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‘AMUSEMENTS IN MATHEMATICS’   TONY BROOKES 

I recently purchased a book which I believe will be of interest to many M500 readers. It is 

Amusements in Mathematics by H E Dudeney, Dover Books, $2.75. Dudeney lived from 1847 

to 1930 and was one of the greatest of English puzzelists. The book was originally published 

in 1917 and the Dover edition is a reproduction of the original edition complete with a 

number of charming Edwardian illustrations. 

Dudeney’s book contains over four hundred mathematical puzzles on a wide range of topics 

(arithmetic, algebra, geometry, chess games, mazes, paradoxes, etc.) and with widely varying 

difficulty. Fortunately, to prevent the reader losing sleep over apparently unsolvable problems 

the book also contains solutions to each one. Unfortunately the method of solution is often not 

given so you are left wondering how he obtained the answer. 

With such a large variety of puzzles and problems in the book I can guarantee that anyone 

with even a passing interest in mathematics will find plenty to interest them. 

Problem 129 has a rather involved setting about determining the number of men in King 

Harold’s army at the battle of Hastings. Basically the problem involves finding an integer 

solution to the equation km2 + 1 = n2 for k = 61. The problem by way of illustration does give 

the solutions for k = 60 (when m = 4 and n = 31) and k = 62 (8,63). The number of men in 

Harold’s army is supposed to have been n2. These relatively simple solutions are supposed to 

lead the reader to think that the solution for k = 61 is not so hard to find, but therein lies the 

trap. k = 61 has been chosen for the problem because it is the most difficult value of k for 1  
k  l00. The actual values of m and n for this k are very large. I won’t spoil anyone’s fun by 

giving the answer now; however to save a lot of wasted time I suggest you start with n > 109. 

With the use of an HP29 calculator a friend and I have established solutions (where this is 

possible) for most values of k under 100. The only values of k for which there is obviously no 

solution are when k is a perfect square. Other values of k yield fairly simple solutions. Some 

examples are 

  k m n 

  p2–1 1 p 

  p2+1 2p 2p2+1 

  p22 p p21 
  p(9p+2) 3 9p+1 
  p(4p+1) 4 8p+1. 

There are values of k for which the HP29 found solutions but we have not been able to find a 

simple relationship for k,m,n. It is here we would like M500 readers to help. Some typical 

(i.e. the worst!) examples are given below 

   k m n k m n 

  29 1820 9801 58 2574 19603 

  46 3588 24335 67 5967 48842 

  53 9100 66429 86 1122 10405. 
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Finally we have values of k which defeated the computer. This is where we would really like 

some help; perhaps some reader knows a technique for any k, or has access to a bigger 

number-cruncher than we have. The values of k in question are: 

 61 - for which I have a solution, 73, 76, 85, 89, 94 and 97. 

___________________________________________________________________________ 

 

MATHEMATICS - ART OR SCIENCE? BRIAN WOODGATE 

Perhaps the answer depends on the person rather than on the subject. i.e., as an individual 

progresses then it changes for him or her. 

Firstly, for people at say A-level or HNC or for some doing degrees it is a technology. 

Mathematics is seen as a tool that is necessary to carry out some task. We are taught to use a 

tool and we become craftsmen in its use. We then use this skilled craft to pass exams or in our 

jobs or perhaps we teach the craft to others: i.e. the next generation of apprentices. Let us not 

despise the above despite its lack of ‘202’ purity; it is skilled mathematics. 

Secondly, I suggest that for most people at university level it is a science. Laws (or theorems) 

are proposed, investigated and tested. If a flaw is found then it may lead to new laws or even 

to a new branch of the subject; e.g. non-Euclidean geometry. Eventually this pure science is 

used by the first group in industry; e.g., matrix theory. 

Finally, for the fortunate few, mathematics becomes an Art. To support this argument I can 

only suggest the reading of A Mathematician’s Apology by G H Hardy, one man who did 

reach the top. He made it clear that he considered his subject akin to the Arts, in fact almost a 

religion. 

___________________________________________________________________________ 

 

NOTHING IS VERY IMPORTANT   BOB ESCOLME 

More correctly the empty set Ø is very important. And the empty set is not nothing. It is 

something. It is a set, though there’s nothing in it.  

