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Ian Harrison

With sadness we have to report to you the death of a much loved supporter
and friend of M500.

Ian Harrison was a member of the mathematics staff of the Open Uni-
versity for many years. He retired in 2005, and that left him free to enjoy
full-time his passionate interest in origami and geometry. He was a long-
term, active member of the British Origami Society.

Of course, many of you will know Ian as the dynamic presenter of our
M500 Winter Weekend. Every January from 1993 to 2006 Ian would de-
light us at Florence Boot Hall, with his lively programmes of mathematical
entertainments, lectures and group problem-solving activities. And he was
not one to shy away from tackling challenging material. His sessions at the
Winter Weekend were an inspiration to us all and one never left without
one’s head spinning with all kinds of interesting ideas.

Ian was an M500 Revision Weekend tutor for M203 back in the days of
big student numbers, and if you were involved with that course, you would
probably remember him as director of the summer school.

Ian died on Thursday 30th August 2018 after a battling with cancer for
two and a half years. We offer our sympathy to his family, especially son
Mark, daughter Dawn and brother Chris. Rest in peace, Ian.

Ramblings round representations – Part 1
Roger Thompson

1 Introduction

In the article ‘Factorization using the Number Field Sieve’ in M500 275,
I introduced prime representations in the context of monic irreducible cu-
bic polynomials. This series of three articles1 explores this subject further,
using it to attempt to show how some of the concepts of algebraic num-
ber theory arise naturally, but without assuming any prior knowledge. In-
evitably, some aspects have to be taken on trust. Conrad (2003) alludes to
the subject, but I have found very little else in the literature, so the empir-
ical results presented here must be regarded as highly speculative. I would
welcome any theoretical insights from readers on any such results.

Unless otherwise stated, all polynomials in these articles have integer
coefficients. We will need the notation and some results from M500 275.
To recap briefly:

1Parts 2 and 3 and will appear in issues 285 and 286 respectively
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We use mod f to indicate the remainder when some polynomial is
divided by f . This is equivalent to evaluating polynomials with x
set to one of the roots of f(x) = 0. We will use X to indicate one of
those roots, but also more importantly to allow polynomials to be
treated as algebraic entities.

We use mod f, p to indicate that algebra is conducted mod f , but
that all coefficients are calculated mod p.

Let
g = aX2 + bX + c, f = X3 + PX2 +QX +R.

Then if f(X) = (X − α)(X − β)(X − γ), where α, β, γ are the roots of
f , we define the norm N(g) = g(α)g(β)g(γ). This is an integer, and is the
determinant of the matrix

A(g, f) =

c −aR (aP − b)R
b c− aQ (aP − b)Q− aR
a b− aP (aP − b)P − aQ+ c

 .

Expressions with norm ±1 are called units. Using the above definition, the
norm of an arithmetic prime number p is p3. We might therefore suspect
that if a prime p has an integer root for f ≡ 0 mod p, then p has factors
mod f . We will call a polynomial g such that g(r) ≡ 0 mod p and N(g) = p
a representation of pr, denoting g by ρ(pr).

We will need an additional definition. The discriminant ∆ of f is
defined as [(α− β)(β− γ)(γ−α)]2, and can be calculated directly from the
coefficients:

∆ = P 2Q2 − 4Q3 − 4P 3R− 27R2 + 18PQR.

If ∆ < 0, then f has a single real root. The rest of this article confines itself
to such f .

2 Coefficients of representations

The determinant A(g, f) has the distinctly unpromising expression

R2a3 −Rb3 + c3 −QRa2b+ PRab2 + (Q2 − 2PR)a2c

+ (P 2 − 2Q)ac2 +Qb2c− Pbc2 + (3R− PQ)abc.

However, we can put it to good use quite simply. Let g(X) = X2 + µX + ν
for some reals µ, ν. We investigate values of µ, ν such that g2 ≡ κg mod f
for some real κ.

Since norms are completely multiplicative, we have N(g)2 = N(κ)N(g).
If N(g) 6= 0, then N(κ) = κ3 = N(g), which doesn’t help. However, if
N(g) = 0, we can calculate the values of µ and ν by working out g2 mod f
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explicitly. We get

κ = µ2 + 2ν −Q− 2µP + P 2,

κµ = 2µν −R− 2µQ+ PQ,

κν = ν2 − 2µR+ PR.

So
µ3 − 2Pµ2 + (P 2 +Q)µ+R− PQ = ν2 +Bν + C = 0,

where B = (µ− P )2 −Q and C = (2µ− P )R. Note that µ = P + α, where

α is the real root of f . Empirically, we choose ν =
−B +

√
B2 − 4C

2
.

We might expect that by approximating µ and ν by rationals b/a and
c/a, we get N(aX2 + bX + c) = 1, yielding a unit, or N(aX2 + bX + c) = p
for some prime p for which f(r) ≡ 0 mod p for some integer r, yielding the
representation ρ(pr). This expectation is amply borne out in practice.

A given unit U with N(U) = 1 may be the power greater than 1 of some
other unit, which is in some sense more fundamental. We can check if this
is the case by evaluating x = U1/p(α) for successive primes p, where α is
the real root of f , and using an integer relation finding algorithm such as
PSLQ to attempt to find integers A, B, C such that Aα2+Bα+C = x. We
do this repeatedly until no further reduction can be done. We are left with
a unit U1 and another U2 such that U1U2 ≡ 1 mod f . For any quadratic
q = aX2 + bX + c, the Euclidean norm is ‖q‖ =

√
(a2 + b2 + c2). We will

need to apply this to norms N ; so to avoid confusion, we will call ‖q‖ the
magnitude of q.

