) =


12(π − 2)(1− x)

5(1 + x)4
+ 1, x < 1,

1, x ≥ 1.

I

II

III

In particular, at the centre of the field m(0) = (12π − 19)/5 ≈ 3.73982.
You want to get from a point on the circumference to the diametrically
opposite point. What path will minimize your exposure to mud?

The picture shows some typical routes. Your exposure to mud whilst

walking in a straight line across the diameter (I) is 2
∫ 1

0
m(x)dx = π,

the same as by going around the circumference (II); hence the bizarre
nature of the formula for m(x). But if you combine two straight paths
and a semicircle, you can do better (III). However, the optimum route
is likely to be of a completely different nature.

Dick Boardman
The problem is symmetrical about both axes. An optimum path in one
quadrant can be reflected in the axis to produce the optimum solution to
the whole problem. There will be two solutions, one on either side of the
centre of the field. The answer to this problem is a minimum path, not just
a number. This makes it a problem in the Calculus of Variations.

The Calculus of Variations has a long history with work done by many
mathematicians including Euler and Lagrange. There exists a general so-
lution by Euler and Lagrange which converts the unknown path into the
solution of a differential equation. Unfortunately in this and many other
cases the differential equation is very difficult to solve.

Euler suggests that an approximate solution can be found by splitting
the optimum path into a number of straight line sections. This will produce
a path which is very close to the optimum and adequate for all practical
purposes. Brute force computing can compare many thousands of paths
and find the best approximation.

In the statement of the problem you [TF] consider three paths, circular



M500 282 Page 9

around the edge, straight across the middle and a combination a straight
line along the axis and a semi-circular path. These paths collect varying
amounts of mud.

This particular mud function has a very imprecise minimum with a lot
of paths giving a result very close to the minimum.

I consider first a single straight line from (0, y1) to (1, 0) where y1 is the
point where the line meets the y-axis. See the left-hand diagram, below, and
note that the original picture has been rotated by −90 degrees. We need
to integrate the function m(x) over the path, and for this purpose we write
down the integral over a general line segment from (X1, Y1) to (X2, Y2):

S((X1, Y1), (X2, Y2)) =

∫ X2

X1

m
(√

x2 + (λ(x−X1))2
)√

1 + λ2 dx,

where
λ = (Y2 − Y1)/(X2 −X1)

is the slope of the line through (X1, Y1) and (X2, Y2). For the path in
question, we need to minimize the function

M(y1) = 2S((0, y1), (1, 0))

over the variable y1 subject to the constraint 0 ≤ y1 ≤ 1. It seems that this
can only be solved numerically. So I use Mathematica’s NMinimize func-
tion. The minimum occurs when y1 = 0.483691 and gives S((0, y1), (1, 0)) =
1.30852 and hence M(y1) = 2.61705.

I next consider, two straight lines from (0, y1) to (0.5, y2) and from
(0.5, y2) to (1, 0) (right-hand diagram). The function to minimize is

M(y1, y2) = 2
(
S((0, y1), (0.5, y2)) + S((0.5, y2), (1, 0))

)
.

Now, NMinimize gives y1 = 0.475093, y2 = 0.442376, M(y1, y2) = 2.60566.

H0,y1L H0,y1L H0.5,y2L

On repeating the exercise with more line segments, I chose to tighten
the constraints in order to reduce the computational effort. Denote by xi
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the x-coordinate corresponding to yi, so that for a path with n segments,
we have xi = (i− 1)/n. Then, assuming the parabola y = −0.48(x2 − 1) is
a crude approximation for the path, we restrict the yi to

max
[
0, −0.48(x2i − 1)− 0.2

]
≤ yi ≤ min

[√
1− x2i , −0.48(x2i −1)+0.2

]
.

With four segments we have

M(y1, y2, y3, y4) = 2
(
S((0, y1), (0.25, y2)) + S((0.25, y2), (0.5, y3))

+ S((0.5, y3), (0.75, y4)) + S((0.75, y4), (1, 0))
)
,

and the minimum, M(y1, y2, y3, y4) = 2.60566, occurs at

y1 = 0.475093, y2 = 0.442376, y3 = 0.343862, y4 = 0.189437.

