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Ramblings round representations – Part 2
Roger Thompson

1 The proportion of pr with representations

Suppose there are C(N) (prime, root) combinations (p, r) for a particular
f with p ≤ N , and that R(N) of these have representations. Empirically,

H = lim
N→∞

C(N)

R(N)
exists and is an integer. As defined, H is specific to a

particular polynomial. For each prime, this polynomial has a particular
number of solutions of f(r) ≡ 0 mod p. We will call this its root pattern.
We now consider all polynomials with the same root pattern as f , and see
how H changes. Our general polynomial is

f = X3 + PX2 +QX +R.

If P = 3M +N , we can make the substitution X = Y −M to give

g(Y ) = Y 3 + P ′Y 2 +Q′Y +R′,

where 0 ≤ P ′ ≤ 2. If P ′ = 2, we can make the substitution Y = −Z − 1 to
give

h(Z) = Z3 + Z2 + (Q′ − 1)Z +Q′ −R′ − 1.

These substitutions do not change H since they apply directly to roots and
representations. The substitutions also leave the value of the discriminant
unchanged.

If we generalize the substitution to Z =
aX2 + bX + c

k
, can we make

other monic polynomials Z3 +hZ2 + iZ+ j mod f with integer coefficients?
The answer seems to be sometimes. The underlying algebra is revolting (see
Appendix); so I have had to use trial and error to search for solutions. It is
therefore dubious to claim that no solutions exist for particular polynomials.
Where solutions are found, the root pattern is unchanged, but the discrim-
inant and number of prime representations for each p may change, hence H
may change. To illustrate, we consider the following six polynomials.

Polynomial H Real root

X3 + 126 27 α = −5.0132979349645845
X3 − 126X + 714 18 β = −13.391016663204642
X3 + 126X + 462 18 γ = −3.3644207932754719
X3 + 252X − 420 18 δ = 1.648877141689113
X3 − 252X + 1596 18 ε = −18.404314598169226
X3 + 756X + 1302 27 ζ = −1.7155436515863585
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The above polynomials have a distinct but possibly overlapping set of primes
with representations even if they share the same H value.

The class number described in standard textbooks on algebraic number
theory, traditionally denoted by h, is an integer, and is the same for all
polynomials with the same root pattern (for example, h = 9 for the above
polynomials). Just as H could be defined as the proportion of ideals of the
form 〈X − r, p〉 that are principal, so h is defined as the proportion of frac-
tional ideals that are principal. Informally, fractional ideals can be thought
of as ordinary ideals with each element divided by some fixed polynomial
with integer coefficients. This is equivalent to multiplying by some fixed
polynomial and dividing by an integer (Part 3 will explain this). Standard
theory uses fractional ideals to define inverses of ideals, which then gives
rise to the nice group properties that result in h being an integer. Calcula-
tion of the class number for a particular root pattern is far from trivial, and
requires a good deal of theory. (See [Barrucand et al. (1976)] and [Cohen
(2000)] for details.)

Without delving into such theory, can we derive h just from the proper-
ties of prime representations? It would appear that H is always a multiple
of h, and that h = gcd({H}) for all polynomials with the same root pattern.
It is worth observing that I have found no examples of polynomials with an
apparently unique root pattern for which H 6= h, so perhaps the trial and
error search was adequate after all. If several polynomials with the same
root pattern are found, establishing a set with different H values can be
very time consuming. What can we learn from analysis of a single polyno-
mial? To explore this, we will look further into the relationships between
the six polynomials above. The tables below show how the roots relate to
each other numerically.

α β γ

α
−α2 + 3α

3

−α2 − 3α

3
−β2 − 3β + 84

11
β

2β2 + 17β − 168

11
−γ2 − 3γ − 84

17

−2γ2 + 11γ − 168

17
γ

−δ2 − 12δ − 168

38

−3δ2 + 2δ − 504

38

−δ2 + 26δ − 168

38
ε2 + 12ε− 168

10

−ε2 − 2ε+ 168

10

−3ε2 − 26ε+ 504

10
−2ζ2 − 27ζ − 1008

193

−5ζ2 + 29ζ − 2520

193

−ζ2 + 83ζ − 504

193
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δ ε ζ

−α2 − 6α

3

−α2 + 6α

3

−2α2 − 9α

3
3β2 + 20β − 252

11

−β2 + 8β + 84

11

5β2 + 37β − 420

11
γ2 + 20γ + 84

17

−3γ2 + 8γ − 252

17

γ2 + 37γ + 84

17

δ
−2δ2 − 5δ − 336

19

−δ2 + 64δ − 168

38
−2ε2 − 19ε+ 336

5
ε

−7ε2 − 64ε+ 1176

10
ζ2 + 110ζ + 504

193

−7ζ2 + 2ζ − 3528

193
ζ

We will call the denominator associated with a particular polynomial
its fractional constant. Where do these fractional constants come from?
Factoring the discriminants reveals all!

Polynomial Discriminant ∆
X3 + 126 −223572 × 32

X3 − 126X + 714 −223572 × 112

X3 + 126X + 462 −223572 × 172

X3 + 252X − 420 −223572 × 22192

X3 − 252X + 1596 −223572 × 2252

X3 + 756X + 1302 −223572 × 1932

It is clearly necessary to find a reasonable number of different polynomials
with the same root pattern in order to distinguish the invariant part of the
discriminant from the fractional constant part, and to ensure that exam-
ples are found such that gcd(root relation numerator coefficients, fractional
constant) = 1.

Using ξ = X3 + 126 to identify the root pattern common to the above
polynomials, the primes 1499, 1709, 2351 and 3373 (chosen at random) have
1, 1, 1 and 3 solutions respectively of ξ(r) ≡ 0 mod p. The following table
shows how many of these have representations.