By convention, we will label the unit aX2 + bX + c for which b/a, c/a
are most closely approximated by µ, ν as U1. More precisely, if anX

2 +
bnX + cn ≡ Un

1 mod f , then bn/an → µ, cn/an → ν as n → ∞. When
writing out ρ(pr), we choose the form such that ‖ρ(pr)Un

k ‖ is minimized (k
= 1 or 2).

If ρ(pr) exists for every pr, then there will be some minimum a such
that

N(aX2 + nint(µa)X + nint(νa)) ≡ ρ(pr)Un
k mod f,

where nint(x) is the nearest integer to x. In other words, the pr can be
ordered by their a value as well as their numerical value. Example for
X3 +X2 + 2X + 1 with U1 = X2 + 1, U2 = X2 +X + 1.

Let

D =
Numerical order ordinal ρ(pr)

a order ordinal ρ(pr)Un
k

.

Empirically, for a large number of ρ(pr), log(D) has upper and lower bounds,
with each tending to a limit. It might be better to use a weighted form of
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Euclidean norm for magnitudes, e.g.
√
a2 + (b2/µ2) + (c2/ν2), but we only

really need a qualitative measure. If ‖U1‖ or ‖U2‖ is large, we might expect
that some ‖ρ(pr)‖ are large even for small p. This is exactly what we see.
For example, if f = X3 +X2 + 61X + 300, then

µ = − 3.07853145152515, ν = 73.5558873495547

with

U1 = 410322478704071121356496552X2

− 1263190655958242569884467928X

+ 30181634020546719076316795761,

U2 = − 1996276307688X2 + 6184172650392X + 58429238801041.

We have ρ(47591185) = 4X + 19 and yet

ρ(47592574) = 93362148X2 − 287418309X + 6867335641.

Ordinal Numerical order a order

1 ρ(51) : −X + 1 U7
1 ρ(51) : 6X2 + 3X + 11

2 ρ(75) : X2 −X + 1 U9
1 ρ(75) : 13X2 + 6X + 23

3 ρ(117) : −X2 + 2X + 2 U14
1 ρ(117) : 15X2 + 6X + 26

4 ρ(172) : −X + 2 U14
1 ρ(235) : 27X2 + 12X + 47

5 ρ(1910) : −2X + 1 U10
1 ρ(2320) : 29X2 + 12X + 51

6 ρ(235) : −X2 − 4X − 1 U11
1 ρ(172) : 31X2 + 13X + 54

7 ρ(2320) : 2X2 −X + 2 U12
1 ρ(1910) : 34X2 + 15X + 60

8 ρ(377) : −2x2 + 3X + 3 U11
1 ρ(433) : 43X2 + 18X + 75

9 ρ(433) : −X + 3 U18
1 ρ(377) : 55X2 + 24X + 97

10 ρ(536) : −3X2 − 8X − 3 U13
1 ρ(5910) : 59X2 + 25X + 104

11 ρ(5910) : −X2 − 2X + 2 U23
1 ρ(5937) : 71X2 + 31X + 125

12 ρ(5911) : −X2 − 5X − 1 U14
1 ρ(6119) : 85X2 + 37X + 149

13 ρ(5937) : −6X2 + 5X + 5 U14
1 ρ(10176) : 92X2 + 40X + 161

14 ρ(6119) : X2 − 3X + 1 U17
1 ρ(5911) : 99X2 + 43X + 174

15 ρ(6741) : 2X2 − 2X + 3 U13
1 ρ(6741) : 101X2 + 43X + 177

3 The arithmetic of norms

By definition, ρ(pr)(r) ≡ 0 mod p; so [gρ(pr)](r) ≡ 0 mod f, p for any
polynomial g. For a particular prime p, f(r) ≡ 0 mod p has zero, one or
three roots (counting repeated roots as distinct). To illustrate what these
two statements imply, we will use

f = X3 +X2 + 17X + 12.

From now on, we will use f to represent appropriate polynomials in general,
and ξ to represent our example polynomial. For p = 173, there are three
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roots 62, 115, 168, and each has a representation:

ρ(17362) = 2X2 +X + 35, ρ(173115) = −3X − 1, ρ(173168) = X + 5.

We will see how to find representations in Part 3. Setting

g = ρ(17362)ρ(173115),

we have
[ρ(17362)ρ(173115)ρ(173168)](r) ≡ 0 mod ξ, p

for r = 62, 115, 168, and

N(ρ(17362)ρ(173115)ρ(173168) mod ξ) = 1733 = N(173);

so
ρ(17362)ρ(173115)ρ(173168) ≡ 173 mod ξ.

This is true in general for any f with three roots r, s, t mod p, i.e.

ρ(pr)ρ(pspt) ≡ ρ(pr)ρ(ps)ρ(pt) ≡ p mod f.

There is another polynomial τ(pr) such that ρ(pr)τ(pr) ≡ (X − r) mod f .
Evaluating N(X − r) from the formula in the previous section, we find
N(X − r) = −f(r) = −kp for some k; so N(τ(pr)) = −k. In our example,

τ(17362) = X2 + 6X + 2, τ(173115) = − 6X2 − 4X − 101,

τ(173168) = −X2 + 4X − 36.