Perhaps because there is nothing in it Ø tends to get overlooked on occasion, with dire results. 

Even the bright ones (I mean the OU professors, and I hope they can afford the odd martini) 

have been known to overlook it - as shall be recounted later. 

For example, one can produce a fallacious proof that a subset of a ring is a ring if one forgets 

the fact that one of the properties required of a ring is that it be not empty. If you are required 

to prove that a given set or subset is a ring then, among other things, it must be known or  
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proved that the set or subset contains at least one element. 

As another example, consider that axiom for the real numbers ℝ which states that every non-

empty subset A of ℝ which is bounded above has a least upper bound. The requirement that  

A  Ø is important for one can easily show that Ø is bounded above, yet does not have a least 

upper bound. In fact Ø possesses a whole set of upper bounds: the whole of ℝ itself is its set 

of upper bounds. And ℝ is also the set of lower bounds of Ø. 

Thus let b be any element of ℝ. Then for all aØ, a  b. That last sentence is correct since it 

is incorrect if and only if we can show there exists at least one aØ such that a > b. But since 

Ø is empty there is no such a. Thus b  a for all a  Ø, so b (which is any element of ℝ) is an 

upper bound of Ø. ℝ of course has no least member, so Ø does not have a least upper bound. 

So, if you are required to show that a given subset A of ℝ has a least upper bound then either 

it must be known or you must prove that A has at least one member (as well as proving that A 

is bounded above). Much the same goes for greatest lower bounds. 

And now for the howler perpetrated by the martini boys. it concerns the M231 definition of 

the limit of a real one valued function near a point. This is the definition given in the course 

handbook. 

The function f (of one variable) approaches the limit l near a if for every  > 0 there is 

some  > 0 such that, for all x, if 0 < |x – a| <  then f(x) is defined and |f(x) – l| < . 

We can omit the words ‘f(x) is defined and’ if we substitute ‘for all x  the domain of f ‘in 

place of ‘for all x’ where it appears in the definition. We then get 

The function f:A  ℝ, A ℝ, approaches the limit l near a (aℝ) if and only if (this is a 

definition) for any  > 0,  > 0: xA, 0 < |x – a| <   |f(x) – l| < . 

The fallacy inherent in the definition becomes clear if we define a set X as 

 X = {x  A: 0 < |x – a| < } 

and then rewrite the definition as 

The function f:A  ℝ, A ℝ, approaches the limit l near aℝ  For every  > 0,  > 0: 

xA, x  X  |f (x) – l| < , where X = {x  A: 0 < |x – a| < }. 

Now consider the following example. Let A = {0} and define f:A  ℝ by f(0) = 0. Take l = 

say , or e3 or any other number ℝ you care to think of. Given any  > 0, choose  in the 

range 0 <  < a. Then X = {x{0}: 0 < |x – a| < } = Ø. Following through the definition we 

get the following true statement: x{0}, x  Ø  | f (x) – | <  . It is false  we can 

exhibit an x{0}: | f (x) – |   . And since Ø is empty there is no such x. 

Thus the M231 definition enables us to define a simple function which tends to any limit near 

any point. The correct definition (as given in M100 (Unit 7 page 30)) must include the 

stipulation that our set X  Ø. Put it this way. If the above is baloney then I award myself 0 

out of {0}. If it isn’t the (M231) professors get 0 out of Ø. 

___________________________________________________________________________ 
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LETTERS 

From Eric Lamb  Most OU students who took exams in 1978 will by now have been told that 

they have passed. In fact, if the pattern of results is like that published in Sesame in previous 

years some 90% of examined students will have been successful. The only reasonable 

conclusion that can be drawn from this is that the OU tries to ensure that as many satisfactory 

students as possible do pass. The aim is definitely not to stop students from receiving the 

fruits of their labours as seems to be the aim of some examining authorities whose success 

rate is about 30%. 