Finally I considered eight straight lines:

M(y1, y2, . . . , y8) = 2

(
7∑

i=1

S ((xi, yi) , (xi+1, yi+1)) + S ((x8, y8) , (1, 0))

)
,

giving

y1 = 0.465759, y2 = 0.457059, y3 = 0.432778, y4 = 0.393063,

y5 = 0.338012, y6 = 0.268181, y7 = 0.185955, y8 = 0.0966756,

M(y1, y2, . . . , y8) = 2.60301.

If the path is converging to something, then it seems to be doing so
rather slowly. Obviously I am substituting a lot of brute force for a lot of
elegant mathematics, and I have no real idea of how close to the minimum
I am. Whether this matters depends on your personal taste. For a real
problem, I would do a lot more computing; and computer time is a lot
cheaper than engineer time these days.

In working on this problem I have been greatly helped by a book, Applied
Calculus of Variations for Engineers by Louis Komzsik.
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Tony Forbes
It is interesting I think to observe that even Dick Boardman’s first ap-
proximation (two straight lines, left-hand diagram on page 9, where the
integrated muddiness amounts to 2.61705) is better than any path of type
III. Just to prove this, we compute the best route consisting of a semicircle
preceded and followed by equal straight ‘vertical’ segments.

Let r denote the radius of the semicircle in III. Then the exposure to
mud is given by

M(r) = πrm(r) + 2

∫ 1

r

m(x)dx

= πr − 2r + 2 +
(π − 2)(r − 1)((r2 − 1)(r + 5)− 12πr)

5(r + 1)4
,

0.2 0.4 0.6 0.8 1.0

3.05

3.10

3.15

3.20

3.25

3.30

3.35

M HrL

and
dM

dr
= (π − 2)m(r) + πr

dm

dr
.

We could try to solve dM/dr = 0 but that doesn’t seem to work very well.
Instead, by looking at the plot of M(r) through a powerful microscope we
see a clear minimum in the vicinity of r = 0.69072 and that M(0.69072) is
approximately 3.03927. The path for this value of r is the one marked III
in the diagram on page 8.
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Solution 279.7 – Two or three dice
This is like Problem 274.1 – Two dice, except that there might
be three dice. I offer you the following game, which is repeated
many times. The rules are simple. How should you play?

I throw a die. If it is a 6, I throw a second die.
If the second die is a 6, I pay you £180;
otherwise you pay me £30.

If the first die is not a 6, I invite you to give me £1.
If you accept, the game ends;
Otherwise I throw two more dice.
If double 6 appears, I pay you £180.
If precisely one 6 appears, you pay me £30.
If no 6 appears, nobody pays anybody anything.

Chris Pile
I don’t think that I would be tempted to play this game! The rules can be
summarized in the following diagram, which splits the game into two games,
A and B, with game B optional. The right-hand boxes show the outcome
after 36 throws.

no pay
HendL

receive
Ë30

2 dice2 dice

receive
Ë30

pay
Ë180

receive
Ë1HendL

receive
Ë30

die 1 die 2
pay

Ë180

-Ë300H10�36L

+Ë180H1�36L

-Ë30H30�36L

-Ë150H5�36L

+Ë180H1�36L

Ë0H25�36L

A
B

1�6 1�6

5�6

5�6

1�36

10�36

5�6

25�36
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In game B the probability of getting £180 is 1/36, but the probability of
having to pay £30 is 10/36, or £300 on average over 36 throws of the two
dice. Thus B loses £120 on average over 36 throws and hence it is best to
avoid this game.

In game A the probability of getting £180 is again 1/36, but the prob-
ability of having to pay £30 is 5/36, or £150 on average over 36 outcomes
of die 1 and die 2. However, to keep playing game A costs £1 for 30 of the
36 outcomes, or £30 over 36 throws. Thus game A in the long run breaks
even. If your pockets are deep enough to survive a losing run of 35 (or more)
payments of £1 or £30, there should be a time when a winning double-six
comes along after a shorter run and puts you ahead. Then quit!

Problem 282.1 – 25 pentacubes
Tony Forbes
Prove that any 25 distinct pentacubes can be assembled to make a 5×5×5
cube. Or find a counter-example.