By definition, (X − r)Y ≡ f mod p for some quadratic Y with Y = (X −
s)(X − t) in the three root case. We can extend the above results to the
case where f(r) ≡ 0 mod p only has one root. For ξ, p = 239 has the single
root 45; so dividing X − 45 into ξ, we get Y = X2 + 46X + 175. We find

ρ(23945) = −X2 − 8X − 5,

and that

ρ(23945)(68X2 + 21X + 1145) ≡ 239 mod ξ,

with both sides≡ 0 mod ξ, p as required, andN(68X2+21X+1145) = 2392.
We will write

ρ(2392∗) = 68X2 + 21X + 1145

to signify that this representation is not tied to any root. This is also true
in general for any f with a single root r mod p, i.e. ρ(pr)ρ(p2∗) ≡ p mod f .
Similarly, we have ρ(2392∗)τ(2392∗) ≡ Y mod ξ, where τ(2392∗) = −2X2 −
3X − 1.
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To avoid having different notations for the single and three roots cases
where the distinction does not matter, we will say ρ(pr)σ(pr) ≡ p mod f ,
where σ(pr) = ρ(p2∗) and σ(pr) = ρ(ps)ρ(pt) respectively. Similarly, we
will say ρ(pr)υ(pr) ≡ (X − r)Y mod f , where υ(pr) = τ(p2∗) and υ(pr) =
τ(ps)τ(pt) respectively. With much tedious algebra, it can be shown that
σ, τ and υ have integer coefficients. If f(r) ≡ 0 mod p has no roots, then
there is only a representation for p3, i.e. p itself.

In the next section, we have a look at cases where roots exist but rep-
resentations do not. This will reveal the origins of algebraic number theory,
founded in the 19th century by Kummer and Dedekind. This will neces-
sarily be a very informal introduction, but may nevertheless provide some
insight into how the concept of ideals arises naturally.

4 Unique factorization lost and regained

We will continue to use our example polynomial ξ = X3 +X2 + 17X + 12.
Note that ξ ≡ 0 mod 3 has a single root 0, with X(X2 +X+2) ≡ ξ mod 3,
and ξ ≡ 0 mod 61 has three roots, with (X−6)(X−16)(X−38) ≡ ξ mod 61.
However, none of ρ(30), ρ(616), ρ(6116), ρ(6138), exist. Define

g = 104X2 + 30X + 1749, h = 5X2 + 2X + 85.

We find that gh ≡ 183U1 mod ξ, where U1 = 49X2 + 14X + 823 is a unit.
Also N(g) = 6123, N(h) = 3261, N(183) = 33613. Now g(0) ≡ 0 mod
3, g(6), g(16) ≡ 0 mod 61, g(38) 6≡ 0 mod 61, h(0) 6≡ 0 mod 3, h(38) ≡
0 mod 61, h(6), h(16) 6≡ 0 mod 61. In other words, g could be thought
of as ρ(306166116), and h as ρ(32∗6138). As we already saw, multiplication
accumulates roots mod p; so that in this case, gh(r) ≡ 0 mod ξ, p for all
roots r of 3 and 61, hence

gh = (104X2 + 30X + 1749)(5X2 + 2X + 85) ≡ 3× 61 mod ξ.

Given that g and h are irreducible, and 3 and 61 are primes, we have two
distinct factorizations mod ξ.

In the familiar world of integers, the Fundamental Theorem of Arith-
metic proves that any integer can be factorized into a product of prime
factors in essentially a unique way, i.e. ignoring reordering of the factors.
When working modulo f , we also have to ignore multiples of units. How-
ever, we have just seen that even taking this into account still leaves us with
non-unique factorization in some cases.

However, we have also seen that where representations exist, primes can
be split and recombined in different ways. For example, consider

(10X2 − 213X − 149)(−72X2 + 34X + 67) ≡ 173× 239(−7X − 5) mod ξ.

Clearly, N(−7X − 5) = 1; so −7X − 5 is a unit, and we appear to have
another example of non-unique factorization. However, we find that
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10X2 − 213X − 149 ≡ ρ(17362)ρ(173115)ρ(23945) mod ξ,

and

−72X2 + 34X + 67 ≡ ρ(173168)ρ(239)2∗(−7X − 5) mod ξ.

Rearranging factors, we see that the product is

ρ(17362)ρ(173115)ρ(173168)ρ(23945)ρ(239)2∗(−7X − 5)

≡ 173× 239(−7X − 5) mod ξ;

so the factorizations are not distinct after all. We would like to make non-
unique factorization go away by being able to rearrange factors similarly,
even though the associated representations do not exist.

In the three root case, we consider all polynomials q mod f for which
q(r) ≡ 0 mod p, where r is such that f(r) ≡ 0 mod p. Since f(X) = 0, q
must be of the form q1(X − r) + q2p mod f for arbitrary polynomials q1, q2
of degree at most 2. We write 〈X − r, p〉 to mean the set of polynomials
generated by X − r, p in this way, and refer to 〈X − r, p〉 as an ideal. Now

q1(X − r) + q2p ≡ q3ρ(pr) mod f , where q3 = q1τ(pr) + q2σ(pr);

so 〈X − r, p〉 = 〈ρ(pr)〉. An ideal that has a single generator is called a
principal ideal; so pr has a representation if and only if 〈X − r, p〉 is
principal, in which case it has the generator ρ(pr). We next consider how
to multiply ideals.