Polynomial 1499 1709 2351 3373
X3 + 126 0 1 0 0
X3 − 126X + 714 1 1 0 3
X3 + 126X + 462 1 0 0 3
X3 + 252X − 420 1 1 1 1
X3 − 252X + 1596 0 1 1 3
X3 + 756X + 1302 0 0 1 1
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To see why these differences occur, we will see how the representations
in the six different polynomials may relate to each other. We will use ρ(f),
N(f), etc. to make it clear which polynomial the representation or norm
refers to. For f = X3 + 126,

ρ(f)(1709251) = X2 − 6X + 29.

For g = Y 3 − 126Y + 714,

ρ(g)(1709898) = 1156Y 2 − 15480Y + 61637,

where Y =
−X2 + 3X

3
. Here we are treating the relation between the

numeric roots α, β defined above algebraically. If we evaluate 1156Y 2 −
15480Y + 61637 mod f , we find that the denominator of 32 gets cancelled
out of the resulting coefficients, giving

1156Y 2 − 15480Y + 61637 ≡ 6316X2 − 31664X + 158741

≡ ρ(f)(1709251)U2
1 mod f,

where U1 = −X2 + 5X − 25 is a unit. In other words, the representations
are really invariant. While this convenient cancellation occurs for all ρ(f),
ρ(g) using the above f , g, it does not happen for all f , g. For example, if
we use

f = X3 − 126X + 714 and g = Y 3 + 126,

we get

X2 − 6X + 29 ≡ 3Y 2 − 24Y + 67

11
mod g.

The remedy for this will turn out to be very useful (see the next section).

If we continue to use f = X3+126, we can see why h = Z3+126Z+462
has no representation for 1709396. We have X = (−Z2 − 3Z − 84)/17 from
the table of root relations, above. If we evaluate X2 − 6X + 29 mod h, we
get (9Z2 − 24Z + 1249)/17, with

N(h)(9Z
2 − 24Z + 1249) = 1731709,

as expected. Since the coefficients must be integers, this fractional repre-
sentation is not allowed. Let’s see what happens if we change this. We will
call a polynomial g with fractional constant k such that g(r) ≡ 0 mod p and

N(g) = k3p a fractional representation of pr, denoting
g

k
by ρk(pr).

Repeating the above table for fractional representations, we have the
following.
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Polynomial 1499 1709 2351 3373

X3 + 126 1 1 1 3
X3 − 126X + 714 1 1 1 3
X3 + 126X + 462 1 1 1 3
X3 + 252X − 420 1 1 1 3
X3 − 252X + 1596 1 1 1 3
X3 + 756X + 1302 1 1 1 3

This identical tally is true for all (prime, root) combinations for any of the
six polynomials listed, so that their fractional representations each have
H = 9 = h. This is not true in general. For example, X3−252X+4830 has
H = 9, but its fractional representations have H = 3. In the next section
we will see how to remedy this.

2 Units and fractional representations

Every integer representation has a fractional representation, formed simply
by multiplying coefficients by the fractional constant k. Fractional repre-
sentations may also take other forms. This section identifies methods for
determining whether these forms can be converted into integer representa-
tions, and if so, doing the conversion. To illustrate, we use

f = X3 − 252X + 4830,

which has fractional constant k = 109. This is chosen because its units have
large magnitude, as we shall see shortly, so that many integer representa-
tions of small primes have large magnitude. In such cases, we are likely to
find forms such that the coefficients of their numerators are not all divisible
by k. To find fractional representations, we can use the µ, ν parameters
of Part 1 section 2, searching for quadratics having numerators with norm
k3p, and fractional units (quadratics with numerator norm k3), which we
will label V1, V2. In our case, we find that

V1 = 7X2 − 153X + 1549 and V2 = 2X2 + 3X − 881

(so that V1V2 ≡ 1092 mod f). If F is V1, V2 or the numerator of any ρk(f),
we find that the coefficients of ViF are congruent to kG mod f for some

quadratic G with integer coefficients. In other words,
F

k

V n
i

kn
≡ G

k
mod f

for any n. This is true for any f .

If the coefficients of (Vi/k)n mod f are all divisible by k for some n,
we have found a unit. In our case, we find this is true for n = 108, i.e.
(Vi/109)108 ≡ Ui mod f , giving
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U1 = 3658104367599407843493041112227448656853402355062668975554
841209590218208715112793914620303079596702495384082670977127572
626229212524864793318034959086580656131176365683172738170548506
0303401456905770X2

− 7963230601255965147963325218122021385203847435815852147296301
638850108197010770161153838456295378253945850474118533522671473
402403926983057602809655959466730583952415420591462995339852168
14453120236530X
+ 8116522975629108512262155029009467050333391167755050694009672
374521320789728445988865599133949170067447537113569253277853315
574658639013778189027548303186762591673432575038446702945134775
812212378553641,

U2 = −223213534699484767598556868694248198054880466122976214252
738963375074934119457407146093130822778470X2

+ 3176600891668783130893259878088396769848544731511149096559585
585594937286287006231348252264827998730X
+ 1749265320582681358893780014909843966934656755319684223776177
59766299474063505786399408550940773267961.

For an example that does convert into an integer representation, we use

ρ109(587543) =
−X2 − 56X + 59

109
.

We find that

(−X2 − 56X + 59)

(
V2
109

)5

≡ 109(−1157X2 − 17609X + 164951) mod f ;

so
ρ(587543) = − 1157X2 − 17609X + 164951.

A very small proportion of representations cannot be derived in this way.
For example, for

ξ = X3 + 756X + 1302,

which has fractional constant 193, we have

V1 = 19X2 − 33X + 14401,

V2 = 2X2 + 27X + 43,

(Vi/193)64 ≡ Ui mod ξ,

ρ(465499167) = − 39966019177047621360551793135X2

− 1371904296522449188743007912428X

− 2235938114284126051579194454271,
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and
ρ193(465499167) = 17X2 + 30X + 16981,

but there is no n for which

ρ193(465499167)(Vi/193)n ≡ ρ(465499167) mod ξ.