A pentacube is a solid object constructed from five unit cubes stuck
together in a sensible manner. After a certain amount of experimentation
one will convince oneself that are precisely 29 distinct varieties. As you
can see from the illustration on the front cover (or the front cover of M500
152), twelve are flat (in the sense that the centres of the five cubes lie
in a plane) and the remaining seventeen occur as six chiral pairs plus five
which have reflection-in-a-mirror symmetry. You can make a complete set
of pentacubes from 145 dice and a quantity of glue, or you can send the
appropriate instructions to your 3D printer.

Can you solve the problem without actually trying each combination in
turn? If not, a computer program built along the lines suggested by Rob
Evans in his article, ‘The Bedlam Cube’, should have little trouble working
through all 23751 cases. What if the 25 pieces are not necessarily distinct?

The number of cases to consider is now

(
29 + 25− 1

29− 1

)
= 903936161908052.

Problem 282.2 – Isosceles triangle
There is an isosceles triangle ABC with BC on the x-axis and A above it.
The side lengths are |AB| = |AC| = 191 and |BC| = 60. Find all points
Xk = A + (k, 0) such that k is a positive integer and |BXk| is an integer.
Note that AXk is parallel to BC.
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Solution 279.5 – Half
Using the digits from 1 to 9 once only, how many equivalent
fractions of 1/2 can you make. Can you be sure you have got
them all? For example,

7329

14658
.

Dave Wild
The single Python statement

’, ’.join([’/’.format(i,2*i) for i in range(6234,9877)

if set(str(i)+str(2*i)) == set(’123456789’)])

produces the 12 solutions

6729/13458, 6792/13584, 6927/13854, 7269/14538,

7293/14586, 7329/14658, 7692/15384, 7923/15846,

7932/15864, 9267/18534, 9273/18546, 9327/18654.

Tony Forbes
And here is a suggestion if you want to do it in Mathematica.

Do[If[Sort[IntegerDigits[20001i]]==Range[9],

Print[i,"/",2i]],{i,6234,9876}];

In case it’s not obvious, the lower limit is 6234 because: (i) doubling a
number less than 5000 produces not enough digits, (ii) 2 times 5xxx is
either 10xxx or 11xxx, (iii) 2 times 61xx is 1xxxx.

Perhaps we can make this into some kind of competition. Try to find
the shortest possible code in your favourite programming language.

Problem 282.3 – Array
Which positive integers cannot be represented in the form ab+ c, where a,
b and c are non-negative integers, b = a or b = a−1, and c = 0 or c = a−1.

This might have some application. Suppose you wish to arrange n
objects in a square array. If n is not a square, we must compromise. Perhaps
a rectangle with a rows and (a − 1) columns will work. And if that can’t
be done, maybe we can add a column of height a− 1. Thus 19 = 4× 4 + 3,
for example.
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Problem 282.4 – Binomial identities

Tommy Moorhouse

The following identities came to my attention when I was working on an
expression for

exp ◦N(n) = δ(n) +

∞∑
k=1

1

k!
N◦k(n),

where N(n) = n with n a positive integer, δ(0) = 1, δ(n) = 0 for n > 0 and

a ◦ b(n) =
∑

k+m=n

a(k)b(m).

Here N◦k is the k-fold product N ◦N ◦ · · · ◦N. Note that the operation ◦
is associative (so that (a ◦ (b ◦ c)) = ((a ◦ b) ◦ c)).

An identity for squares A little trial suggested to me that∑
k+m=n

km = N ◦N(n) =

(
n+ 1

n− 2

)
.

Here k takes the values 1 to n−1. The first part of this problem is to prove
this identity.

Identities for other powers The second part of the problem is to prove
the more general identity

N◦k(n) =

(
n+ k − 1

n− k

)
for n ≥ k.

Associative property in action Show from the associative property of
◦ that

N◦k ◦N◦m = N◦(k+m)

and deduce a set of identities for the binomial expressions.

I suspect that these binomial identities would be difficult to prove more
directly!

Q Why did you turn your back on the six honest serving-men?

A Because ************** invite **************.

What are the missing 14-letter words, which are anagrams of each other?

— Sent by Jeremy Humphries
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Solution 279.9 – Circles and an ellipse
There are n unit circles in a straight line. An ellipse encloses
them. Show that the area of the ellipse is at least 2π(n− 1).