Since 〈a〉 is the set of polynomials {aq1 mod f} for any polynomial q1,
it follows that 〈a〉〈b〉 is the set of polynomials

{q1q2ab mod f} = {q3ab mod f}

for any polynomial q3. As an example of multiplying non-principal ideals,
we consider X2 +15 mod ξ, which has norm 69; ξ mod 3 has the single root
0, and ξ mod 23 has the single root 13, but there are no representations for
30, 2313:

〈X2 + 15〉 = {(aX2 + bX + c)(X2 + 15) mod ξ}
= {(c− a− b)X2 + (5a− 2b)X + 15c− 12b+ 12a} = {uX2 + vX +w},

where

a =
−30u+ 3v + 2w

69
, b =

−75u− 27v + 5w

69
, c =

−36u− 24v + 7w

69
.

In other words, we have to show that for any uX2 + vX + w in the set of
polynomials generated by 〈X, 3〉〈X − 13, 23〉,

−30u+ 3v + 2w, −75u− 27v + 5w and −36u− 24v + 7w
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are all divisible by 69. It is no coincidence that 69 is the norm of X2 + 15.
The reader may like to work out why. Now

〈X, 3〉〈X − 13, 23〉 = {(Xq1 + 3q2)((X − 13)q3 + 23q4) mod ξ}
= X(X−13)q1q3+69q2q4+3(X−13)q2q3+23Xq1q4 = A+B+C+D,

say. Clearly, B is always divisible by 69. Moreover,

C = 3(X − 13)(aX2 + bX + c)

≡ 3(b− 14a)X2 + 3(c− 13b− 17a)X − 3(13c+ 12a) mod ξ

= uX2 + vX + w,

say. Furthermore,

−30u+ 3v + 2w = 69(15a− 3b− c),
−75u− 27v + 5w = 69(63a+ 12b− 4c),

−36u− 24v + 7w = 69(36a+ 12b− 5c);

so C is always divisible by 69. Since this means (X − 13)(aX2 + bX + c) is
always divisible by 23, A and D are always divisible by 23. Now

X(aX2 + bX + c) ≡ (b− a)X2 + (c− 17a)− 12a mod ξ;

so substituting as before, we see A and D are always divisible by 3, and
hence by 69. We have therefore shown 〈X, 3〉〈X − 13, 23〉 = 〈X2 + 15〉.

We have already seen that ρ(17362)ρ(173115)ρ(173168) ≡ 173 mod ξ.
When all three representations exist, we can write factorizations as before
in terms of ideals. For example,

〈ρ(17362)〉〈ρ(173115)〉〈ρ(173168)〉 ≡ 〈173〉 mod ξ.

Conventionally, we write ideals in Gothic script, e.g. a, with subscripts
denoting their norms (how to define the norm of an ideal can be found in
standard textbooks). We will just note that where representations exist,
N(〈ρ〉) = |N(ρ)|.

We can also write factorizations in terms of ideals, even though repre-
sentations don’t exist. For example, f(r) ≡ 0 mod 223 has

〈223〉 = a223a
′
223a

′′
223,

where

a223 = 〈ρ(223170)〉, a′223 = 〈(X − 79), 223〉 and a′′223 = 〈(X − 196), 223〉.

In the one root case, we have to consider q of the form q1Y + q2p mod f for
arbitrary polynomials q1, q2, where (X − r)Y ≡ f mod p. Now
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q1Y + q2p ≡ q3ρ(p2∗), where q3 = q1τ(p2∗) + q2ρ(pr) mod f .

We therefore have 〈Y, p〉 = 〈ρ(p2∗)〉.
For example, in the previous section, we saw that f(r) ≡ 0 mod 239

has the single root 45. We therefore have

〈239〉 = a239a
′
57121, where a239 = 〈ρ(23945)〉, a′57121 = 〈ρ(2392∗)〉.

Finally, we return to the original example of non-unique factorization.
Recall that g = 104X2+30X+1749, h = 5X2+2X+85, that gh ≡ 183 mod
ξ and that g could be thought of as ρ(306166116), and h as ρ(32∗6138). We
can now write

〈3〉 = a3a
′
9, where a3 = 〈X − 0, 3〉, a′9 = 〈X2 +X + 2, 3〉,

since (X − 0)(X2 +X + 2) ≡ 0 mod 3. Similarly,

〈61〉 = b61b
′
61b
′′
61,

where

b61 = 〈X − 6, 61〉, b′61 = 〈X − 16, 61〉 and b′′61 = 〈X − 38, 61〉.

We have 〈g〉 = a3b61b
′
61 and 〈h〉 = a′9b

′′
61; so

〈gh〉 = a3b61b
′
61a
′
9b
′′
61 = a3a

′
9b61b

′
61b
′′
61 = 〈3〉〈61〉 = 〈183〉.

5 Parts 2 and 3

Part 2 of this series will look at the proportion of prime / root combinations
pr for a particular f that have a representation, how some polynomials are
related to each other, and how all this is related to the algebraic number
theory concept of class number.