I haven’t found sufficient examples to study these exceptions systematically.

Now we will see how to convert a fractional representation in one poly-
nomial to an integer representation in another with the same root pattern,
even if an integer representation doesn’t exist in the first one. We will use

g = Y 3 + 126, f = X3 − 252X + 4830,

as above. Using the techniques of the previous section, we have

X =
−2Y 2 + 3Y

3
, Y =

−2X2 − 3X + 336

109
.

We find

ρ3(g)(44512611) =
−Y 2 + 30Y + 177

3
.

Substituting for Y and working modulo f , we get

ρ109(f)(44513685) =
−19X2 + 26X + 9623

109
.

The root

3685 ≡ (−2r2g + 3rg)3−1 ≡ 1484(−2r2g + 3rg) mod 4451,

where rg = 2611. We find

−19X2 + 26X + 9623

109
(V2/109)43

≡ − 5670888303188440227230424943465190306088X2

− 42392407415457568754374927553589379742737X
+ 1764479203440589754949545207687502079571057 mod f

= ρ(f)44513685.

The polynomial f = X3 + 1719, with real root α, has H = 102 and has
fractional constant 3. Its fractional representations have H = 34 = h. The
polynomial

g = X3 + 6876X + 573
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has real root β, with

β =
α2 + 12α

3
, α =

−β2 + 48β − 4584

383
.

However, a negligible number of fractional representations in f convert to
integer representations in g. In fact, H = 384× 34 = 13056 for g.

3 The three root case

The congruence f ≡ 0 mod p has three roots for around one sixth of primes.
If i, j, k are three roots of f ≡ 0 mod p, then from Part 1 section 3, we have
ρ(pi)ρ(pj)ρ(pk) = p. If two representations are known to exist, then the
third one can be calculated from this equation, so apart from the special
case of p = 2, there are no primes with two representations.

We might suppose for such primes that the proportion of (prime, root)
combinations with representations is the same as that for all (prime, root)
combinations, i.e. 1/H. This is indeed so. Let Ti denote the proportion of
primes with three roots such that i of the roots have representations. We
have already seen that T2 = 0. We therefore have

0× T0 + 1× T1 + 3× T3
3(T0 + T1 + T3)

=
1

H
.

Intriguingly, the ratios T0 : T1 : T3 seem to be constrained further than the
requirements of the above equation. Empirically,

T0 : T1 : T3 =
H2 − 3H

3n
+ 2 :

3H

3n
− 3 : 1

for some n ≥ 0 (specific to f) such that H is divisible by 3n.

Consider the primes for which f ≡ 0 mod p has three roots, and all
three have representations. If

f = X3 + 6876X + 573

for example, there are 580 such primes less than 6.25 × 1012. For this
polynomial and a few others, the three representations differ only in one of
the coefficients of X2, X1, X0 for a significant proportion of such primes.
Here, 336 have representations that differ only in the coefficient of X, e.g.

ρ(14258293391094652) = − 36X + 13,

ρ(14258293374261944) = 48X + 13,

ρ(142582933119809270) = 144X + 13,
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and another 20 that differ only in the coefficient of X2, e.g.

ρ(197047927801147909160322) = 30X2 + 2907X + 244,

ρ(197047927801176396834604) = − 40X2 + 2907X + 244,

ρ(19704792780169789860676) = − 242X2 + 2907X + 244.

This constrains the sum of the variable coefficients. For example, if a, b
are the fixed coefficients of X2, X, then the sum of the variable coefficients
must be bP + 2aQ− aP 2. Further constraints arise since the norms of any
two of the representations must be equal, and the product of all three is
p × Un

i . However, the thicket of algebra that results seems particularly
impenetrable!

4 (Prime, root) combinations without representations for class 1
polynomials

From the definition of H, it is not clear whether for H = 1, there are a
finite number of (prime, root) combinations without representations. We
will state (but not prove) that this is so, and that all such primes are divisors
of the discriminant of f . Examples:

X3 +X2 +X+250 has a representation for every (prime, root) combination
except 173 (a repeated root), and

∆(X3 +X2 +X + 250) = − 1684003 = − 1725827;

X3 +X2 +8X−17 has a representation for every (prime, root) combination
except 2315, and

∆(X3 +X2 + 8X − 17) = − 12167 = − 233;

X3 + X2 + 31 has a representation for every (prime, root) combination
except 299 (a repeated root), and

∆(X3 +X2 + 31) = − 26071 = − 29231;

X3+X2+17X+13 has a representation for every (prime, root) combination
except 21 and 53, and

∆(X3 +X2 + 17X + 13) = − 20000 = − 2554.

By changing the discriminant, other polynomials with the same root pattern
may remedy this deficiency. For example, we can use the techniques in
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section 1 to transform X3 + X2 + X + 250 into X3 + X2 + 9X − 8. This
has discriminant −5827, and as expected, the three roots 175, 1712, 176 all
have representations.

5 Part 3

Part 3 is concerned with techniques for finding representations, and selecting
polynomials for which these techniques are most effective.

6 Appendix

Generalizing polynomials with a specific root pattern
Given

f = X3 + PX2 +QX +R = 0

with discriminant ∆, we want to find

Z3 + hZ2 + iZ + j ≡ 0 mod f with Z =
aX2 + bX + c

k
,

where a, b, c, h, i, j, k are integers. Let

mX2 + nX + t ≡ (aX2 + bX + c)2 mod f,

uX2 + vX + w ≡ (aX2 + bX + c)3 mod f.