Tony Forbes
I put this in M500 because I thought there might be an easy answer. Well, if
there is, then I am unaware of it. So instead we attempt to solve the more
difficult problem of actually finding the minimum area of the bounding
ellipse.

Case n = 1 is left to the reader and n = 2 was done by Dick Boardman
and Ted Gore in issue 281. We assume n ≥ 3. If we place the circles along
the x-axis symmetrically about the origin, the centre of the rightmost circle
will be at (n − 1, 0). Clearly the centre of the ellipse will be at (0, 0) with
its long diameter on the x-axis. Denote its radii by a and b. To find the
points of contact with the rightmost circle we solve

(x− n+ 1)2 + y2 =
x2

a2
+
y2

b2
= 1

for x to get

x =
−a2 + a2n±

√
a4 − a4b2 + a2b4 − 2a2b2n+ a2b2n2

a2 − b2
.

But we are not interested unless the ellipse touches the circle, and this
happens when the thing under the square root sign is zero; that is, when

b =
1√
2

√
a2 + 2n− n2 ±

√
−4a2 + (−a2 − 2n+ n2)2.

The plus sign gives silly results; so we adopt the minus sign and define the
function

b(a) =
1√
2

√
α−

√
α2 − 4a2, where α = a2 + 2n− n2.

The area of the ellipse is A(a) = ab(a)π and we determine its minimum in
the usual way. Using Mathematica (or otherwise), we compute

dA(a)

da
= (something)

(
α−

√
α2 − 4a2 + a2 +

a2(2− α)√
α2 − 4a2

)
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and we solve

α−
√
α2 − 4a2 + a2 +

a2(2− α)√
α2 − 4a2

= 0

to get

a0 =
1

2

√
9− 10n+ 5n2 + 3(n− 1)

√
n2 − 2n+ 9,

the value of a that minimizes the area.

This looks like a good time to give up. We could go on to substitute a0
into the area formula and get a monstrous function of n. Instead we argue
with less precision. A straightforward but tedious computation shows that

a0 ≥
√

2

(
n− 1 +

1

n

)
and after a somewhat less straightforward and somewhat more tedious com-
putation we obtain a corresponding inequality for b0 = b(a0),

b0 ≥
√

2

(
1− 1

2n2
− 1

n3

)
.

Multiplying gives

a0b0 ≥ 2n− 2 +
1

n
− 1

n2
+

1

n3
− 2

n4
≥ 2(n− 1).

n a0 a0b0 a0b0 − 2(n− 1)

2
3
√

2

2

3
√

3

2
0.598076

3
√

3
(
2 +
√

3
) √

9 + 6
√

3 0.403669

4
9 +
√

17

2
√

2

√
107

8
+

51
√

17

8
0.297603

5 3
√

2 +
√

3
√

9 + 24
√

6 0.233332

6
1

2

√
3
(
43 + 5

√
33
) √

−117

8
+

165
√

33

8
0.191006

7
√

46 + 9
√

11
√
−71 + 66

√
11 0.161301

8
1

2

√
3
(
83 + 7

√
57
) 1

4

√
−2826 + 798

√
57 0.139413

9 3 + 6
√

2 3
√
−39 + 48

√
2 0.122663

10
27 +

√
89

2
√

2

√
−4933

8
+

801
√

89

8
0.109455
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Measuring timber
Colin Davies
When timber used to be measured in feet and inches (metric started to be
used in the UK in the 1970s) there were two measurement systems in use.

The British were apparently the principal buyers of timber from Europe,
and they required planks cut to widths and thicknesses in inches, and to
lengths in feet. So the Europeans complied, and cut planks with (cross
section) sizes and hence names like ‘2 by 4’, or ‘3 by 9’. And the lengths
were cut to the nearest foot.

As timber tends to swell and shrink a bit, partly according to its variable
moisture content, and also to the angles between the directions of sawing
and the tangents to the growth rings, the sizes when cut are never very
precise. So as an inch is very nearly the same as 21/2 centimetres, a plank
that the British called a two by four, the Europeans called a five by ten, and
everyone was happy. (But in case someone queries that, a British builder
would have called it a ‘four by two’ and not a ‘two by four’.)