 Despite this I always suffer from exam nerves. This is not because of lack of experience 

(I’ve taken about fifty exams altogether), but is due to the nature of examinations. Every 

paper I have taken seems to have been designed to test small parts of the course in great 

detail. This introduces a large element of luck into any exam. By this I don’t mean that OU 

exams are designed such that there is a high probability of failure for a candidate who is 

familiar with most of the course. What I do mean is that the quality of the result is not 

necessarily a reflection of the knowledge and ability of the student. To give an example, I 

gained a distinction on M231 simply because the right questions turned up in my exam. It 

certainly wouldn’t have happened with any other M231 paper I’ve seen. In contrast to this, 

despite the fact that I spend an average ten hours a week using or programming a computer, 

the M251 exam gave me a very rough time. 

 If, as I am sure is the case, the OU are setting their exams with a view to finding out what 

a student knows as opposed to trying to “trip him up”, why do they persist with the old-

fashioned tactics of restricting the examination questions to a few topics? Why not give such a 

wide choice of questions that the right one must turn up for any student for whom the right 

one exists? 

 A move in the right direction has been made by the maths faculty in that some 

examinations have compulsory short question sections. Why do these have to be compulsory? 

Why not set more questions and allow the student to select? Set some easy ones and some 

hard ones, and give marks accordingly. 

 Concerning the longer questions, it is customary to limit the number of these that the 

student is allowed to attempt. Furthermore, it is not uncommon to test more than one aspect of 

the course in one of these questions. This combination is a good idea if the aim of the exam is 

to create failures, but it is not such a good idea if the aim is to find out how much the student 

knows. If the number of questions to be attempted is not limited, then the student will do what 

he can. Again the marks can be suitably arranged to identify the good student. 

 If I could go into the exam room knowing that whatever I had revised would appear in 

some form on the paper, I’m sure that much of the tension would vanish. What do other 

people think? 

 

From Frank Springall   I think my comments (M500 56) about Larry Niven make a lot more 

sense if you put the NOT back in and say that he has not won the Nobel Prize for physics. 

 Although it may have seemed something of a throwaway line the intention to form a  
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Science Fiction Society is serious. Even if there are no members of M500 interested we (I am 

not alone even if my partner in crime is only doing ‘A’ courses) would be grateful for any 

advice on what to do or pitfalls to avoid especially from anybody who helped found M500. 

 I cannot see why Sidney Silverstone thinks £33 for a Rockwell 63R is reasonable, I have 

seen them for £17. (I think it was in Curry’s but it was a year ago.) Also I do not think they 

are that good. I have a CB17 414SR which although it has only single parentheses and no x! it 

does have two memories, polar to rectangular conversion and vice-versa, a x/y button (very 

useful) and limited statistical functions. More important for me there is no function button, 

this saves me an enormous amount of time as I always forget to push the function button. This 

does lead to its one major fault: there are 48 keys which means they are rather small. 

 But even I, one of the illiterate working classes for whom the glorious OU was founded 

(this means I have not got piano-players fingers) can manage the calculator OK. 

 PS - To be honest I think the OU is the best thing to happen in education since it was 

made compulsory. 

 

From Garnett Marriott  From Halmos Naive Set Theory page 8, we know that “the empty set 

is a subset of every set”, in other words, “everything contains nothing.” Also from Halmos, 

page 6, we know that there cannot exist a set that contains all sets. In other words, “nothing 

contains everything”. Thus A  B and B  A  A = B forces the result 

 everything = nothing.  

--mm-- who’d have thought it? 

 

From Steve Murphy   Just one short item, which I’m sure will have been covered by dozens of 

similar letters. 

 AD INFINITUM. 

In M500 54 Brian Stewart wrote about the set of real numbers between 0 and 1 that contain 

no zeros in their decimal expansion. We could express this set as 

 T = {x: xℝ, x =     
 
      } 

where xr represents 1, 2, 3, ... , 8 or 9 and we exclude numbers such that xn = 9 for n > some 

integer k (to avoid writing 0.3 as 0.29999... and so on). 

However although T is both uncountable and null it has as many members as all the reals in 

[0,1). We can see this by considering the set 

 S = {x: xℝ, x =       
  
 )      

with the same restrictions on the xr as above. 

Now we can obviously place the elements of T in a one–one correspondence with the 

elements of S, but S is really just an elaborate way of writing the reals in [0,1) in the scale of 

9. So we’re back to Aleph-one after all. 
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From Tom Dale. I’m glad to see that my contribution based on The World of Mathematics has 

been of some use to you. 