Then

m = 2ac+ b2 − a2Q− 2abP + a2P 2,

n = 2bc− a2R− 2abQ+ a2PQ,

t = c2 − 2abR+ a2PR,

u = 3ac2 − 3a2bR+ 2a3PR+ 3b2c− 3ab2Q+ 6a2bPQ− 3a2cQ

− 6abcP + 3a2cP 2 + a3Q2 − 3a3P 2Q− b3P + 3ab2P 2

− 3a2bP 3 + a3P 4,

v = 3bc2 − 3ab2R+ 3a2bPR− 3a2cR− 6abcQ+ 3a2cPQ+ 2a3QR

− a3P 2R+ 3a2bQ2 − 2a3PQ2 − b3Q+ 3ab2PQ

− 3a2bP 2Q+ a3P 3Q,

w = c3 − 6abcR+ 3a2cPR+ a3R2 + 3a2bQR− 2a3PQR− b3R
+ 3ab2PR− 3a2bP 2R+ a3P 3R.

We require

hk =
bu− av
an− bm

, ik2 =
vm− un
an− bm

, jk3 = − w − hkt− ik2c.
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Some indication as to why factors of the discriminant are involved in the
denominator can be derived from the section ‘Algebraic integers and f ′(X)’
in M500 276. This gives the following:

1

f ′(X)
≡ AX2 +BX + C mod f,

where

A =
2P 2 − 6Q

∆
, B =

2P 3 − 7PQ+ 9R

∆
, C =

P 2Q− 4Q2 + 3PR

∆
;

X + P

f ′(X)
≡ BX2 + EX + F mod f,

where

E =
2P 4 − 8P 2Q+ 2Q2 + 12PR

∆
, F =

P 3Q− 4PQ2 + P 2R+ 6QR

∆
;

X2 + PX +Q

f ′(X)
≡ CX2 + FX + I mod f,

where

I =
P 2Q2 − 4Q3 + 10PQR− 2P 3R− 9R2

∆
.

Problem 285.1 – Roots
Suppose r > 0 and for positive integer m, define

F (m, r, x) =

m/2∑
i=0

(
m

2i

)
rixm−2i

m/2∑
i=0

(
m

2i+ 1

)
rixm−2i−1

.

Show that
F (m, r, 1) →

√
r as m → ∞.

For example, F (20, 5, 1) = 2.2360679970 . . . , giving
√

5 to 7 decimal places.
Moreover, if you then compute F (20, 5, F (20, 5, 1)), you get an even better
approximation, 2.23606 79774 99789 69640 91736 68731 27623 54406 18359
61152 57242 70897 24541 05209 25637 80489 94144 14408 37878 22749 69508
17615 07737 83504 25326 77244 47073 86358 63601 21533 45270 88667 78173
. . . , correct to about 165 places.
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Perfect’s Necklace Formula
Robin Whitty
The picture below is of a so-called necklace. It has sixteen beads: four
black, four grey and eight white. The asterisk is just a label for reference.

By ‘necklace’ combinatorialists mean a circular permutation of objects
belonging to distinguished classes (colours) taking into consideration rota-
tional symmetry. Thus the picture obtained by rotating the beads anti-
clockwise until the asterisked white bead reaches the top is still the same
necklace. However, if the picture is reflected about a diameter we have a
different necklace because the result is not a rotation of the original.

A formula for counting necklaces with a given number of beads and a
given number of colours is to be found in many textbooks on combinatorics.
Less easy to find is a formula for the case where the number of beads of
each colour is fixed. If we have t colours and there are b1, b2, . . . , bt beads of
each colour, respectively, how many (b1 + . . .+ bt)-bead necklaces can we
make?

I imagine all combinatorics textbooks give the formula for counting
linear (b1 + . . .+ bt)-bead arrangements, equivalent to saying that the as-
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terisked white bead in our picture is ‘distinguished’. The result is the multi-
nomial coefficient (

n!

b1, . . . , bt

)
=

n!

b1! · · · bt!
,

where n = b1 + . . .+ bt is the number of beads. In a two-page note in The
Mathematical Gazette (vol. 40, 1956, pages 45–46), Hazel Perfect uses this
solution to find a formula for necklaces.

Perfect’s analysis uses the divisors of the greatest common divisor (gcd)
of the bead numbers bi to derive a set of linear equations for which she
writes down the solution explicitly. My aim is to bypass the linear algebra
by using the Möbius function defined on the partial order of divisors. Once
you’ve recalled the details I think the resulting formula is simpler to state
and more efficient to evaluate.

Perfect’s analysis goes as follows. We have n = b1 + . . . + bt beads.
Let d be the gcd of the bi. Then we can find necklaces consisting of d
identical repetitions of bead arrangements of length n/d. The same is true
for any divisor of d. For the bead numbers in our picture, the greatest
common divisor is 4. So there will be necklaces with four repetitions of
arrangements of one black, one grey, two white; and necklaces with two
repetitions of two black, two grey and four white; and necklaces which are
a single four-four-eight arrangement. The necklace in the picture has two
repetitions of length 8, starting at the asterisk.

Suppose we call an arrangement consisting of k identical repetitions a k-
pattern. Every necklace is a k-pattern for some k ≥ 1 dividing the gcd of the
bi. So if we count k-patterns for all divisors k of d we will have counted all
necklaces. Now the number of k-patterns is just the number of arrangements
in any one of its identical repetitions: if we forget about necklaces for a
moment and count linear arrangements, then for d = gcd(b1, . . . , bt) the
number of d-patterns is (

n/d

b1/d, . . . , bt/d

)
,

and similarly for the divisors of d.