Part 3 is concerned with techniques for finding representations, and
selecting polynomials for which these techniques are most effective.
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Solution 282.5 – Determinant
Compute

Λ(n, λ) = det


λ −1 . . . −1 −1
−1 λ . . . −1 −1
. . . . . . . . . . . . . . .
−1 −1 . . . λ −1
−1 −1 . . . −1 λ

 ,
where n is the number of rows in the matrix. Hence or otherwise
prove that Λ(n− 1, n− 1) = nn−2.

Tommy Moorhouse
A useful identity. For any matrix A the problem of finding the determi-
nant of eA can be reduced to the problem of finding a related trace using

det eA = exp(TrA).

This identity can be proved in stages, starting with the case of diagonal
A. Here matrix functions will be considered to be defined by their formal
power series expansions.

Deconstructing Λ(N,λ). We can write Λ(N,λ) = (1 + λ)I−U where I is
the identity matrix and U is the matrix with all its entries equal to unity.
We want this to be eA. Taking logs we get

A = log

(
(1 + λ)

(
I− 1

1 + λ
U
))

= log(1 + λ)I + log

(
I− 1

1 + λ
U
)

= log(1 + λ)I−
∞∑
k=1

1

k(1 + λ)k
Uk

using the matrix version of the Taylor series of log(1 − x). Now it is easy
to see that Uk = Nk−1U for k ≥ 1 so we find

∞∑
k=1

1

k(1 + λ)k
Uk =

1

N

∞∑
k=1

Nk

k(1 + λ)k
U

= − 1

N
log

(
1− N

1 + λ

)
U.
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Taking the trace. We have found that

A = log(1 + λ)I +
1

N
log

(
1− N

1 + λ

)
U;

so taking the trace gives

TrA = N

(
log(1 + λ) +

1

N
log

(
1− N

1 + λ

))
= log

(
(1 + λ)N−1(1 + λ−N)

)
.

Substituting N = n− 1, λ = n− 1 we find

Λ(n− 1, n− 1) = exp(TrA) = nn−2,

as required.

Peter Fletcher
Recall that the determinant of an n × n matrix is equal to the product of
its n eigenvalues and that an upper triangular matrix has all its eigenvalues
down the leading diagonal.

We may reduce the given matrix to an upper triangular one by elemen-
tary row and column operations.

Step 1. Subtract the (n− 1)th row from the nth. This gives

. . .
...

...
...

...
...

· · · λ −1 −1 −1 −1
· · · −1 λ −1 −1 −1
· · · −1 −1 λ −1 −1
· · · −1 −1 −1 λ −1
· · · 0 0 0 −1− λ λ+ 1


.

Step 2. Add the nth column to the (n− 1)th. This gives

. . .
...

...
...

...
...

· · · λ −1 −1 −2 −1
· · · −1 λ −1 −2 −1
· · · −1 −1 λ −2 −1
· · · −1 −1 −1 λ− 1 −1
· · · 0 0 0 0 λ+ 1


.
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We now repeat steps 1 and 2 on the (n− 1)× (n− 1) submatrix formed by
the first (n− 1) rows and columns.

Step 3. Subtract the (n− 2)th row from the (n− 1)th. This gives

. . .
...

...
...

...
...

· · · λ −1 −1 −2 −1
· · · −1 λ −1 −2 −1
· · · −1 −1 λ −2 −1
· · · 0 0 −1− λ λ+ 1 0
· · · 0 0 0 0 λ+ 1


.

Step 4. Add the (n− 1)th column to the (n− 2)th. This gives

. . .
...

...
...

...
...

· · · −1 −1 −3 −2 −1
· · · λ −1 −3 −2 −1
· · · −1 λ −3 −2 −1
· · · −1 −1 λ− 2 −2 −1
· · · 0 0 0 λ+ 1 0
· · · 0 0 0 0 λ+ 1


.

Carrying on in this way, after 2n− 4 steps we eventually get to

λ −(n− 1) −(n− 2) −(n− 3) −(n− 4) · · ·
−1 λ− (n− 2) −(n− 2) −(n− 3) −(n− 4) · · ·

0 0 λ+ 1 0 0 · · ·
0 0 0 λ+ 1 0 · · ·
0 0 0 0 λ+ 1 · · ·
...

...
...

...
...

. . .


.

Step 2n− 3. Subtract the 1st row from the 2nd. This gives

λ −(n− 1) −(n− 2) −(n− 3) −(n− 4) · · ·
−1− λ λ+ 1 0 0 0 · · ·

0 0 λ+ 1 0 0 · · ·
0 0 0 λ+ 1 0 · · ·
0 0 0 0 λ+ 1 · · ·
...

...
...

...
...

. . .
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Step 2n− 2. Add the 2nd column to the 1st. This gives

λ− (n− 1) −(n− 1) −(n− 2) −(n− 3) −(n− 4) · · ·
0 λ+ 1 0 0 0 · · ·
0 0 λ+ 1 0 0 · · ·
0 0 0 λ+ 1 0 · · ·
0 0 0 0 λ+ 1 · · ·
...

...
...

...
...

. . .


.

We have λ− (n− 1) and n− 1 copies of λ+ 1 on the leading diagonal.
Therefore the determinant of our matrix is

Λ(n, λ) = (λ− n+ 1)(λ+ 1)n−1.