 I have now managed to find out how to evaluate the fractions given at the bottom of 55 

page 6 - in fact I am wondering how I was so dim that I did not realise that the first one is just 

the converse of the problem dealt with in Krysia Broda’s article in issue 47. For we can find x 

and y in the equation x2 – Ny2 = (–1)n–1 - they are numerator and denominator of the 

convergent An/Bn. So in the continued fraction 1;3,2,3,2,... , n = 1, An/Bn = 4/3. Hence  

16 – 9N = 1, N = 5/3. So the continued fraction is equal to 5/3. 

 The second one depends on a theorem which says that in a periodic fraction of this type, 

where P’/Q’ and P/Q are the last two convergents of the first period, then Qx2 + (Q’–P)x – P’ 

= 0 where x is the fraction. In the example given, P’/Q’ = 3/2 and P/Q = 10/7. 

 So 7x2 – 8x – 3 = 0 and x = (4±37)/7. The positive root is taken. (The negative root, as it 

happens, is equal in magnitude to the continued fraction which has the same quotients in 

inverse order.) 

 PS. - Notations can be troublesome. Krysia gives the first subscript of continued fractions 

as 0, whereas my book starts at 1. So nth convergents aren’t the same. Fascinating things 

though, continued fractions. Did you know that any series can be expressed as one? 

 

From Bob Bertuello   I hope that the following will help answer Tom Dale’s query at 55 6 on 

continued fractions. 

 To find the value of a recurring continuous fraction, it is important to note that a RCF is a 

subset of itself, and this allows the setting up of a quadratic equation whose solution is the 

required value. 

 Take the last case: 

x = 1;2,3,l,2,3,l, ... , 

i.e., x–1 = 1/(2+1/(3+1/(1 + ...))). 

Since the right hand side recurs, the three dots can be replaced by x–1, i.e. 

(x–1) = 
 

   
 

   
 

       

 = 1/(2 + x/(3x + 1)) = 
      

      
  

whence 7x2 –  8x – 3 = 0  x = l/7 (4 + 37), negative value not applicable.  

The other cases are amenable to the same treatment. 

Ed - Other treatments have been received for the same problem. I might print them later if I forget. 
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GAUSS XI   JEREMY GRAY 

In episode four I set some problems connected with Gauss’s work. Here I give the solutions to 

some of them. At the end of this episode you will have a proof of one of the greatest theorems 

in number theory: a prime number is a sum of two squares if and only if it is of the form  

4n + 1. The theorem is due to Fermat, the proof here is ‘after Gauss’ and reveals a nice 

connection with quadratic residues. I hope you will enjoy looking at the surprising inner life 

of the integers, even if the details are too hard. It is, after all, the source and the ‘why’ of 

modern algebra. 

 

Now for the number theory. We have 

 1  = 12 + 02 

 2  = 12 + 12 

but 

 3  = 12 + 12 + 12 

so requires three squares. Looking only at primes one finds 5 = 22 + 12 but neither 7 nor 11 is 

a sum of two squares, whereas 13 = 32 + 22, and generally primes which are a sum of two 

squares are 

 5, 13, 17, 29, 37, 41, ...  

primes which are not are 

 7, 11, 19, 23, 31, 43, .... 

All those in the first class are of the form 4n + 1; all those of the second class are of the form 

4n – l. We conjecture that this is always the case, and indeed it is. Before proving it observe 

that the next question helps reduce the question ‘is n = a2 + b2?’ for non-prime n to the case n  
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prime, so we prove N3 first. 

(Find a reformulation of (a2 + b2) (c2 + d2 ) which shows that if two numbers are each a 

sum of two squares so is their product.) 

(a2 + b2)(c2 + d2) = a2c2 + a2d2 + b2c2 + b2d2 = a2c2 + b2d2 + a2d2 + b2c2  

 = (ac + bd)2 + (ad – be)2 

which is equal to X2 + Y2 where X= (ac + bd) and Y= (ad – be). 

