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Ramblings round representations – Part 3
Roger Thompson

1 Polynomial selection

If an arbitrary polynomial has a large ‖U1‖, it can be difficult to iden-
tify sufficient prime representations to determine H reliably if this is large.
Instead, we could explore how the coefficients of U1, U2, f constrain one
another, in the hope of deriving polynomials with small ‖U1‖. Using

f = X3 + PX2 +QX +R

as usual,

U1 = AX2 +BX + C, U2 = DX2 + EX + F and U1U2 ≡ 1 mod f,

we get

CD +BE +AF −ADQ− P (BD +AE −ADP ) = 0,

CE +BF −ADR−Q(BD +AE −ADP ) = 0,

CF −R(BD +AE −ADP ) = 1.

Since P = 0 or P = 1, we have three equations with two unknowns, so
we cannot pick arbitrary A, . . . , F . Since Q, R are integers, our choice is
further constrained. We will investigate the two cases D = 0, A = D = 1.

For D = 0, we have

Q =
CE +BF

AE
, R =

CF − 1

AE
, with BE +AF = PAE.

For example, if P = 0 and A = E2, B = −EF , C = F 2, we get Q = 0,
R = (F 3 − 1)/E3, which is an integer if F 3 − 1 = kE3 for some integer k.
The Appendix gives examples of such polynomials.

For A = D = 1, we have, recalling that P = 0 or 1,

Q = C +BE + F + P (1−B − E),

R = P (B2 + E2 + 3BE + 1 + C + F − 2B − 2E)

− (BC +B2E +BE2 + EF )

and

R =
CF − 1

B + E − P
.
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2 Finding representations

Given an arbitrary cubic polynomial

f = X3 + PX2 +QX +R,

the obvious way to start searching for representations up to some maximum
M is to use the parameters µ, and ν (see Part 1, section 2, where we defined
ν using one of two possible roots). For the chosen root, it can be shown
that

∂N

∂b
=

∂N

∂c
= 0 if b = µa, c = νa,

but not for the rejected root. If b = µa+ x, c = νa+ y for small x/a, y/a,
Taylor series expansion gives

N ≈ 1

2

(
∂2N

∂b2
x2 + 2

∂2N

∂b∂c
xy +

∂2N

∂c2
y2
)
,

where the derivatives are evaluated at b = µa, c = νa, i.e.

N ≈ a

2
(k1x

2 + k2xy + k3y
2),

where

k1 = − 6Rµ+ 2PR+ 2Qν,

k2 = 4Qµ+ 6R− 2PQ− 4Pν and

k3 = − 2Pµ+ 2P 2 − 4Q+ 6ν.

For each a > 0, calculate x, y such that k1x
2 + k2xy + k3y

2 ≈ 2M/a,
evaluate integer pairs b, c with x, y within this ellipse. We evaluate N(aX2+
bX+c), using −a, −b, −c in what follows if this is negative. This may reveal
units. Alternatively, if |N(aX2 + bX + c)| is a prime, the corresponding
root can be ascertained by checking if ar2 + br+ c ≡ 0 mod p from a list of
precalculated roots r of f ≡ 0 mod p. Alternatively, it is easy to show that

r ≡ jk−1 mod p, where

j = c(aP − b)− a2R, and k = a(aQ− c)− b(aP − b).

It may be possible to find all representations ≤M using 64 bit arithmetic.
If this is the case, the rate of discovery of new representations suddenly
drops to zero. In other words, there are no significant ‘outliers’.
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If any prime has three distinct roots, and representations for two of these
have been found, then we know the third must exist, so the search is not
complete. If this is so, even after having exhausted the µ, ν method using
64 bit arithmetic, we need another method, described in the remainder of
this section. The search should have accumulated some representations with
large magnitude. These are important for further discoveries, particularly
if we haven’t found any units yet.

Suppose

N(iX2 + jX + k) = n = q
∏
i

pai
i ,

where q and the pi are primes. If we know representations for each root of
f ≡ 0 mod pi, then we can find at least a fractional representation for q.
This is done by calculating the reciprocal for each representation. This is
done as follows. If

ρ(pr) = aX2 + bX + c,

we want to find rationals t, u, v such that

(tX2 + uX + v)(aX2 + bX + c) ≡ 1 mod f.

Multiplying out the left hand side modulo f and equating the coefficients
of X2, X1, X0 with the right hand side gives(aP − b)P − aQ+ c b− aP a

(aP − b)Q− aR c− aQ b
(aP − b)R −aR c

tu
v

 =

0
0
1

 .

(I am grateful to Tony Forbes for pointing this out originally.) The deter-
minant of the above 3×3 matrix is N(aX2 + bX+ c) = p (see the definition
of norm in Part 1, Introduction); so

tX2 + uX + v =
t′X2 + u′X + v′

p
,

where t′, u′, v′ are integers. In other words, division by a polynomial
amounts to multiplication by some other polynomial divided by an integer.

As an example of how all this helps to find representations, we consider
f = X3 + 141, for which

µ = − 5.2048278633942, ν = 27.0902330875646

and
U1 = 3356998050X2 − 17472596988X + 90941859649.
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Suppose we want to find ρ(pr) for p = 83869, r = 20417. This is done
by factorizing the norm of aX + b for small a, b values such that ar + b ≡
0 mod p, i.e. b = kp− ar. For a = −92, k = −1, giving b = −50623, we find
that

N(aX + b) = − 233 × 127133× 83869.

We will suppose we have already found that

ρ(12713331233) = 1781X2 − 9270X + 48248

using the µ, ν method. From the above, we get

1

ρ(12713331233)
=

3212X2 + 12459X − 22166

127133
.

Now
−92X − 50623

ρ(12713331233)
≡ − 23(56X2 + 215X − 398) mod f ;

so
ρ(8386920417) = 56X2 + 215X − 398.

Since 215/56, −398/56 are nowhere near µ, ν, the µ, ν method would only
find this as

(56X2 + 215X − 398)U1 = 50564024X2 − 263177041X + 1369791196.