We can now write down

Λ(n− 1, n− 1) = (n− 1− n+ 1 + 1)(n− 1 + 1)n−1−1 = nn−2.

Stuart Walmsley
This is similar to Problem 261.6, for which I gave a solution in M500 263
pages 1–5. In fact, the solution of the present problem can be found directly,
leading to

Λ(n, λ) = (λ− n+ 1)(λ+ 1)n−1;

whence

Λ(n− 1, n− 1) = ((n− 1)− (n− 1) + 1))((n− 1) + 1)n−2,

giving
Λ(n− 1, n− 1) = nn−2,

which is the result to be proved.

The solution took advantage of the symmetry of the matrix and used
the methods of group theory. In general terms, the expanded determinant
is a polynomial of degree n in λ. As such, it has n distinct roots, r1, r2,
. . . , rn, and the polynomial may be written

(λ− r1)(λ− r2) . . . (λ− rn).
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This, in turn, may be written as a determinant of the matrix

L(n, λ) =


λ− r1 0 . . . 0

0 λ− r2 . . . 0
. . . . . . . . . . . .
0 0 . . . λ− rn

 .
The two equivalent forms of the matrix can be related by an expression of
the form

TΛ(n, λ)T−1 = L(n, λ),

where T is a matrix which specifies the transformation between the two
forms. (Note that in this expression Λ(n, λ) denotes the matrix, not the
determinant.)

In the original problem, the form of T is precisely defined by the sym-
metry. In the present case, the repeated roots allow a range of equivalent
forms. The original form degenerates to an acceptable version. To amplify
these considerations, consider the case n = 3. Then

Λ(3, λ) = det

 λ −1 −1
−1 λ −1
−1 −1 λ

 .
Direct expansion gives

Λ(3, λ) = λ3 − 3λ− 2.

It is easy to guess one of the roots and solve the resulting quadratic to give
the factored form

Λ(3, λ) = (λ− 2)(λ+ 1)2.

The matrix has a threefold cyclic pattern which can be used to obtain T :

T =
1√
3

 1 1 1
1 ω ω∗

1 ω∗ ω

 , T−1 =
1√
3

 1 1 1
1 ω∗ ω
1 ω ω∗

 ,
where ω = exp(2πi/3), ω∗ = exp(−2πi/3). Then

TΛ(3, λ)T−1 =

 λ− 2 0 0
0 λ+ 1 0
0 0 λ+ 1

 .
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This may be generalized using the appropriate (complex) roots of unity.
Because of the repeated roots, the form of T is not unique. An alternative
is:

T =

 1/
√

3 1/
√

3 1/
√

3

−1/
√

2 1/
√

2 0

−1/
√

6 −1/
√

6 2/
√

6

 .
The inverse of this matrix is its transpose.

This may be generalized to any number of dimensions and is referred to
in the literature as the Schmidt orthogonalization procedure.

Reinhardt Messerschmidt
Let J and 1 be the all-1 matrix and column vector respectively, with their
dimensions determined by the context. If n is a positive integer and λ, µ
are complex numbers, let X(n, λ, µ) be the n× n matrix defined by

X(n, λ, µ) = (λ− µ)I + µJ =


λ µ . . . µ µ
µ λ . . . µ µ
. . . . . . . . . . . . . . .
µ µ . . . λ µ
µ µ . . . µ λ

 .
We will use induction on n to show that

detX(n, λ, µ) = (λ− µ)n−1(λ+ (n− 1)µ).

For the base case,

detX(1, λ, µ) = λ = (λ− µ)1−1(λ+ (1− 1)µ).

For the inductive case, suppose n ≥ 2 and

detX(n− 1, λ, µ) = (λ− µ)n−2(λ+ (n− 2)µ).

We have

detX(n, λ, µ) = det

[
X(n− 1, λ, µ) µ1

µ1T λ

]
.

Adding −µ/λ times the n-th row to the 1st, 2nd, . . . , (n− 1)-th rows,

detX(n, λ, µ) = det

X
(
n− 1,

λ2 − µ2

λ
,
µ(λ− µ)

λ

)
0

µ1T λ

 .
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Expanding by the last column,

detX(n, λ, µ) = λ · detX

(
n− 1,

λ2 − µ2

λ
,
µ(λ− µ)

λ

)
.

By the inductive hypothesis,

detX(n, λ, µ) = λ ·
(

(λ+ µ)(λ− µ)

λ
− µ(λ− µ)

λ

)n−2

·
(

(λ+ µ)(λ− µ)

λ
+ (n− 2)

µ(λ− µ)

λ

)
= (λ− µ)n−1(λ+ (n− 1)µ),

which completes the induction. It follows that

det Λ(n, λ) = detX(n, λ,−1) = (λ+ 1)n−1(λ− n+ 1),

det Λ(n− 1, n− 1) = (n− 1 + 1)n−1−1 · 1 = nn−2.

Significance

Readers familiar with graph theory will recognize nn−2 as Cayley’s formula
for the number of spanning trees in the complete graph Kn, and Λ(n −
1, n− 1) as an (n− 1)× (n− 1) principal submatrix of the Laplacian of Kn.
We have therefore shown that the number of spanning trees in Kn is equal
to the determinant of this submatrix. This is a special case of Kirchhoff’s
matrix-tree theorem, see section 1.3.5 in Spectra of Graphs by A. E. Brouwer
& W. H. Haemers.