 

What about proving a prime of the form 4n + 1 is always a sum of two squares? Here first of 

all is an elegant observation of Dirichlet, taken from his New proofs of some results in number 

theory of 1828. “With a and p as before [p a prime, a not divisible by p] let us consider the 

following p – 1 multiples of a. 

 a, 2a, 3a, ..., (p – l)a. 

“It is easy to see that two of them cannot give the same remainder when divided by p; for if 

the remainder coming from ma and na were equal, ma – na = (m – n)a would be divisible by 

p which is impossible since a is not divisible by p and m – n is < p and not zero. The 

remainders which we obtain by dividing the p – 1 multiples by p being all different and not 

zero, it is easy to see that these remainders must coincide with the numbers of the series 1, 2, 

3, ..., p – 1 when one disregards the order between them. It follows from that that the product 

of the p – 1 multiples of a should give the same remainder as the product 1 . 2 . ... . (p – 1) . 

 

“The difference of these products is then a multiple of p. But this difference is easily put in 

the form 

 (a p–1 – 1) .1 . 2 . 3 . .... (p – 1) 

and, 1 . 2 . 3 . ... . (p – 1) not being divisible by p, we conclude that a p–1 –1 is a multiple of p 

or, which is the same thing, a p–1 divided by p gives the remainder 1.” 

Expressing this conclusion in the language of congruences 

 a p–1  1 mod p     or     a p–1 –1  0 mod p. 

Therefore p divides either a (p–1)/2 – 1 or a (p–1)/2 + 1, but which? 
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Here quadratic residues enter the picture. If a  b2 mod p then p divides a (p–1)/2 – 1 (because 

a (p–1)/2 – l  b p–1 – 1  0 mod p); but if not, not. So suppose p = 4n + 1, let us show it is a sum 

of two squares.  –1 is a quadratic residue mod p (use (p – 1)! = –1 mod p and take x = 1 . 2 . ... 

. 2n = (–1) (–2) ... (–2n)  (4n) (4n – l) ... (2n + l)) so –1  x2 mod p, i.e. p divides x2 + 1 =  

(x + 1) (x – 1). At this point we have entered the domain of Gaussian integers, discussed in 

questions N7-N12. Accepting for the moment that factorization into primes is possible, if p is 

prime (we shall soon see that it isn’t) it must divide either x + 1 or x – 1. Neither p –1(x + i) nor 

p–1(x – i) are Gaussian integers, so p can’t be a Gaussian prime. But then p must be 

factorizable as 

 p = (a + bi) (a –bi) = a2 + b2 

and so p has been written as a sum of two squares. 

 

It is elementary that any prime which is a sum of squares is either 2 or of the form 4n + 1, 

since any square is congruent either to 0 or to 1 mod 4. So we may conclude: all primes of the 

form 4n + 1 are a sum of squares, and conversely; no prime of the form 4n + 3 can be a sum 

of squares. 

 

This argument has taken care of some of the questions N7-N12, but we haven’t yet shown 

unique factorization of Gaussian integers. To do that, first recall that factorization of integers 

is unique only up to multiplication by +1, which numbers do not alter the modulus: |a| = |–1 .   

a|. Factorization of Gaussian integers is similarly unique only up to multiplication by  

1, –1, i,  –i which do not alter the norm N(a + bi) = a2 + b2. Very well, to prove factorization 

is possible it is enough to do it; Either you can’t in a given case and the Gaussian integer you 

have picked is prime already, or you can, but the norms of the factors are less than the norms 

of the original number and so the factorization process stops in finitely many steps. To prove 

factorization is unique, suppose it isn’t and for some Gaussian integer two different 

factorizations are possible. Now show that if a prime a + bi divides (c + di)(e + fi) it must 

divide one factor, and hence obtain a contradiction by successive cancelling of factors (c + di, 

e + fi also prime). The proof exactly follows the unique factorization theorem for integers. 
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Care is needed in recognising a Gaussian prime. N10 asked you to show 5 is not a Gaussian 

prime; 5 = (2 + i)(2 – i). As an example that –1 is a quadratic residue mod 5 one has 

 32  –1 mod 5 

or 

 5 | (3 + i) (3 – i) . 