If we find an integer representation, we can use it in further searches. It is
also worth doing this even if q is composite, since it may be the product of
prime / root combinations without representations. Searches for represen-
tations within a particular list of prime / root combinations may require
multiple iterations, particularly where the units have large magnitude, since
it requires the product of many reciprocal representations of small magni-
tude to find a representation of large magnitude.

For polynomials with units of small magnitude, I have typically searched
for representations for primes less than 1012, and less than a few million for
those with units of very large magnitude. Some with very large H (notably
X3 + 6876X + 573) have required searches up to 4.9× 1013.

3 Notes

The interested reader may like to explore this topic in the context of
quadratics. From the limited work I have done, there are interesting prop-
erties to find.
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4 Appendix

Parameters for some polynomials

The n in the fourth column is the power of 3 described in Part 2, section 3 for
cases whereH is divisible by 3, and is zero unless otherwise specified. H/h =
1 unless otherwise specified. Polynomials are grouped by root pattern.

Polynomial−X3 µ ν H, n,H/h

126 −5.01329793496458 25.1331561847202 27, 2, 3
−126X + 714 −13.3910166632046 53.3193272742243 18, 1, 2
126X + 462 −3.36442079327547 137.319327274224 18, 1, 2
252X − 420 1.64887714168911 254.718795828385 18, 1, 2
−252X + 1596 −18.4043145981692 86.7187958283848 18, 1, 2
756X + 1302 −1.71554365158636 758.943090020498 27, 1, 3
−252X + 4830 −21.7687353914447 221.877840542737 9, 1, 1

Polynomial−X3 U1 U2

126 X2 − 5X + 25 −X − 5
−126X + 714 438977085X2 1065X2 − 13590X − 372959

−5878349460X
+23405962861

126X + 462 480768762662280X2 −742455X2

−1617508421858295X −21414105X
+66018843063245521 −63641969

252X − 420 See below See below
−252X + 1596 236653278X2 507X2 − 10701X − 368675

−4355441379X
+20522287297

756X + 1302 See below See below
−252X + 4830 See below See below

Units for X3 + 252X − 420:

U1 = 22732637313411995945073045301755X2

+ 37483326036394049872298061228915X

+ 5790430002475713510206320598930341,

U2 = 294940994195070X2 + 552909613600485X − 1713564367923239.
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Units for X3 + 756X + 1302:

U1 = 156403476712479288436389515861767991554998805091022389981609
7167752430667418644494740935245171154044112391860033146368X2

−2683169915601287085492375756055025253575356476704590573801433
050197423515286364814388698394422333978632220604785592096X

+1187013379061180714055408899507612715350879724729837943783070
984884483581482369562111474891611293602868866333296388612097,

U2 = 662574615675448570305242909349132988136724063615684376064X2

−34519806480461512361936313011892949674628993623912678848736X

− 61170251600775266850458607249770331318050242679443349053439.

Units for X3 − 252X + 4830:

U1 = 3658104367599407843493041112227448656853402355062668975554
841209590218208715112793914620303079596702495384082670977127572
626229212524864793318034959086580656131176365683172738170548506
0303401456905770X2

− 7963230601255965147963325218122021385203847435815852147296301
638850108197010770161153838456295378253945850474118533522671473
402403926983057602809655959466730583952415420591462995339852168
14453120236530X

+ 8116522975629108512262155029009467050333391167755050694009672
374521320789728445988865599133949170067447537113569253277853315
574658639013778189027548303186762591673432575038446702945134775
812212378553641,

U2 = −223213534699484767598556868694248198054880466122976214252
738963375074934119457407146093130822778470X2

+ 3176600891668783130893259878088396769848544731511149096559585
585594937286287006231348252264827998730X

+ 1749265320582681358893780014909843966934656755319684223776177
59766299474063505786399408550940773267961.

Units for X3 + 1049 (see page 9):

U1 = 38930231244877070269125836499570655168635857474X2

− 395559797744589685039235889819011288393446633356X

+ 4019178632860822489751299693043191088553912845633,

U2 = − 18193360661013659488306X2

− 207758450005866925314776X

− 232686109116432580407767.
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Polynomial−X3 µ ν H, n,H/h

215 −5.99072641489509 35.8888029781218 42, 1, 2
X2 + 502X − 852 2.68209397538128 506.511534117395 63, 1, 3
X2 − 358X + 2588 −21.2808116841991 116.153757622544 21, 1, 1

Polynomial−X3 U1 U2

215 X2 − 6X + 36 X + 6
X2 + 502X − 852 See below See below
X2 − 358X + 2588 See below −31138017063039X2

−364877496598581X
+7328221300240795

Units for X3 +X2 + 502X − 852:

U1 = 1869526657697996858928398438200353581417013270999
5631898920X2

+ 50142461854264969306663487950936167059342502229695602513700X

+ 9469368154639788957435060610631306977228156594866902185142821,

U2 = 6042126649897280457514365480X2

+ 14357506456570038082826643900X
− 41246510798446197319960187219

Units for X3 +X2 − 358X + 2588:

U1 = 2852059528383008466720985389X2

− 60694141735644476558099547069X

+ 331277431184866139470231062007

U2 = − 31138017063039X2 − 364877496598581X + 7328221300240795

Polynomial−X3 µ ν H, n,H/h

1719 −11.9791303926648 143.499564964465 102,1,3
6876X + 573 −0.083333249170746 6876.00694443042 13056,1,384

Polynomial−X3 U1 U2

1719 2300X2 − 27552X + 330049 4X2 + 48X + 1
6876X + 573 144X2 − 12X + 990145 12X + 1
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Polynomial−X3 µ ν H, n,H/h