Then came the question of volume. I suspect that it was someone in
a British office in the Russian port of St Petersburg in the late 1800s who
concocted The Petrograd Standard. It was the volume in cubic feet of one
gross of 5 foot lengths of 3′′ × 11′′ timber. That is 165 cubic feet.

Observe that 144× 5× 3× 11 = 23760. The ‘advantage’ of the number
23760 is that can be divided by all integers less than 13 except 7. So timber
people in the UK all knew how many feet of each size of sawn timber made
a Standard (2970 feet of 2 by 4, or 1980 feet of 11/2 by 9, etc.).

So if you wanted to work out how many Standards of timber were in
a consignment, all you had to do was to multiply the width (of a piece) in
inches by its thickness in inches, by the total length of all the pieces in feet,
and then divide by 23760.

The Canadians saw things differently. Their main market was the USA,
and everyone in that continent measured the volume of sawn timber in
‘Board Feet’. A Board Foot was one foot length of 1′′ by 12′′, or 2′′ by 6′′

or 3′′ by 4′′. So to get the total volume in Board Feet, you multiplied the
width in inches by the thickness in inches by the total length in feet, and
then divided by 12.

I personally found it much easier to divide a number by 12 than by
23760, and having worked in Canada, I tried to convince the people back
home in the UK that we should use the Canadian method. But the British
love complication and nobody took my advice.
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When the timber trade went metric, I naively assumed that a 2′′ × 4′′

would become a 5×10 in cm. But the British like to make things complicated
when possible, so while the Europeans still call (what used to be) a 2′′× 4′′

in Imperial, a 5× 10 in metric, the British call it a 50× 100. And when you
measure things like building timbers (and especially sheets of plywood that
used to be 4 feet × 8 feet) in square millimetres, you have to cope with big
numbers.

Timber makes volume measurement tricky by growing in tapering cylin-
ders instead of rectangular planks, so to calculate the volume of timber in
a log ‘Hoppus’s Measure’ was used. Here are two examples explaining how
to use Hoppus’s Measure.

Example I Let the circumference of a tree, or piece of round timber
(found by girting it), be 36 inches, one quarter of which is nine inches, the
side of the square, and let the length of the piece be 40 feet. What quantity
of timber is in this piece?

Find 9 inches, the side of the square, and over against 40 feet stands 22
feet 6 inches, which is the quantity of timber contained in a piece that is 40
feet long and 36 inches round.

Example II Let the girt of a piece of timber be 75 inches, a quarter
thereof is 183/4, for the side of the square. And let the length of the piece
be 45 feet. How much solid timber does this piece contain?

Find 183/4 inches the side of the square, and over against 45 feet, the
length of the piece, stands the solid content, viz. 109 feet, 10 inches, and 4
twelfth parts or 1/3 of an inch.

I found these explanations rather difficult to use, and impossible to
understand. However, during the 1970s I met Victor Serebriakoff who was
also in the timber trade working for Phoenix Timber, where he called himself
‘Victor Serry’. It was Victor who explained to me that Hoppus’s Measure
was based on the mistaken assumption that π = 4. Since 1970, the internet
has been invented and gives this explanation.

hoppus foot (plural hoppus feet)

A unit of measurement for the volume of timber in the round,
with a value equal to 1.27 cubic feet, where the cross-sectional
area is taken as the square of one quarter of the circumference
of the round.

I suppose that makes sense if π = 4 because 4/22× 7 is about 1.27.
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Quiz
Tony Forbes
Fill the gaps and identify the sources. See how many you can get before
you look them up. Answers in the next issue.

(1) “Just there, number ,” shouted Ford Prefect to the taxi-driver.
“Right here!”

(2) “Come in—come in!” roared Long Jack. “It’s wet out yondher,
children.” “ , ye said.” This was Uncle Salters.

(3) years old was Ahaziah when he began to reign, and he reigned
one year in Jerusalem. His mother’s name also was Athatiah.

(4) “Exactly half my age; I am .” “By the way,” said Mr. Swan-
court, after some conversation, “you said your whole name was Stephen
Fitzmaurice, and that your grandfather came originally from Caxbury.”

(5) Well, to speak with perfect candour, Cecily, I wish that you were
fully , and more than unusually plain for your age.