Problem 284.1 – Squares
Show that if a positive integer N can be expressed as N = a2+kb2 = c2+kd2

with a, b, c, d, k integers, a 6= c and k ≥ 2, then N must be composite.

Problem 284.2 – 13 cards
A standard pack of 52 playing cards is shuffled and dealt into 13 piles of
four. Is it always possible to select one card from each pile so that the
chosen cards consist of 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A, not necessarily
of the same suit?
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Solution 281.2 – Hours
Four ‘hour positions’ are chosen at random on a standard clock
face. What is the probability that, taken together, they define
(a) a point, (b) a line, (c) a triangle, (d) a quadrilateral?

Peter Fletcher
Ignoring repetitions, there are 124 ways of picking four hour positions on a
standard clock face.

(a) If the four hour positions are to define a point, then there are 12 ways
of choosing the first position and we have 1 way of choosing each of
the second, third and fourth positions. Therefore the probability that
the four hour positions define a point is 12/124 = 1/1728.

(b) If the four hour positions are to define a line then there are 12 ways
of choosing the first position. Then we can choose a second position
in 11 ways and the third and fourth in each of 2 ways; or we can
choose the first position a second time in 1 way, the third in 11 ways
and the fourth in 2 ways; or we can choose the first position a second
and third time in 1 way and the fourth in 11 ways. In other words,
the total number of ways of defining a line, including repetitions, is
12 ·11 ·2 ·2+12 ·1 ·11 ·2+12 ·1 ·1 ·11 = 924. Therefore the probability
that the four hour positions define a line is 924/124 = 77/1728.

(c) If the four hour positions are to define a triangle then there are 12
ways of choosing the first position. Then we can choose the second
position in 11 ways, the third in 10 ways and the fourth in 3 ways; or
we can choose the second position in 11 ways, the third in 2 ways and
the fourth in 10 ways; or we can choose the second position in 1 way,
the third in 11 ways and the fourth in 10 ways. In other words, the
total number of ways of defining a triangle is 12 · 11 · 10 · 3 + 12 · 11 ·
2 · 10 + 12 · 1 · 11 · 10 = 7920. Therefore the probability that the four
hour positions define a triangle is 7920/124 = 55/144.

(d) If these four hour positions are to define a quadrilateral, then there are
12 ways of choosing the first position, 11 ways of choosing the second,
10 ways of choosing the third are 9 ways of choosing the fourth; so
12 · 11 · 10 · 9 = 11880 in all. Therefore the probability that the four
hour positions define a quadrilateral is 11880/124 = 55/96.

As a check,
1

1728
+

77

1728
+

55

144
+

55

96
= 1,

so we have covered all possibilities.
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Reinhardt Messerschmidt
The problem can be generalized to:

Given positive integers m,n, k with k ≤ m, what is the prob-
ability that a randomly chosen n-element {1, 2, . . . ,m}-valued
sequence has k distinct elements?

The original problem is the case m = 12, n = 4 and k ∈ {1, 2, 3, 4}.
Let Xm,n be the set of all n-element {1, 2, . . . ,m}-valued sequences, let

Xm,n,k be the set of all x ∈ Xm,n with k distinct elements, and let |A|
denote the number of elements in a set A. If we can find |Xm,n,k|, then the
answer to the general problem is

|Xm,n,k|
|Xm,n|

=
|Xm,n,k|
mn

.

Let S(n, k) be the number of partitions of an n-element set into k
subsets. This is known as a Stirling number of the second kind. Every
x ∈ Xm,n,k can be constructed as follows:

� Partition the set of n ‘slots’ in x into k subsets. This can be done in
S(n, k) ways.

� Fill the slots in the first subset with an element from {1, 2, . . . ,m}.
This can be done in m ways.

� Fill the slots in the second subset with an element from {1, 2, . . . ,m}
that has not been used so far. This can be done in m− 1 ways.

� . . .

� Fill the slots in the k-th subset with an element from {1, 2, . . . ,m}
that has not been used so far. This can be done in m− k + 1 ways.

It follows that

|Xm,n,k| = S(n, k) ·m · (m− 1) · · · (m− k + 1) = S(n, k)
m!

(m− k)!
.

It remains for us to find S(n, k). There is only one way to partition an
n-element set into 1 subset, and only one way to partition it into n subsets;
therefore

S(n, 1) = 1, S(n, n) = 1. (∗)
If n, k ≥ 2, then every partition of an n-element set into k subsets can be
constructed as follows:
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� Partition n−1 of the elements into k subsets, and add the n-th element
to one of the k subsets. This can be done in k · S(n− 1, k) ways.

� Alternatively, partition n − 1 of the elements into k − 1 subsets, and
create a k-th subset consisting of the n-th element on its own. This
can be done in S(n− 1, k − 1) ways.

It follows that

S(n, k) = k · S(n− 1, k) + S(n− 1, k − 1). (∗∗)

The boundary conditions in (∗) and the recurrence relation in (∗∗) allow us
to find S(n, k). For the original problem, we need

S(3, 2) = 2 · S(2, 2) + S(2, 1) = 2 · 1 + 1 = 3,

S(4, 2) = 2 · S(3, 2) + S(3, 1) = 2 · 3 + 1 = 7,

S(4, 3) = 3 · S(3, 3) + S(3, 2) = 3 · 1 + 3 = 6.