X2 + 15X + 6 0.593461092033354 14.7587349757241 2
23X + 4 −0.173685239711393 23.0301665624936 2
X2 + 9X + 1 0.887643829446456 8.90026773850791 3, 1
X2 + 5X − 1 1.19128244006093 5.22787141193659 3, 1
X2 + 17X + 11 0.344233492366654 16.7742632049003 3
23X + 1 −0.0434746882925931 23.0018900485221 4
X2 + 10X + 6 0.385442572868276 9.76312340411104 4
X2 + 17X + 12 0.285543813739088 16.7959914558256 5
263 −6.40695857718556 41.0491182097716 5
X2 + 15X + 1 0.933054555759407 14.937536248264 6
X2 + 23X + 1 0.956442843996641 22.9583400698357 6
7X + 14 −1.50906396767636 9.27727405853912 6, 1
11X + 20 −1.50702970575668 13.2711385340331 7
X2 + 16X + 10 0.365804499477742 15.7680084323604 7
X2 + 16X + 15 0.0592239545254933 15.9442835222641 8
X2 + 15X + 14 0.0629801999916619 14.9409863055993 8
X2 + 16X + 30 −0.736274440302871 17.2783744917462 9
X2 + 22X + 21 0.0436402535579122 21.9582642181727 10
X2 + 16X + 6 0.619392086616828 15.7642544703467 11
43 −3.50339806038672 12.2737979695215 12
14X + 21 −1.33141686498496 15.7726708683664 12
1049 −10.1607358881703 103.240553789151 13
267 −6.43927669563891 41.4642843629983 15,1
X2 + 106X + 47 0.555568532794011 105.753087861837 16
X2 + 101X + 28 0.722220519056714 100.79938195909 18, 1
91 −4.49794144527541 20.2314772451263 18, 2, 2
667 −8.73726037221036 76.3397188117975 19
X2 + 25X − 26 1.96651844921074 26.9006763618755 24, 1
514 −8.01040313265657 64.1665583476742 28, -, 2
X2 + 111X + 40 0.638889082560776 110.769290177255 40
217 −6.00924500691737 36.1110255531613 54, 2, 2
614 −8.49942325959926 72.2401957458169 54, 1
813 −9.33319160782525 87.1084655883797 162, 1
2198 −13.0019720874089 169.05127816176 324, 2
4291 −16.2499802761102 264.06185897397 576, 2
8827 −20.666695571702 427.112305853406 1296, 3
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Polynomial−X3 U1 U2

X2 + 15X + 6 204866X2 + 121580X + 3023563 −98X2 + 184X + 91
23X + 4 310393768X2 − 53910816X −1128X2 − 16864X

+ 7148420177 − 2895
X2 + 9X + 1 X2 +X + 9 −X
X2 + 5X − 1 X2 +X + 5 X
X2 + 17X + 11 2844X2 + 979X + 47706 13X2 + 7X − 1
23X + 1 X2 + 23 −X
X2 + 10X + 6 13X2 + 5X + 127 −X2 +X + 1
X2 + 17X + 12 49X2 + 14X + 823 −7X − 5
263 1809605356825147200X2 −241895804X2

− 11594066562231809614X − 865225474X
+ 74282704205351372009 + 4386145681

X2 + 15X + 1 X2 +X + 15 −X
X2 + 23X + 1 X2 +X + 23 −X
7X + 14 4X2 − 6X + 37 −2X − 3
11X + 20 4X2 − 6X + 53 −2X − 3
X2 + 16X + 10 82X2 + 30X + 1293 −2X2 − 6X − 3
X2 + 16X + 15 X2 + 16 X + 1
X2 + 15X + 14 X2 + 15 X + 1
X2 + 16X + 30 273X2 − 201X + 4717 −3X2 − 15X − 17
X2 + 22X + 21 X2 + 22 X + 1
X2 + 16X + 6 21X2 + 13X + 331 X2 + 3X + 1
43 4X2 − 14X + 49 −2X − 7
14X + 21 9X2 − 12X + 142 3X + 4
1049 See page 6 See page 6
267 37741839630X2 −19230X2

− 243030148380X + 100080X
+ 1564938370801 + 1441801

X2 + 106X + 47 81X2 + 45X + 8566 9X + 4
X2 + 101X + 28 324X2 + 234X + 32659 −18X − 5
91 4X2 − 18X + 81 2X + 9
667 48310693141008X2 297456X2

− 422103104734944X + 7875552X
+ 3688024729987585 + 46103041

X2 + 25X − 26 X2 + 2X + 27 −X + 1
514 9228X2 − 73920X + 592129 −12X2 − 96X + 1
X2 + 111X + 40 1296X2 + 828X + 143557 36X + 13
217 X2 − 6X + 36 −X − 6
614 4X2 − 34X + 289 2X + 17
813 9X2 − 84X + 784 3X + 28
2198 X2 − 13X + 169 −X − 13
4291 16X2 − 260X + 4225 4X + 65
8827 9X2 − 186X + 3844 −3X − 62
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Solution 281.4 – Pythagorean triple generator
Suppose x2 + y2 = z2, where x, y and z are integers. Let X

Y
Z

 =

 1 2 2
2 1 2
2 2 3

 x
y
z

 . (1)

Show that X, Y and Z are also integers and that they too satisfy
X2+Y 2 = Z2. For example, if you start with the vector (1, 0, 1)
and then repeatedly multiply by the matrix, you get

(3, 4, 5), (21, 20, 29), (119, 120, 169), (697, 696, 985), . . . .

Thus (1) preserves Pythagorean tripleness. Can you find other
3× 3 matrices that have the same property?

Tommy Moorhouse
Matrix description of Pythagorean triples We take a column vector
V defined as

V =

xy
z

 ,

where x2 + y2 = z2. It is easy to see that this condition is equivalent to
vTBv = 0, where T denotes the transpose (and so is a row vector) and

B =

1 0 0
0 1 0
0 0 −1

 .

We will call vectors with integer components satisfying x2 + y2 = z2

‘Pythagorean vectors’.

Now, suppose that there is a 3× 3 matrix W with integer components
and transpose WT such that WTBW = B. Then if v1 = Wv,

vT1 Bv1 = vTWTBWv = vTBv = 0

so that v1 satisfies the same equation as v and is Pythagorean.

Checking the condition Given a matrix W it is easier to check (we
assume that W is invertible) that

BWTB = W−1
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using the fact that B2 = 1 (the unit matrix). In components

B

a11 a21 a31
a12 a22 a32
a13 a23 a33

B =

 a11 a21 −a31
a12 a22 −a32
−a13 −a23 a33

 .