(6) And among the cities which ye shall give unto the Levites there shall
be six cities for refuge, which ye shall appoint for the manslayer, that he
may flee thither: and to them ye shall add cities.

(7) “ Master Legolas!” he cried. “Alas! My axe is notched: the
had an iron collar on his neck.”

(8) He had boxes all carefully packed, / With his name painted
clearly on each: / But, since he omitted to mention the fact, / They were
all left behind on the beach.

(9) “ ,” replied the driver, eyeing him askant. “What!” ejaculated
Mr. Pickwick, laying his hand upon his note-book.

(10) “A bicycle certainly, but not the bicycle,” said he. “I am familiar
with different impressions left by tyres. This, as you perceive, is a
Dunlop, with a patch upon the outer cover.”

(11) “ !” he said with a malicious grin. “No, doesn’t work. Never
mind.”

(12) “No doubt”, said I, “they settles who / Was fittest to be sent: /
Yet still to choose a brat like you, / To haunt a man of , / Was no great
compliment!”

(13) The men of Anathoth, an hundred twenty and eight. The children
of Azmaveth, .

(14) There are generally teeth in all; in old whales, much worn
down, but undecayed; nor filled after our artificial fashion. The jaw is
afterwards sawn into slabs, and piled away like joists for building houses.

(15) “I said so! A brave number! My fellow-citizen here would have it
; ten more heads are worth having. The Guillotine goes handsomely.”
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(16) I know thee, I know thy name, I know the names of the Gods
who live with thee in this Hall of Maati, who live by keeping word over
sinners, and who feed upon their blood on the day when the consciences of
men are reckoned up in the presence of the God Un-Nefer.

(17) “There’s more nor three hundred wanting; it’ll be a fine while before
I can save that. Losing that pound wi’ the corn was a sore job.”

(18) It was in 1862 that, in spite of the Southern Members of Congress,
who wished a more southerly route, it was decided to lay the road between
the forty-first and parallels.

(19) “He’s got to go to London.” The man went to the telephone and
rang up the bottom office. “Walter Morel’s wanted, number , Hard.
Summat’s amiss; there’s his lad here.”

(20) Of all the things we mean to do / When Anne and I are .

(21) “Christ Awmighty! We all need stuff!” Ma said, “How much’d we
make today?” “Dollar .”

(22) At the same moment the long -pounders upon Punchbowl Hill
opened their iron throats in triumphant reply to the thunders of the five
men-of-war in the harbour;

(23) And then he said, Take them alive. And they took them alive, and
slew them at the pit of the shearing house, even men; neither left he
any of them.

(24) “Great Jerusalem, they keep turnin’ up every ten minutes or so!
We thought we’d lost men by straight count, but if they keep on a-
comin’ this way, we’ll git th’ comp’ny all back by mornin’ yit. Where was
yeh?”

(25) And there was given unto him a mouth speaking great things and
blasphemies; and power was given unto him to continue months.

(26) The work done was exceptionally great for men. They had cut
the whole of the big meadow, which had, in the years of serf labour, taken
thirty scythes two days to mow.

(27) At this moment the King, who had been for some time busily
writing in his note-book, called out “Silence!”, and read out from his book,
“Rule . All persons more than a mile high to leave the court.”

(28) Mr. Chitling wound up his observations by stating that he had not
touched a drop of anything for mortal long hard-working days; and
that he “wished he might be busted if he warn’t as dry as a lime-basket.”

(29) Each part, deprived of supple government, / Shall, stiff and stark
and cold, appear like death; / And in this borrow’d likeness of shrunk death
/ Thou shalt continue hours, / And then awake as from a pleasant sleep.

(30) “ ,” said Deep Thought, with infinite majesty and calm.
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Problem 282.5 – Determinant
This came up during an interesting talk on counting trees, by Carrie
Rutherford, at the London South Bank Maths Study Group (http://www.
maths.qmul.ac.uk/∼whitty/LSBU/MathsStudyGroup). Compute

Λ(n, λ) = det


λ −1 . . . −1 −1
−1 λ . . . −1 −1
. . . . . . . . . . . . . . .
−1 −1 . . . λ −1
−1 −1 . . . −1 λ

 ,
where n is the number of rows in the matrix. Hence or otherwise prove that
Λ(n− 1, n− 1) = nn−2.
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