But 5 does not divide 3 + i, nor need it as 3 + i = (2 – i)(1 + i) . But we can easily recognise 

which of the usual primes is a Gaussian prime. If p, a prime, is a Gaussian prime we must fail 

to write 

 p = (a + bi) (a – bi) = a2 + b2 , 

so only those usual primes are Gaussian primes which are of the form 4n + 3. 

 

Other interesting rings are made up as 

 a + b   . 

If one has a + b    in mind, so 

 (a + b   )(a – b   ) = a2 + 3b, 

it turns out that factorization is still unique, and the usual numbers which can be written in 

this way are either squares, or primes of the form 6n + 1 and products of such. Quite different 

behaviour occurs in the ring of ‘integers’ of the form 

 a + b   . 

(N13). Here 

 21 = 3  7 = (1 + 2   ) (1 – 2   ) 

are two distinct factorizations into primes. (They must be primes because their norms are so 

small by comparison with numbers of the form 

 a2 + 5b2 

and they can’t factorize as integers.) 
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PERFECTION   EDDIE KENT 

Some time ago I reprinted a problem from an American magazine in M500. It asked for a 

proof that the only ‘almost perfect’ numbers (those that miss being perfect by one only) are 

the powers of two. No one took up this challenge, or at least admitted to it, and I thought that 

everyone else agreed with me that it was a pretty silly thing to look for. In fact even the 

concept of the perfect number (one which is the sum of its proper divisors; 6, for instance, 

which is 1 + 2 + 3; or 28 = 1 + 2 + 4 + 7 + 14) seemed perverse. In counting the divisors of a 

square number do you count the square root once or twice? Once obviously, but that means 

you lose one factor compared with other numbers. Also there is only the most tenuous 

connection with the Euler phi-function (which counts the number of positive integers less than 

x and relatively prime to x) and that, though useless, has at least been saved by the groupies. 

I then discovered that Euclid and Euler (in that order) showed that each and every even 

perfect number has the form 2n–l(2n – 1) where 2n – l is prime. You will notice of course that 

2n – l is the sum of the divisors of 2n. 

It has now been pointed out to me that if you replace all the even numbers in Pascal’s 

Triangle with dots you get, amongst other things, a series of upside down triangles straight 

down the middle, almost each of which contains a perfect number of dots. The exceptions 

correspond to the occasions when 2n – l is not prime; but all the even perfect numbers are 

there. Why? 

Pascal’s Triangle is conventionally numbered from the top with the first row labelled row 0, 

the second row 1 and so on. (This makes sense, the nth row then gives the nth power 

expansion in the binomial theorem; also all the numbers in the pth row, p prime, are divisible 

by p. It is not so convenient for us as the number of numbers in row n becomes n + 1, but 

never mind.) 

Because of the way the triangle is constructed, each number the sum of the two immediately 

above, it is obvious that even numbers will occur in equilaterally triangular chunks. It is also 

obvious (can be shown but how boring) that the rows which are entirely even (except at the 

ends) are those which are labelled with powers of two. 

Since there are n + 1 numbers in row n, this becomes 2q + 1 for some q. Knock off the two 

ones at the ends and you get 2q – 1, and if this is prime you have a Mersenne prime. So it only 

remains to show that the formula above for perfect numbers is equivalent to a triangular 

number in Mersenne primes. But that is easy: 

 2n–l(2n – 1) = ½(2n(2n – 1)) = ½(2n(2n – 2 + 1)) 

  = ½ (22n – 2n+1 + 2n (+ 1– 1)) 

  = 
                

 
 

which is triangular in 2n –  l. 

Two last questions and a thought. Are there any even almost perfect numbers? Is there an odd 

perfect number? If you put n = 0 in the formula you get 0  0 which equals 0. In other words, 

nothing’s perfect only if nothing is prime. I find that quite cheering. 



 

57 page 12 

PROBLEMS   COMPILED AND EDITED BY   JEREMY HUMPHRIES 

Bob Escolme wrote to me again about problems 54.4 

and 54.5, Cone I and II. He says that his solution 

published in 56 is unsatisfactory and he has reworked 

it for an arbitrary cone. . He gets the result OV = VF + 

FI ( see figure) where O is the vertex of the cone, V the 

vertex of the parabola and I is either of the two points 

which become points of inflexion when the cone is 

flattened. 