Summing these multinomials will double count because all linear d-
patterns will also be counted as patterns for any divisor of d. So we must
subtract off these repeat counts. This gives an equation for the number pk
of linear k-patterns:

pk =

(
n/k

b1/k, . . . , bt/k

)
−

∑
x divides k

px. (1)
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To write an explicitly solvable set of equations for all the linear pat-
terns, write the divisors as a sequence: 1 = d1 < d2 < . . . < dm = d =
gcd(b1, . . . , bt). Let S be the m ×m matrix whose (i, j)-th entry is 1 if di
divides dj and 0 otherwise. Then extending equation (1) to all patterns and
collecting terms:

m∑
j=i

Sijpj =

(
n/dj

b1/dj , . . . , bt/dj

)
, i = 1, . . . ,m. (2)

These equations are solvable since S is an upper triangular matrix with 1s
on the diagonal. Using Cramer’s rule we can write down a value for each pi
as a determinant and summing these values gives the total number of linear
arrangements. To count necklaces we need a final observation: a necklace
that is a k-pattern consists of k repetitions of an n/k-length arrangement.
Cutting the necklace at each point in this arrangement gives n/k different
linear arrangements, and these will be duplicated if we cut anywhere else.
If each linear k-pattern comes from n/k different necklace k-patterns, then
we should count k/n necklaces for each pk. This complete’s Hazel Perfect’s
solution to necklace counting.

Taking the inverse of S instead of using Cramer, we can write the num-
ber of necklaces as:(
d1
n
, . . . ,

dm
n

)
× S−1 ×

((
n/d1

b1/d1, . . . , bt/d1

)
, . . . ,

(
n/dm

b1/dm, . . . , bt/dm

))T

.

The appearance of S−1 is what suggests using the Möbius function,
because the S matrix has entry i, j equal to 1 precisely if i ≤ j in the
partial order of divisors (of d). The Möbius function may be defined on the
same partial order, as a kind of ‘inverse’, using the recursive rule:

µ(x, y) =


1 if x = y,

−
∑

x≤z<y

µ(x, z) otherwise.

(The first row is just the Möbius function of analytic number theory—
restricted to the values in the partial order—which you see in action in
M500, issue 206.)

Now the entries of the matrix S−1 are precisely the values of the Möbius
function. Here is an example for d = 12.
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1 2 3 4 6 12
1 1 1 1 1 1 1
2 1 0 1 1 1
3 1 0 1 1
4 1 0 1
6 1 1

12 1

1 2 3 4 6 12
1 1 −1 −1 0 1 0
2 1 0 −1 −1 1
3 1 0 −1 0
4 1 0 −1
6 1 −1

12 1

Top left: the matrix S of the partial order of divisors of 12. Right: calcu-
lating µ(1, x), for x in the partial order, starting with µ(1, 1) and working
upwards. Bottom left: the matrix S−1. Blank entries are zero.

We can now write down an expression for the number of necklaces with
bi beads of colour i, i = 1, . . . , t in which linear algebra has been replaced
with the arguably simpler and more intuitive Möbius function:

1

n

m∑
i=1

m∑
j=i

di

(
n/dj

n1/dj , . . . , nt/dj

)
µ(di, dj).

Problem 285.2 – Circulant graphs
The circulant graph Ci(n, S) has n vertices labelled 0, 1, . . . , n − 1, and
S is a subset of {1, 2, . . . , bn/2c}. An edge exists between vertices i and j
iff i − j ≡ s (mod n) for some s ∈ S. For example, Ci(n, {}) is the empty
graph, En, Ci(n, {1}) is the cycle graph, Cn, and Ci(n, {1, 2, . . . , bn/2c}) is
the complete graph, Kn. The elements of S are usually called step sizes, or
just steps. There are a few examples on the front cover.

Clearly, the number of possible pairwise non-isomorphic Ci(n, S) graphs
is at most 2bn/2c and, moreover, this limit is actually attained when n = 1,
2, 3, 4, and 6. Not 5 because Ci(5, {1}) is isomorphic to Ci(5, {2}).

Prove that there are no other n for which there exist 2bn/2c pairwise
non-isomorphic Ci(n, S) graphs. Or find another one.
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Solution 282.3 – Array
Which positive integers cannot be represented in the form ab+c,
where a, b and c are non-negative integers, b = a or b = a − 1,
and c = 0 or c = a− 1.

This might have some application. Suppose you wish to arrange
n objects in a square array. If n is not a square, we must compro-
mise. Perhaps a rectangle with a rows and (a− 1) columns will
work. And if that can’t be done, maybe we can add a column
of height a− 1. Thus 19 = 4× 4 + 3, for example.

Ted Gore
Let n be a number that can be represented in the manner specified. There
are four cases to be considered.

Case 1 (b = a, c = 0): n = a2 → a =
√
n.

Case 2 (b = a− 1, c = a− 1): n = a(a− 1) + (a− 1)→ a =
√
n+ 1.

Case 3 (b = a− 1, c = 0): n = a(a− 1)→ a =
1 +
√

4n+ 1

2
.

Case 4 (b = a, c = a− 1): n = a2 + a− 1→ a =
−1 +

√
4n+ 5

2
.

It follows that in order to be represented in this way at least one of n, n+1,
4n + 1, 4n + 5 must be a perfect square. Any number that does not fit at
least one of these conditions cannot be represented. A table of examples is
on the next page.

A computer program used the four case definitions to produce a list of
all the values up to 225 that cannot be represented as required and a sample
of the results follows.

7 10 13 14 17 18 21 22 23 26 27 28 31 32 33 34 37 38 39 40

Note that the results appear in blocks of consecutive numbers with a gap
of two missing numbers between blocks.