To find W−1 we write Uik for the cofactor of the element aij (that is, the
determinant of the 2× 2 matrix form by deleting row i and column j from
W ) and D = detW . In terms of these quantities we have

W−1 =
1

D

 U11 −U21 U31

−U12 U22 −U32

U13 −U23 U33

 .

Now from BWTB = W−1 we have a series of equations linking Uij and aij :

U11 = Da11,

U21 = −Da21,
· · · ,

U33 = Da33.

We can substitute the expressions for Uij into the equation W−1W = 1,
and we find nine second degree equations for the aij . For example,

a211 + a212 − a213 = 1

and
a11a21 + a21a22 − a31a23 = 0.

Sample solutions In general we see that there are nine equations in nine
unknowns, but it turns out that this system is degenerate. We will not try
to find a general solution, but in order to see what kind of solutions are
possible we assume that W is symmetric and make some choices for the
components of W . Choosing a11 = 1 gives a12 = ±a13. We choose the
positive sign and work through the rest of the equations to find the result
in terms of a single parameter w (writing w for a12):

W =

1 w w
w (w2 − 2)/2 w2/2
w w2/2 1 + w2/2

 .
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Setting w = 2 gives the example in M500 281, while any even w gives a
distinct generating matrix, such as

W =

1 6 6
6 17 18
6 18 19

 and

 1 100 100
100 4999 5000
100 5000 5001

 .

All these matrices have determinant D = −1.

Conclusion We have found a family of transformations that send
Pythagorean triples to distinct Pythagorean triples. Each member of the
family generates a sequence of Pythagorean vectors. If W1v = W2v we
see that W1 = W2 so that different W s give different triples starting from
the same seed. No attempt has been made to find the general solution to
WTB = BW−1or to find relationships, if any, between the sequences of
vectors, and further investigation is possible.

Stuart Walmsley
Integer triples X Y Z and x y z are related by the equations

X = x+ 2y + 2z,

Y = 2x+ y + 2z, (1)

Z = 2x+ 2y + 3z.

If (x, y, z) is a Pythagorean triple, show that (X,Y, Z) is also a Pythagorean
triple. It is noted that if (x, y, z) is replaced by (kx, ky, kz) then (X,Y, Z)
becomes (kX, kY, kZ), so that attention may be confined to primitive
Pythagorean triples, that is to say those triples in which x, y and z are
mutually co-prime. Furthermore in such a triple {x, y} is an odd–even pair
of integers and the convention that x is odd and y is even is adhered to as
in the familiar example (3, 4, 5).

It is also noticed that

X − Y = − x+ y,

Z −X = x+ z,

Z − Y = y + z

so that the magnitude of the difference between x and y is conserved but
the sign is reversed. In this way, in any series of triples, generated using the
basic equations, the ratios Z/X and Z/Y are progressively better rational
approximations to

√
2.
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In number theory, the continued fraction of
√

2 provides a sequence of
such rational approximations:

t

v

1

1

3

2

7

5

17

12

. . .

. . . ,
(2)

each successive doublet (T, V ) being generated from its predecessor by

T = t+ 2v, V = t+ v. (3)

Since t/v ≈
√

2, t2 − 2v2 ≈ 0. Then successively

t2 − 2v2 = − 1, + 1, − 1, + 1, . . . ,

suggesting
t2 − 2v2 = x− y.

It is noted that t is always odd and that v is alternately odd and even. An
examination of typical primitive Pythagorean triples suggests that z − y is
always the square of an odd prime and that z − x is twice the square of an
integer. In turn, this suggests z− y = t2, z−x = 2v2. Combining this with
the basic relation x2 + y2 = z2. leads to

x = t2 + 2tv, y = 2v2 + 2tv, z = t2 + 2v2 + 2tv.

Let (X,Y, Z) be the triple generated by the recurrence relations (3). Then

X = (t+ 2v)2 + 2(t+ 2v)(t+ v),

Y = 2(t+ v)2 + 2(t+ 2v)(t+ v),

Z = (t+ 2v)2 + 2(t+ v)2 + 2(t+ 2v)(t+ v),

which when rearranged give

X = x+ 2y + 2z, Y = 2x+ y + 2z, Z = 2x+ 2y + 3z;

that is, the Pythagorean triple generator (1).

The set of (t, v) values (2) generate the primitive Pythagorean triples
mentioned in the full version of the question:

(3, 4, 5), (21, 20, 29), (119, 120, 169), . . . .

The convergence to
√

2 depends on the recurrence relations and not on the
initial values chosen. For example with t = 1, v = 2,

t

v

1

2

5

3

11

8

27

19

. . .

. . . ,
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the value of x− y now alternating between +7 and −7. This gives triplets

(5, 12, 13), (55, 48, 73), (297, 304, 425), . . .

Another example is t = 3, v = 1,

t

v

3

1

5

4

13

9

31

22

. . .

. . . ,

the value of x− y also alternates between +7 and −7. This gives triplets

(15, 8, 17), (65, 72, 97), (403, 396, 565), . . . .

Are the two series connected?

The transformation (1) may be inverted giving:

x = X + 2Y − 2Z,

y = 2X + Y − 2Z, (4)

z = − 2X − 2Y + 3Z,

with corresponding equations for t and v:

t = − T + 2V, v = T − V. (5)

Applying this to (a, b, c) = (119, 120, 169), that is, T = 7, V = 5,

T

V

7

5

3

2

1

1

1

0

−1

1

3

−2

−7

5

. . .

. . . .

The same Pythagorean triples are generated in reverse order. However,
starting with T = 11, V = 8,

T

V

11

8

5

3

1

2

3

−1

−5

4

13

−9

. . .

. . . .

In this way, the two series corresponding to x− y = ±7 are connected.

More detailed examination (which could form the basis of a more ex-
tended communication) shows that in general there are pairs of series with
the same value of x − y which may be run into one another by reversing
the direction of generation. This suggests that, starting with any primitive
Pythagorean triple, new triples may be generated using both (3) and its in-
verse (5) so that all related triples are found. The triplet (3, 4, 5) is special
because its series passes through (1, 0, 1), the two halves being symmetry
related.
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Ted Gore
It can be shown that (x, y, z) is a Pythagorean triple if for some integers m
and n,

x = m2 − n2, y = 2mn, z = m2 + n2.