The answer to the original problem is

|X12,4,1|
124

=
1 · 12

124
=

1

1728
≈ 0.0006,

|X12,4,2|
124

=
7 · 12 · 11

124
=

77

1728
≈ 0.0446,

|X12,4,3|
124

=
6 · 12 · 11 · 10

124
=

660

1728
≈ 0.3819,

|X12,4,4|
124

=
1 · 12 · 11 · 10 · 9

124
=

990

1728
≈ 0.5729. �

Problem 284.3 – Characteristic polynomial
Show that a square matrix is a root of its characteristic polynomial. In
other words, if M is an n× n matrix, and

PM (x) = det(xIn −M) =

n∑
i=0

aix
i

is its characteristic polynomial, show that

PM (M) =

n∑
i=0

(aiIn)M i = 0n,

where In is the n× n identity matrix, and 0n is the n× n all-zeros matrix.
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Solution 276.1 – Three dice
The television game-show host throws three dice in a manner
that is invisible to you. He then reveals a die that shows the
largest number. What’s the probability that at least one of the
other dice shows the same number?

Peter Fletcher
The first thing to do is to count the number of dice-throws possible.

If the host shows a 1, then we know that the two hidden dice must show
(1,1), only one possibility.

If he shows a 2, then we know that the two hidden dice must show (1,1),
(1,2), (2,1) or (2,2), four possibilities.

If he shows a 3, then we know that the two hidden dice must show (1,1),
(1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2) or (3,3), nine possibilities.

If he shows a 4, then we know that the two hidden dice must show (1,1),
(1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1),
(4,2), (4,3) or (4,4), 16 possibilities.

We can see that the total number of possibilities increases as the square
of the number on the die that the host shows. Therefore the total number
of possible dice-throws is 1 + 4 + 9 + 16 + 25 + 36 = 91.

From the above, we can count the number of times the value of the die
that the host shows also appears on at least one of the two hidden dice.

If he shows a 1, there is one way that at least one of the hidden dice
also shows a 1.

If he shows a 2, there are three ways that at least one of the hidden dice
also shows a 2.

If he shows a 3, there are five ways that at least one of the hidden dice
also shows a 3.

If he shows a 4, there are seven ways that at least one of the hidden
dice also shows a 4.

We can see that the total number of possibilities increases as consecutive
odd numbers. Therefore the probability that at least one of the two hidden
dice shows the same value as that shown by the host is

1 + 3 + 5 + 7 + 9 + 11

91
=

36

91
.
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Emma Lehmer
Eddie Kent
In 2006 I wrote about Emma Lehmer [M500 213 16], who was born in 1906,
and with crashing originality I called it ‘100 not out’. In fact Emma died
in 2007. She was born Emma Trotskaia in Russia (‘in a town with the
lovely sounding name of Samara’), and moved to the USA for her higher
education. There she married her tutor’s son, Derrick H. Lehmer and they
moved to Brown University where he got a Ph.D. and she (for university
constitutional reasons) was restricted to an M.Sc. She was still able to write
56 papers in the area of number theory. When her husband died in 1991 she
completed his unfinished research papers. Paul Halmos wrote I want to be
a Mathematician in 1985, and in this he referred to Lehmer’s translation of
Pontryagin’s Topological Groups. He called her Emma Lemma; this caught
on.

Impact
Jeremy Humphries
I’m reading No Middle Name, the complete collected Jack Reacher short
stories by Lee Child. Just come across this in the story ‘Deep Down’.

The guy in black weighed maybe one-ninety, and he was doing
about two miles an hour. Reacher weighed two-fifty, and he
was doing three miles an hour. Therefore closing speed was five
miles an hour, and impact, should it happen, would involve some
multiple of four hundred forty pounds a square inch.

Eh?

M500 Winter Weekend 2019
The thirty-eighth M500 Society Winter Weekend will be held at

Florence Boot Hall, Nottingham University

Friday 4th – Sunday 6th January 2019.

The cost for the Weekend will be confirmed when booking opens at the end
of September 2018. The cost includes accommodation and all meals from
dinner on Friday to lunch on Sunday.

The Winter Weekend provides you with an opportunity to do some
non-module-based, recreational maths with a friendly group of like-minded
people. The relaxed and social approach delivers maths for fun. And as well
as a complete programme of mathematical entertainments, on Saturday we
will be running a pub quiz with Valuable Prizes.
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Problem 284.4 – Factorial square
For positive integers p and q, define

F (p, q) =
1

q!

p∏
j=1

j!.

(i) Show that F (4n, 2n) is always a square, or find a counter-example. For
instance,

F (12, 6) = 2! 3! 4! 5! 7! 8! 9! 10! 11! 12! = 4205055873908736000002.

(ii) With the exception of F (1, 1) = 1, show that F (p, q) cannot be a square
if p is odd. Or find another example.

(iii) Show that F (14, 9) and F (18, 7) are squares.

(iv) Prove the following, or find a counter-example. Apart from F (14, 9)
and F (18, 7), if F (2n, q) is a square, then n− 1 ≤ q ≤ n+ 1.

Front cover The mono, di, tri and tetracubes. See M500 182 for the
pentacubes. And if someone provides me (TF) with the 166 hexacubes
suitably encoded, I will put them on the cover of a future M500.