Let Xk be the first element of the first block of length k and let Yk be
the first element of the second block of length k. Let Uk be the last element
of the first block of length k and let Vk be the last element of the second
block of length k. Then we have:

Xk = (k + 1)2 + (k + 2), Uk = (k + 1)2 + (2k + 1),

Yk = (k + 1)2 + (2k + 4), Vk = (k + 1)2 + (3k + 3).
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Perfect n, a for n, a for n, a for n, a for
square case 1 case 2 case 3 case 4

1 1, 1 0, 1 0, 1 -
4 4, 2 3, 2 - -
9 9, 3 8, 3 2, 2 1, 1
16 16, 4 15, 4 - -
25 25, 5 24, 5 6, 3 5, 2
36 36, 6 35, 6 - -
49 49, 7 48, 7 12, 4 11, 3
64 64, 8 63, 8 - -
81 81, 9 80, 9 20, 5 19, 4
100 100, 10 99, 10 - -
121 121, 11 120, 11 30, 6 29, 5
144 144, 12 143, 12 - -
169 169, 13 168, 13 42, 7 41, 6
196 196, 14 195, 14 - -
225 225, 15 224, 15 56, 8 55, 7

Now let q be any positive integer so that (k + 1)2 is the largest perfect
square less than or equal to q. Then q is representable in the manner given
if

q = Uk + 1 or q = Uk + 2 or q = Vk + 1 or q = Vk + 2.

It is not representable in that manner if Xk 6 q 6 Uk or Yk 6 q 6 Vk. Take
76 as an example. The largest perfect square is 64, so that k = 7, X7 = 73,
U7 = 79, while U7 + 1 = 80, which matches case 2 above with a = 9, b = 8,
c = 8. A little manipulation shows that:

Uk + 1 = (k + 2)2 − 1, which has the form of case 2 when a = k + 2;

Uk + 2 = (k + 2)2, which has the form of case 1 when a = k + 2;

Vk +1 = (k+2)2 +(k+1), which has the form of case 4 when a = k+2;

Vk +2 = (k+3)2− (k+3), which has the form of case 3 when a = k+3.

Also notice that the non-representable numbers can be generated recursively
from

Xk+1 = Xk + 2k + 4, Yk = Xk + k + 2, X1 = 7.

These equations can be used to get a closed equation for Xk and Yk.
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I work an example for X4.

X4 = X3 + 2 · 3 + 4 = X2 + 2 · 2 + 4 + 2 · 3 + 4

= X1 + 2 · 1 + 4 + 2 · 2 + 4 + 2 · 3 + 4 = 7 + 2

3∑
i=1

i+ 3 · 4.

Generalizing this we get

Xk = 7 + 2

k−1∑
i=1

i+ 4(k − 1) = 7 + k(k − 1) + 4(k − 1) = k2 + 3k + 3.

And
Yk = Xk + k + 2 = k2 + 4k + 5.

The other elements of each block are easily generated from Xk and Yk.

Problem 285.3 – A coil and two capacitors

Tony Forbes
This is like Problem 256.5 – Lost en-
ergy. Behold, a simple circuit contain-
ing a coil of L henrys and two capaci-
tors of C farads each. The diagram rep-
resents the initial state, with 100 volts
across C1. Assume the wiring consists
of perfect conductors. What happens
when you close the switch?

p pp���

C1 0 V

100 V

C2 0 V

0 V

I think the answer lies in the coil. We know from Solution 256.5 that
the energy stored in capacitor C1 is 1002C/2 = 5000C joules. Without the
coil half of the energy will be dissipated as heat at infinite amps over zero
seconds. After this time each capacitor has 50 volts, hence 1250C joules,
and no current flows. I don’t know what happens when the coil is added
to the circuit. Perhaps I should. I remember doing this kind of stuff at
high-school, but that was a long time ago.

Problem 285.4 – Prime power divisors
Given a number d, show that every sufficiently large integer has a prime
power divisor q ≥ d. For example, if d = 6, the only integers that fail are 1,
2, 3, 4, 5, 6, 10, 12, 15, 20, 30 and 60.
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Solution 254.5 – Descending integers
Find a nice formula as a function of n for the big number you
get by writing down all the n-digit integers in descending order,
as in, for example, 999998997. . . 101100 when n = 3.

Peter Fletcher
Let Bn be the number we want (B for big). Then we have

B3 = 100 + 101 000 + 102 000 000 + · · ·+ 999 [followed by a lot of zeros].

Thus Bn can be expressed as a sum and we can also write, for n = 3, 4 and
5,

B3 =

899∑
k=0

1000k(100 + k), B4 =

8999∑
k=0

10 000k(1000 + k),

B5 =

89 999∑
k=0

100 000k(10 000 + k).

It is clear that for general n, we can write

Bn =

9×10n−1−1∑
k=0

10nk(10n−1 + k).

I’ve never come across arithmetico-geometric sequences before, but
Wikipedia has:

https://en.wikipedia.org/wiki/Arithmetico_geometric_sequence.

There, it gives (replacing their n with m for clarity):

Sm =

m∑
k=1

[a+ (k − 1)d]rk−1 =

(
a− (a+md)rm

1− r

)
+

dr

1− r

(
1− rm

1− r

)
.

Rewriting Bn as

Bn =

9×10n−1∑
k=1

10n(k−1)(10n−1 + k − 1)

and comparing with Wikipedia’s expression, we can immediately write down
m = 9× 10n−1, a = 10n−1, d = 1 and r = 10n. Therefore we can write Bn

https://en.wikipedia.org/wiki/Arithmetico_geometric_sequence
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as

Bn =

(
10n−1 − (10n−1 + 9× 10n−1)× 109n×10

n−1

1− 10n

)

+
10n

1− 10n

(
1− 109n×10

n−1

1− 10n

)

=
1

(10n − 1)2

(
(10n − 1)(10n−1 + 9× 10n−1)× 109n×10

n−1

− (10n − 1)× 10n−1 + 10n − 109n×10
n−1+n

)
=

109n×10
n−1

(102n − 2× 10n) + 10n−1(11− 10n)

(10n − 1)2
.