Using the matrix shown we get

X = 3m2 + n2 + 4mn = (2m+ n)2 −m2,

which has the form M2 −N2 when M = 2m+ n and N = m,

Y = 4m2 + 2mn = 2(2m+ n)m = 2MN,

Z = 5m2 + n2 + 4mn = (2m+ n)2 +m2 = M2 +N2.

Thus (X,Y, Z) is also a Pythagorean triple.

If we use the matrix

−1 2 2
−2 1 2
−2 2 3

, we get

X = 3n2 +m2 + 4mn = (2n+m)2 − n2,
Y = 4m2 + 2mn = 2(2n+m)n,

Z = 5n2 +m2 + 4mn = (2n+m)2 + n2.

Starting with (3,4,5) we get

(15, 8, 17), (35, 12, 37), (63, 16, 65), (99, 20, 101), (143, 24, 145).

Using the matrix

1 −2 2
2 −1 2
2 −2 3

, we get

X = 3m2 + n2 − 4mn = (2m− n)2 −m2,

Y = 4m2 − 2mn = 2m(2m− n),

Z = 5m2 + n2 − 4mn = (2m− n)2 +m2.

Starting with (1,0,1) we get

(3, 4, 5), (5, 12, 13), (7, 24, 25), (9, 40, 41), (11, 60, 61).
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Clock time and GPS
Sebastian Hayes
Thanks to celebrity physicists such as Brian Cox, a fair section of the general
public now knows that corrections based on the Theory of Relativity are
factored into the data received from GPS satellites and that, if this were
not done, serious errors would very rapidly wreck the accuracy of Sat Nav
and other systems that depend on the GPS. So Relativity must be true!

However, a fair proportion of the public has also heard of the Twins’
Paradox, i.e. how the airborne twin, Jack the Nimble, making a round trip
to Andromeda and back by rocket, ages less than his earthbound brother
because, for him, ‘time slows down’. Now, the GPS satellites orbiting the
Earth are certainly moving at a much greater speed than someone stuck to
the surface of the Earth, and so, according to Einstein’s Theory of Special
Relativity, satellite clock time should lag behind earthbound clock time.
Thus, the ‘correction’ introduced for us earthbound inhabitants should be
an increase—because, from our point of view, the satellite clocks always run
slow. But, as it happens, the corrections actually made are the reverse of
this. So what’s going on?

It was not Einstein but the French physicist Langevin who invented the
Twins’ Paradox; nonetheless, the idea underpinning it goes right back to
Einstein’s 1905 paper in which the author mentions a ‘peculiar consequence’
(his words) of the theory.

If at the points A and B of K there are stationary clocks which,
viewed in the stationary system, are synchronous; and if the clock
at A is moved with the velocity v along the line AB to B, then on
its arrival at B the two clocks no longer synchronize, but the clock
moved from A to B lags behind the other which has remained at
B by tv2/(2c2) (up to magnitudes of fourth or higher order), t
being the time occupied in the journey from A to B.

Einstein is here speaking only of constant straight line motion but he imme-
diately goes on to argue that the same principle can be generalized to cover
cases of ‘motion in a closed curve with constant speed’, hence Langevin’s
idea of a round astronaut trip from and back to the Earth. This feature of
SR is known as ‘The Clock Hypothesis’ or ‘The Clock Paradox’.

What about accelerated motion generally? Einstein’s SR treatment as-
sumes that a ‘clock’ inside what, for us earthbound creatures, is an acceler-
ated reference frame such as a rocket does not participate in the acceleration
but goes at the same rate as a clock at rest on the Earth. However, ‘rocket
clock’ intervals, viewed from the Earth, are not the same as ‘earth-clock’
intervals. Let ∆t′ be a ‘proper’ time interval measured by a clock at rest in
a frame Σ′, and let ∆t be the same interval measured in a different frame
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Σ, one relative to which the first frame is in motion. We make the rocket
frame Σ′ and the Earth frame Σ. According to the Clock Hypothesis,

∆t

∆t′
= γ =

1√
1− v2/c2

, or ∆t′ = ∆t
√

1− v2/c2.

If the rocket’s speed varies, we simply assume that the rocket in Σ′ has, at
every moment, an instantaneous constant velocity of v1, v2, . . . relative to
the Earth and end up with an integral, where∫

dt′ =
√

1− v2/c2
∫
dt.

Thus, according to the Clock Hypothesis, whether the rocket’s speed and/or
acceleration is constant or not,

T ′R =
√

1− v2/c2 TE.

The rocket clock thus always ‘runs slow’ viewed from the Earth since√
1− v2/c2 < 1. There is, as it were, ‘less ticking’ going on inside the

rocket (as we on Earth view things), also fewer heartbeats and muscle con-
tractions if the ‘rocket clock’ is a human astronaut.

If we expand the term
√

1− v2/c2, we obtain 1 − v2/(2c2) + . . . and
we can safely neglect higher order terms if c2 is very much greater than v2.
So T ′R ≈ TE(1− v2/(2c2)), i.e. a clock in the rocket/satellite system always
‘runs slow’ by a factor of v2/(2c2) (to second order) compared with a clock
at rest in the Earth system, whether the rocket has constant or non-constant
velocity relative to the Earth.

So much for Special Relativity considerations. General Relativity, as it
happens, usually works in the opposite direction. But, before we leave SR,
we can derive the Relativistic version of the Doppler effect since it plays a
key role in the eventual argument.

Assume a source of light at rest at the origin O′ of a frame Σ′ that emits
light signals with frequency ν′ measured in Σ′. (We can view the signals as
successive crests of a continuous light wavefront.) At a moment in time the
two origins of Σ′ and Σ coincide and from then on Σ′ recedes with uniform
velocity v relative to Σ. We want to know ν, the observed frequency of the
light emitted from Σ′ but received at Σ. (Beware the annoying similarity
of sign, ν for frequency, and v for velocity.)