I also got some stuff on continued fractions from BOB 

BERTUELLO and HOWARD PARSONS which I have passed 

to Eddie. Continued Fractions by A Ya Kinchin is a 

nice little book published by the University of Chicago 

Press in 1964 - I don’t know if you can still get it. 

Main topics are representation of numbers as continued fractions, convergents as best 

approximations, order of approximation, and introduction to measure theory of continued 

fractions including a treatment of various averaging operations. A review says Khinchin 

achieves a clarity of exposition which it would be difficult to surpass. 

The record for an unsupported circle of seated people - each sits on the knees of the person 

behind - is now 3394. They did it for one minute at Balment Park, British Columbia, last 

May. 

Two mathematical curiosities heard recently on the radio: 

...40 ambulances, each carrying between two and three people... ...the ninety-five dollar 

question.... 

There is an article on Hilbert’s tenth problem by Martin Davis and Reuben Hersh in Scientific 

American November 1973 (ref Alan Slomson M500 55 and 56). And anyone who watched 

the BBC Christmas lectures by Christopher Zeeman and wants to know more can find an 

article on catastrophe theory in Scientific American April 1976. (The November 73 also has 

Martin Gardner on programmed worms - a must.) 

Libby Drake’s hat problem had no number. Let’s call it 55.0 

SOLUTION 55.0 HATS Four men, Archibald, Bartholomew, Clarence and Dorothy are arranged 

as shown. Two hats are white, two are black. No one can see his own hat. B can see A, C can 

see B and A, D can’t see anyone. When a man knows the colour of his hat he says so. What 

can happen? 

ROSEMARY BAILEY, HOWARD PARSONS, STUART POTTER and TOM DALE answered this. 

Rosemary said she liked the problem but why wasn’t D called Douglas? She thinks two things  
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can happen. In the first case Archibald and 

Bartholomew have the same colour hat, say 

white. Then Clarence shouts ‘black’ and this 

is followed by the others simultaneously: 

Duncan says ‘black’ - Arthur and Benjamin 

say ‘white’. In the second case Alastair and 

Brian have hats of a different colour, say 

black and white respectively. Then 

Christopher and David say nothing.  Faced 

with this silence Barnabus says ‘black’ whereupon Alfred says ‘white’. Cuthbert and Derek 

continue to say nothing. 

What Rosemary really wants to know is how they got up onto the ladder without Albert and 

Barry seeing Cedric’s hat. Please send your answers to this and to why Dennis is called 

Daphne as soon as possible. 

(My practical friends say that since no-one can see Diane he should take off his hat and look 

at it.) 

SOLUTION 55.1 CIRCLES 

Richard Ahrens has sent an explanation of this. 

The drawing is complicated. I suggest you draw 

your own and add the bits as you come to them.  

1 2 3 4 5 are any five points in that order on the 

circle. ABCDE are the mid-points of the arcs 34, 

45, 51, 12, 23. 

1E4C2A5D3B1 is a ten-pointed star. ACEBDA is 

a five pointed star 

5D and C2 meet at X  

D3   “   IE       “     Y  

IB    “   C4      “     P  

B3   “   5A      “     Q 

FACT 1 X lies on the circle, centre C, passing through 1 and 5.  

proof CX5 = C25 + D52 (ext ang of X25) = C51 + 15D (equal arcs subtend equal 

angles) =C5D. 

therefore CX5 is isosceles; therefore CX = C5. therefore X lies on a circle centre C radius 

C5. Similarly X lies on a circle centre D radius D5. This means that X is the second point of 

intersection of the circles centred at C and D which meet at 5. 
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Similarly, Y, P and Q are the second points of intersection for the circles centred at D & E,  

C & B and B & A respectively. 

Thus XY and PQ are two lines of the star in the problem. We must show that these lines meet 

on  the circle with centre C.  

FACT 2   XY is parallel to CE. 

proof 1YX = 12X (1 X Y 2 lie on circle, centre D) 

12X = 12C = 1EC (1 2 E C lie on original circle) 

XY || CE (1YX  &  1EC are corresponding angles) 

Similarly PQ is parallel to CA. Hence the angle between XY and PQ equals ECA. 