I checked this in Maple for n = 1, n = 2 and n = 3, and it works. With
n = 4 and n = 5 Maple can’t show the full number, just the first and last
100 digits, but it certainly appears to work with these numbers as well.

TF — Preccalc64 also
has no trouble verifying the
final formula, above, ex-
actly for B4 and B5. The
screen-shot on the right
shows in the top window
how to set up the calcula-
tion, and you can clearly
see the first part of the re-
sult, B5, which appears in
the bottom window after
15.639 seconds. There is a
scroll-bar to let you see the
rest of the number.

Problem 285.5 – 64 cubes
This is very similar to Problem 274.5 – 27 cubes. There are 64 cubes, where
each face is painted using one of the four colours red, blue, green, yellow
(or, if you prefer, light grey, medium grey, dark grey, black). Moreover, the
64 cubes can be assembled in four ways to form either a red, blue, green or
yellow 4× 4× 4 cube. How can this be achieved?

What about n3 cubes, n colours and n monochromatic n×n×n cubes?
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Observations regarding ‘Bedlam Cube’ solution by
computer
Chris Pile
I was very pleased to see the collection of pentacubes on the cover of issue
M500 282, and the article on the ‘Bedlam Cube’ by Rob Evans, who kindly
mentioned my articles in M500 134 and 152. I purchased the puzzle more
than 25 years ago from an elderly lady at a car boot sale, with the box and
pieces loose in a polythene bag; so I did not have the opportunity of seeing
it completed or taking it apart slowly! It was four years later that by a
stroke of good fortune I was finally able to put all 13 pieces into the box!
My computer would have taken aeons, but was able to confirm the solution,
given a head start of six pieces located correctly, in just a few minutes.

Having written a program that would (eventually!) have solved the puz-
zle I do not have the same enthusiasm for revisiting the task. However, with
the benefit of hindsight I could have reduced the number of combinations.
My program fitted each piece in turn in a predetermined order, as described
by Rob Evans, starting with the ‘+’ piece, which, as stated, has only two
places (ignoring symmetrical positions) within the 4×4×4 box. This piece
is also the only piece which cannot be fitted into a vertex of the box. The
tetra-cube is the only piece which need not have a face showing on the
4× 4× 4 cube.

The selection of each piece should, as Rob explains, be made wisely
to reduce the number of combinations. He considers ‘neighbours’ with a
face in common. My instinct would be to consider which pieces could have
a vertex, edge or face with the 4 × 4 × 4 box in common. Eight of the
twelve pieces must fit into a vertex. If each piece was coloured to show
whether a face could appear in a vertex, edge or face of the box, it might
facilitate a manual solution. The computer program should check whether
an impossible void is created after each piece is placed.

The label on the box claims that there are hundreds of correct solutions.
My program found two solutions (with a little help!) in about 20 minutes
(only small differences in solutions).

As I mentioned M500 152, I was able to put 25 pentacubes (excluding
the four pieces with dimension at least 4 cubes) into a 5× 5× 5 cube. If I
used these four pieces, it was very easy to make up a 5 × 5 × 5 cube with
four other pieces remaining. I found other solutions quite easily. I enjoy
the challenge of doing this type of puzzle manually and therefore I wait for
someone else to check all 23751 cases!
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Magic numbers
Sebastian Hayes
Definition A number N is magic if any number which ends with N is
divisible by N . Base 10 is assumed.

Example Any number ending in 2 is even and thus divisible by 2.

Problem (a) How many magic numbers are there less than or equal to
10n? (b) Give a sufficient and necessary condition for a number (positive
integer) to be magic.

Solution The key point to grasp is that if a number N is to divide any
number which ends . . . N , it must divide the first power of 10 greater thanN .
For if it does this, it will divide any multiple of this power, and this covers
all numbers with more digits than N which terminate with . . . abcd = N .

By trial we find that 1, 2 and 5 are the only magic numbers less than
10. And, excluding these, below 100 we have 10, 20, 25 and 50. For n ≥ 2,
there seem to be five magic numbers with n digits between 10n and 10n+1,
where we include the lower limit 10n but not the higher. For example, if we
consider magic numbers with four digits we are looking for numbers which
divide 104 and are at least 103. Now, the only factors of powers of 10 are
powers of 2 and 5; so the only possibilities are 104/2 = 5000, 104/4 = 2500,
104/5 = 2000, 104/8 = 1250 and 104/10 = 1000. Any other numbers which
divide 104 will have fewer than four digits.

More generally, for n ≥ 2 over [10n−1, 10n), we have the five numbers:
10n/21, 10n/22, 10n/5, 10n/23 and 10n−1, or

5n−12n, 5n2n−1, 5n2n−2, 5n2n−3, 5n−12n−1.

(For n = 1, n = 2, we get fewer because we have to discount fractional
divisors such as 102/23 or 101/23.)

Since there are three magic numbers between 1 and 10, four between 10
and 100 (including 1 and 10), and five in all subsequent stretches between
10n−1 and 10n the answer to the first part of the problem is 5(n − 2) + 7,
and if we include 10n itself, we obtain the result.

There are 5n− 2 magic numbers between 1 and 10n inclusive, n ≥ 2.

Bearing the above in mind, it will be seen that the following is a necessary
and sufficient condition:

N is magic if N = 2p5q, where 0 ≤ q − p+ 1 ≤ 4.

I came across this problem in The Mathematical Experience by Philip
J. Davis and Reuben Hersh.
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Japanese clock
Ralph Hancock
Until the end of the Tokugawa shogunate in 1868, Japan used a traditional
timekeeping system in which the length of the hours varied according to
the length of the day. Using modern numbering for the hours, sunrise was
always at 06:00 and sunset always at 18:00, summer or winter. Therefore
the length of hours varied.