We assume that light travels in a vacuum from O′ to O with speed c.
If identical clocks in the two frames are set at zero when the two origins
coincide, a light ray emitted at time t′ at O′ reaches O in Σ at a later time
because we must add on the time taken for the light to traverse the ever
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increasing distance between the two frames. This ‘extra’ time is given by
x/c, where x is the distance between the two frames when the light ray
finally reaches O.

The Doppler effect was originally formulated using the Galilean trans-
formations but SR, as we know, uses the so-called Lorentz transformations
where, y = y′, z = z′ but x = γ(x′ + vt′) and t = γ(t′ + vx′/c2). If we
assume that light is emitted from the origin O′ of Σ′, x′ = 0 always and we
obtain x = γvt′, t = γt′.

If T is the time when a light ray reaches O in Σ, we have

T = t+ x/c = γt′ + γvt′/c = γt′(1 + v/c).

If ν′ is the frequency of light flashes as measured in O′, the period is 1/ν′.
The next flash will thus occur at time t′ + 1/ν′. This flash of light reaches
O at a time

T + ∆T = γt′(1 + v/c) + γ(1/ν′)(1 + v/c) = γ(t′ + 1/ν′)(1 + v/c).

If ∆T is one period in O, i.e. 1/ν, 1/ν = γ(1/ν′)(1 + v/c). Thus

ν

ν′
=

1/γ

1 + v/c
=

√
1− v2/c2
1 + v/c

=

√
1− v/c√
1 + v/c

.

So,
ν

ν′
= ν′

√
1− v/c√
1 + v/c

.

Expanding the binomials, we obtain√
1− v/c√
1 + v/c

=
√

1− v/c
(

1− v

2c
+ . . .

)
= 1− v

c

to first order. Thus ν ≈ ν′(1− v/c); i.e. ν < ν′.

Why is this relevant? Because Einstein’s General Theory of Relativity
(GR) postulates that it is impossible to distinguish between the effects of
being accelerated in a gravitation free region and the effects of being at
rest in a strong gravitational field. This is the ‘Principle of Equivalence’
on which much of GR is based. Although Einstein always seems to have in
mind an old-fashioned pendulum clock, any regular repeating sequence of
events can function as a clock—and this includes light pulses or successive
crests of electromagnetic waves.

Suppose, then, we have a rocket not subject to any gravitational field
that has a constant acceleration in a direction we call ‘up’. Light pulses are
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emitted at the ‘bottom’ and ‘top’ of the rocket from two identical sources
and received at the other end. Rays emitted from the bottom of the rocket
have to travel the length of the accelerating rocket in the direction of motion,
while pulses emitted from the top and received at the base move contrary
to the direction of motion. There will thus be a discrepancy between the
emitted frequency and the received frequency of the light signals: signals
from the bottom received at the top will be shifted towards the red and
those from the top received at the base will be shifted towards the blue end.

If the Principle of Equivalence is correct, exactly the same results would
obtain if we are considering the two extremities of a system at rest within
a powerful gravitational field. In such a case, we ought to observe a similar
discrepancy between the frequencies of light pulses emitted from a spot
higher up in the system and then received at the base and the frequencies
of light waves emitted alongside one at the bottom of the system. That this
is actually the case was demonstrated by Pound and Rebka in a remarkable
experiment carried out at Harvard using the Mössbauer effect. For a vertical
earthbound system (in this case a lab building at Harvard) with g considered
constant the predicted discrepancy in the frequency was ν0gh/c

2 and this
was confirmed within limits of experimental error. Note that, if we consider
the light signals as clocks, the clock higher up will appear to run fast (not
slow) compared to the clock at the bottom because the frequencies of light
received at the bottom will be blue-shifted.

The question thus is: Does the ‘slowing down’ of a satellite ‘clock’ due
to the Clock Hypothesis, a strictly SR phenomenon, dominate the ‘speeding
up’ of a satellite ‘clock’ due to the Principle of Equivalence of GR, or vice-
versa? Rosser discusses the issue at length in his excellent book Introductory
Relativity that I cannot recommend too enthusiastically. I more or less follow
his treatment.

When applying the Principle of Equivalence to an Earth/satellite sys-
tem, we can, of course, no longer assume that g, the average acceleration
due to gravity on the surface of the Earth, is constant. We have to replace
gh with ∆Φ, the difference in gravitational potential between the satellite
clock and the earthbound one. By convention, we regard the higher po-
sition occupied by the satellite as having a greater gravitational potential
(less negative) than the lower earthbound one.

We now apply the traditional Newtonian F = ma equation with v2/r
for the centripetal acceleration. Assuming a strictly circular orbit for the
satellite and with m = mass of the satellite, M = mass of the Earth, G =
gravitational constant, r0 = radius of the Earth, r = radius of the satellite’s
orbit, we have

mv2

r
=

mGM

r2
, v2 =

GM

r
=

GM(r0/r)

r0
.
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Since g, the average acceleration at the Earth’s surface, is GM/r20, we obtain
for low heights v2 = gr0(r0/r).

We now derive an alternative value for v using the analogy between
accelerated motion without a gravitational field and conditions of rest within
a gravitational field—in this case the gravitational field of the Earth. If,
within our accelerating rocket, a light pulse is emitted from the bottom and
received at the top, h being the height of the rocket, light reaches the top
having traversed a distance ct. If the acceleration is constant this distance
is h+ at2/2.

Thus ct = h+at2/2 and t = h/c+(a/c)t2/2. If a/c is extremely small we
can reject the second term and write t ≈ h/c. (This is the most questionable
assumption in the argument.) After time t the top of the rocket (with clock 2
at rest inside it) is thus moving with a velocity v = at ≈ ah/c and we can use
this value of v in the Doppler frequency equation already derived, namely
ν = ν′(1− v/c). The discrepancy in the frequency ∆ν/ν′ = −ah/c2. And,
if we make the acceleration a equal to g, the acceleration due to gravity
at the Earth’s surface, we have ∆ν/ν′ = −gh/c2. Remember that ν′ is
the ‘proper’ frequency; i.e. it is the frequency of light pulses measured in a
frame where the light source is at rest—whether this frame be the rocket
itself or the Earth.

According to the Principle of Equivalence, exactly the same discrepancy
will be observed in a stationary system within a gravitational field. Let the
orbiting satellite and a laboratory on the Earth be this system and the field
be that of the Earth. Our earthbound clock corresponds to the lower one in
the rocket and, since it is at rest, it keeps ‘proper time’. The satellite clock,
on the other hand, corresponds to the clock at the top of the accelerating
rocket and, if the Principle of Equivalence holds, the satellite light clock
runs fast when viewed from the Earth. The discrepancy is thus positive
and applies to any sort of ‘clock’. However, we must now replace gh in
gh/c2 by ∆Φ, the difference in gravitational potential between the clock in
the satellite and the earthbound clock. Thus ∆ν/νEarth = ∆Φ/c2.

We now determine ∆Φ. If r is the radius of the satellite’s orbit and r0
is the radius of the Earth, we have

∆Φ =

∫ r

r0

GM

x2
dx =

GM

r0

(
1− r0

r

)
= gr0

(
1− r0

r

)
since g = GM/r20. Inserting this value into ∆ν/νEarth = ∆Φ/c2 we have

∆ν

νEarth
=

gr0(1− r0/r)
c2

and, since the frequency of light flashes is a perfectly valid means of com-
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paring time generally

∆T

TEarth
=

gr0(1− r0/r)
c2

. (i)

This is the strictly GR component of the total discrepancy since it is based
on the Principle of Equivalence, which does not come into SR.

Returning to the SR component of the total discrepancy, we had

T ′R ≈ TL

(
1− v2

2c2

)
, or Tsatellite ≈ TEarth

(
1− v2

2c2

)
;

i.e. ∆T/TEarth = −v2/(2c2).

Using v2 = gr0(r0/r), a result obtained without using any GR assump-
tions, we have

∆T

TEarth
= − gr0(r0/r)

2c2
. (ii)

Adding (i) and (ii), we obtain

∆T

TEarth
=

gr0
c2

(
1− 3r0

2r

)
.

Now, r, the radius of the satellite’s orbit, is equal to r0 + (r − r0); i.e. r
is equal to the radius of the Earth + height of satellite above sea level.
Thus ∆T is positive if 3r0/(2r) < 1, or r > 3r0/2; i.e. if the altitude of the
satellite is greater than r0/2. This means the satellite needs to be about
3,200 km above sea level. In such a case the GR contribution predominates
and a clock in a satellite runs fast compared with a clock on the surface of
the Earth. Alternatively, if the altitude of the satellite is lower than 3,200
km, the SR component predominates and the clock on the satellite ‘runs
slow’ compared with an earthbound clock.

According to Wikipedia, the 24 GPS satellites, carrying atomic clocks,
orbit the Earth at a height of 20,000 km and so the GR component easily
wins. Incidentally, the satellites do not follow geosynchronous or geostation-
ary orbits but have an orbital speed of 14,000 km/hour and an orbital period
of 12 hours. The atomic clocks advance by 45 microseconds per day because
of GR gravitational effects and lose 7 microseconds per day because of SR
considerations, so that, all in all, satellite time is 38 microseconds ahead of
Earth time. Incredibly, if the appropriate corrections were not made, the
accumulated ‘errors’ would put the GPS system out by about 10 kilometres
a day!
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Solution 180.6 – Two pedestrians

Two pedestrians, P1 and P2, are travelling at right angles to
each other, but are obscured by the corner of a building. Each
is travelling parallel to the wall nearest to them. Pedestrian
Pi is travelling at a constant speed of Vi and the perpendicular
distance between Pi and the building is Li, i = 1, 2. If the time
they meet occurs at zero, find the time before impact at which
they can both see each other across the corner of the building.

Peter Fletcher
Let T be the time before zero at which the two pedestrians see each other.
Then the further distance that P1 has to walk before bumping into P2 is
V1T and similarly, the further distance that P2 has to walk before bumping
into P1 is V2T .

The wall parallel to P1’s path is a constant L1 from P1 and the wall
parallel to P2’s path is a constant L2 from P2 (until each pedestrian passes
the corner of the building).

This means that the distance from where P1 first sees P2 to the corner
of the building is V1T − L2. Then by similar triangles, we have

V1T

V2T
=

V1T − L2

L1
,

which gives

T =
V1L1 + V2L2

V1V2
.

Problem 286.1 – Sum to powers
Given n, a positive integer, show that it is possible to find distinct positive
integers a, b and c such that a+ b, a+ c and b+ c are distinct n-th powers
of positive integers.

If this problem looks familiar, it might be because the solution of the
n = 3 case by providing an actual example could have earned you a £25
discount for the 2019 M500 Winter Weekend.

Problem 286.2 – 7777
Show that for positive integer n, 7777n2 + 1 is never an integer square. Or
find a counter-example.
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Solution 173.1 – Binomial coefficients squared
Show that

n∑
r=0

(−1)r
(
n

r

)2

=

0 if n is odd,

(−1)n/2
(
n

n/2

)
if n is even.

Reinhardt Messerschmidt
The identity clearly holds if n = 0, so suppose n ≥ 1 and let

N =
{

1, 2, . . . , n
}
,

P =
{

(A,B) : A,B ⊆ N, |A|+ |B| = n
}
,

Pr =
{

(A,B) ∈ P : |A| = r
}
,

P ′ =
{

(A,B) ∈ P : A 6= B
}
, P ′′ =

{
(A,B) ∈ P : A = B

}
.