The Japanese devised a clock with variable hours, known as a wadokei.
They used various methods of adapting a clock running at a fixed rate to
show the correct hour, such as a set of replaceable dials, or dials in which
the markers could be slid around. In these, the clock had to be manually
reset at frequent intervals.

Some of these clocks, using different methods, can be seen at

http://www.jcwa.or.jp/en/etc/wadokei.html.

Usually the dial revolved rather than the hour hand.

It seems that it might be possible to make a mechanical clock with a
conventional moving hour hand and an elliptical dial that is automatically
slid up and down over the course of a year so that the hour hand is always
approximately right – ‘approximately’ because the rotation of the earth is a
bit wobbly. Here are the data for sunrise and sunset times in Tokyo (which,
as the principal city in the Tokugawa era, was called Edo) in 2018. As you
will see, here modern clock time is about 20 minutes earlier than local sun
time. Tokyo is at 35◦41′22′′N 139◦41′30′′E.

At the spring equinox, 21 March in 2018, sunrise is at 05:44 and sunset
is at 17:53.

At the summer solstice, 21 June in 2018, sunrise is at 04.25 and sunset
is at 19:00.

At the autumn equinox, 23 September in 2018, sunrise is at 05:29 and
sunset is at 17:37.

At the winter solstice, 22 December in 2018, sunrise is at 06:47 and
sunset is at 16:31.

Can you design a clock dial that moves up and down as required and whose
hour hand shows local sun time accurately to the nearest 10 minutes ac-
cording to the traditional convention?

http://www.jcwa.or.jp/en/etc/wadokei.html
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Solution 276.1 – Three dice
The television game-show host throws three dice in a manner
that is invisible to you. He then reveals a die that shows the
largest number. What’s the probability that at least one of the
other dice shows the same number?

Dave Wild
Assume the largest number is N . If at least one of the other dice shows the
same number then either all three dice show the number N or, if possible,
two of them show the number N and the other one a number less than N .
There are 1 + 3(N − 1) = 3N − 2 ways this can occur.

The total number of ways the maximum number on the three dice can
be N can be calculated by calculating the number of ways the values on
the three dice are each N or less, and then subtracting the number of times
the numbers on the three dice are, if possible, less than N . This gives
N3 − (N − 1)3 possibilities.

The table below shows the probability that at least two of the dice have
the largest number revealed by the host.

Largest number 1 2 3 4 5 6

1/1 4/7 7/19 10/37 13/61 16/91
100% 57% 37% 27% 21% 18%

Before the host shows you the largest number the probability of at least two
dice showing the largest number is

1 + 4 + 7 + 10 + 13 + 16

216
=

17

72
,

or approximately 24%.

Words Find the correct one-word answers to the following clues. What have
they in common? Solution in a future issue.

(1) A colour (2) Went higher (3) Neat lines of things (4) A girl’s
name (5) Eggs from many fish (6) Got out of bed (7) Belongs to a girl (8) Pro-
pels a small boat (9) Belongs to a Greek letter (10) Belongs to the eggs of
a fish (11) A flower (12) Many girls with the same name (13) Watering can
nozzle (14) Belongs to a horizontal line of a table (15) Belongs to a small
deer (16) Many Greek letters (17) Many small deer (18) Unspecified belliger-
ent in 15th century civil war (19) Ceiling light fitting (20) Decorative compass
card (21) Shower outlet (22) Belongs to the eggs of many fish (23) Belongs to
many small deer (24) Belongs to all the horizontal sections of a matrix (25) Gar-
den never promised in song
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M500 Mathematics Revision Weekend 2019
The forty-fifth M500 Revision Weekend will be held at

Kents Hill Park Training and Conference Centre,

Milton Keynes, MK7 6BZ

from Friday 10th to Sunday 12th May 2019.

The standard cost, including accommodation (with en suite facilities) and
all meals from dinner on Friday evening to lunch on Sunday is £275 for
single occupancy, or £240 per person for two students sharing in either a
double or twin bedded room. The standard cost for non-residents, including
Saturday and Sunday lunch, is £160.

Members may make a reservation with a £25 deposit, with the balance
payable at the end of February. Non-members must pay in full at the time
of application and all applications received after 28th February 2019 must
be paid in full before the booking is confirmed. Members will be entitled to
a discount of £15 for all applications received before 10th April 2019. The
Late Booking Fee for applications received after 10th April 2019 is £20,
with no membership discount applicable.

There is free on-site parking for those travelling by private transport.
For full details and an application form, see the Society’s web site:

www.m500.org.uk.

The Weekend is open to all Open University students, and is designed
to help with revision and exam preparation. We expect to offer tutorials for
most undergraduate and postgraduate mathematics OU modules, subject
to the availability of tutors and sufficient applications.

Please note that the venue is not the same as last year. It can be very
confusing; so we will state the address a couple more times to make sure we
have got it right.

Kents Hill Park Training and Conference Centre, Milton Keynes
Kents Hill Park Training and Conference Centre, Milton Keynes

M500 Society membership year change
To align with OUSA, and other OU societies, the M500 Society financial
year, and consequently membership year, will change to 1 August – 31 July.
To accommodate the transition, 2018 membership will be extended to 31
July 2019.

www.m500.org.uk
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Problem 285.6 – Two integrals
Show that ∫ 1

0

(
cos(1/x)

x
+ (sinx)(log x)

)
dx = − γ

and that ∫ 1

0

(
2x cos

1

x
− (sinx)(log x)

)
dx = γ + cos 1− sin 1.

Recall that γ = lim
n→∞

(
n∑

k=1

1

k
− log n

)
=

∫ ∞
1

(
1

bxc
− 1

x

)
dx = 0.57721566 . . . .

Front cover Circulant graphs; see page 15.