We have (
n

r

)2

=

(
n

r

)(
n

n− r

)
= |Pr| =

∑
(A,B)∈Pr

1;

therefore
n∑

r=0

(−1)r
(
n

r

)2

=

n∑
r=0

(−1)r
∑

(A,B)∈Pr

1

=
∑

(A,B)∈P

(−1)|A| = (first sum) + (second sum),

where the first sum is over (A,B) ∈ P ′ and the second is over (A,B) ∈ P ′′.
First sum. Let f be the function from P ′ into P ′ defined as follows:

given (A,B) ∈ P ′, let m be the smallest element in (A−B)∪ (B−A), and
let f(A,B) be the element of P ′ obtained from (A,B) by moving m from A
to B if m ∈ A−B, or from B to A if m ∈ B−A. Since f(f(A,B)) = (A,B),
it follows that for every (A,B) ∈ P ′ there exists a unique (A′, B′) ∈ P ′ such
that (A,B) = f(A′, B′) and (A′, B′) = f(A,B). Furthermore, |A| = |A′|±1.
This implies that the terms in the first sum can be paired up in such a way
that the sum of each pair is zero; therefore the first sum is zero.

Second sum. If n is odd, then P ′′ is empty and the second sum is zero.
If n is even and (A,B) ∈ P ′′, then |A| = n/2 and

(second sum) = (−1)n/2
∑

(A,B)∈P′′

1 = (−1)n/2
(
n

n/2

)
.



Page 24 M500 286

Solution 243.4 – Triangle

Here’s something that
you can easily do on
the train to work.
Given that AE = AF
and BD = BF , show
that β + 2α = π.

Peter Fletcher

r r

r
rr

r
A F B

C

D

E

α

β

We know that triangles AEF and BDF are both isosceles because AE =
AF and BD = BF , so let

AÊF = AF̂E = γ and BF̂D = BD̂F = δ.

Then since AB is a straight line, we have at F , γ + α + δ = π so that
γ + δ = π − α. Adding up the angles of triangle ABC, we get

(π − 2γ) + (π − 2δ) + β = π or 2(γ + δ) = π + β.

Therefore 2(π − α) = π + β and β + 2α = π.

Problem 286.3 – Tritium oxide
Imagine you are foolish enough to take a bath in pure tritium oxide, T2O.
Would you be able to get out of the bath and survive? Whilst idly brows-
ing online I (TF) was surprised to find several and diverse answers to this
interesting question.

(i) No. The radioactivity of the tritium would kill you, if not whilst in
the bath, soon after you got out.

(ii) No. The T2O would be boiling, heated by the decay of the tritium.
You would be cooked.

(iii) No. You would suffer irreversible chemical damage. Radiolysis cre-
ates amongst other things high concentrations of T+ and OT− ions.

(iv) Yes. Get out quickly and wash yourself thoroughly with natural
H2O. There should be no permanent ill-effects.

Which is correct? Please provide a theoretical solution. Do not perform
any experiments. For definiteness, assume the bath capacity is 2 m3, say 2 m
long, 1 m wide and 1 m deep. Recall that tritium, hydrogen-3, is radioactive
with half-life 12.3 years. A tritium nucleus beta-decays to helium-3 releasing
18.6 keV of which on average 5.7 keV is the kinetic energy of the electron.
The rest of the energy is carried off by an electron antineutrino. As the
He-3 nucleus is created in its ground state there is no gamma radiation.
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M500 Mathematics Revision Weekend 2019
The forty-fifth M500 Revision Weekend will be held at

Kents Hill Park Training and Conference Centre,

Milton Keynes, MK7 6BZ

from Friday 10th to Sunday 12th May 2019.

The standard cost, including accommodation (with en suite facilities) and
all meals from dinner on Friday evening to lunch on Sunday is £275 for
single occupancy, or £240 per person for two students sharing in either a
double or twin bedded room. The standard cost for non-residents, including
Saturday and Sunday lunch, is £160.

Members may make a reservation with a £25 deposit, with the balance
payable at the end of February. Non-members must pay in full at the time
of application and all applications received after 28th February 2019 must
be paid in full before the booking is confirmed. Members will be entitled to
a discount of £15 for all applications received before 10th April 2019. The
Late Booking Fee for applications received after 10th April 2019 is £20,
with no membership discount applicable.

There is free on-site parking for those travelling by private transport.
For full details and an application form, see the Society’s web site:

m500.org.uk.

The Weekend is open to all Open University students, and is designed
to help with revision and exam preparation. We expect to offer tutorials for
most undergraduate and postgraduate mathematics OU modules, subject
to the availability of tutors and sufficient applications.

Please note that the venue is not the same as last year.

Problem 286.4 – Evaporation
A solution of sodium chloride contains 90 per cent water. After a while, due
to loss by evaporation, the solution contains only 80 per cent water. What
percentage of the water has evaporated?

Answers to the quiz on page 24 of M500 285: (1) rose (2) rose (3) rows
(4) Rose (5) roes (6) rose (7) Ro’s (Rosemary’s) (8) rows (9) rho’s (10) roe’s
(11) rose (12) Ros (13) rose (14) row’s (15) roe’s (16) rhos (17) roes (18) Rose
(19) rose (20) rose (21) rose (22) roes’ (23) roes’ (24) rows’ (in a stochastic
matrix the rows’ sums are always 1) (25) rose
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Problem 286.5 – Factorization
Given a positive integer n, denote by φ(n) the number of positive integers
m < n such that gcd(m,n) = 1. If we know the complete factorization of
n, say n = pa1

1 p
a2
2 . . . par

r with positive integers a1, a2, . . . , ar and distinct
primes p1, p2, . . . , pr, we can easily compute

φ(n) = (p1 − 1)pa1−1
1 (p2 − 1)pa2−1

2 . . . (pr − 1)par−1
r .

Is this process reversible? Given n and φ(n), is it possible to construct
the complete factorization of n without too much difficulty? If it is, try
factorizing

n = 1586 02481 31293 11974 04552 75968 73607 71145 55549 11334 22976
68001 07012 76942 47700 99421 02756 52867 12646 06754 07200 60245 86133
22978 29252 68997 66323 73467 11294 88572 28050 70734 96620 00789 92252
73781

given that

φ(n) = 1586 02481 31293 11974 04552 75968 61357 52500 38117 66204 95814
65893 63834 77320 84117 64608 84450 72128 92453 11845 67688 17202 39729
99520 14675 73124 90380 04713 14884 75595 39954 75897 02033 54901 63971
74000.