Now ECA = ½2C4 since arc EA is half arc 24. 

The angle subtended at C by arc XP is twice the angle between XY and PQ. 

XY and PQ meet on the circle with centre C. ( at circum = ½ at centre 

Extensions, which Richard suggests are: 

1. What happens with four circles instead of five? 

2. Sometimes this still works if the points 1 2 3 4 5 are not arranged in order on the circle. 

You can also try using the alternate centres to draw the secondary circles. 

3. What is the general theorem of which the problem 53.1 was a special case? (I don’t know; 

R.A.) 

SOLUTION 55.1  BLACK AND WHITE  Remove two black and two white squares from a (2n)2 

chessboard. If at least one of each is an interior square show that the remaining board can be 

tiled with 2  1 tiles. 

Nobody has sent me a proof yet. ANGUS MAC DONALD has solved it by induction and says that 

his solution is very long and pedantic. STEVE AINLEY says “Hm... “ (about the problem, I 

mean). 

SOLUTION 55.2 COINS  A tosses two coins hidden from B. Is there at least one tail? B asks. A 

says “Yes” (a). A drops one coin (b). When they find the coin it is a tail (c). “That’s OK” A 

says, “it was a tail to start with” (d). At points (a) (b) (c) and (d) what is the probability that 

both coins are tails? 

Great fun with this. BOB BERTUELLO, LIBBY DRAKE and STUART POTTER got it right, and several 

more got it nearly right. 

(a) 1/3. Possibilities are (HT) (TH) (TT) . 

(b) 1/3. Possibilities, with dropped coin italicised are 

  HT TH TT  HT TH TT 

  HH TT TH  TT HH HT. 

(c) 2/3. Possibilities are HT TT TT; TT TH TT. 

(d) 1/2. Possibilities are HT TH TT TT. 
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SOLUTION 55.3 CUBE   I have a wire model consisting of the edges of a cube. How many different 

structures can I make by removing three edges?  

STUART POTTER says there are thirteen structures. Eight of these can be split into two sets of four so 

that each set is a reflection of the other. The remaining five have reflective symmetry. ROSEMARY 

BAILEY gave a theoretical solution as follows: Nine if reflections count as the same; thirteen if not. 

The method is based on G, the symmetry group of the cube. (See also DAVID ASCHE, M500 49.) 

Symmetries of the cube 

Rotations 

1 = identity 

u = through 120° about a main diagonal. 

                 
                  

  
                              
                            

 

x = through 180°           
                            
                            

  

             If reflections are allowed we also have 

             z = inversion in the centre of the cube. 

             zu zv zw = reflection in a plane parallel to a face 

             zx = reflection in a plane through opposite edges.  

 
The number of essentially different structures is 

 n = 
 

    
                                                        

If reflections are not allowed G   S4  and the number of fixed structures of each g is given in the top half 

of the table 

 n = 
 

  
 (1  223 + 8  4 + 6  10) = 13. 

If reflections are allowed on G   S4   Z2 and we can use the whole table 

 n = 
 

  
 (1  223 + 8  4 + 6  10 + 3  20 + 6  10) = 9. 
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STEVE AINLEY actually drew the nine structures. They are 

 

 

SOLUTION 55.4 PYRAMIDS  Take a regular tetrahedron and join all the  midpoints of the edges 

by straight lines. How many  tetrahedra are there now? 

This is quite difficult to see. Only STUART POTTER got the right answer which is 25. He says: 

When the four regular tetrahedra are removed from the vertices an octahedron remains. This 

is dissected into eight tetrahedra. Pairs of these eight can be put together to make twelve 

more. That’s 24 and the original one makes 25. 

 

SOLUTION 55.5 CHORDS Find x.  

x is 3. There are many ways to show it. 

For instance ACE and DCB are similar 

triangles (Ext angle of cyclic quad 

equals interior opposite.)  

Solutions came from STEVE AINLEY, 

TOM DALE, BOB ESCOLME, PAUL 

GARCIA, ANGUS MACDONALD, SIDNEY 

SILVERSTONE and my friend LIBBY DRAKE. 

 

PROBLEM 57.1 SEQUENCES 57 RICHARD AHRENS 

Richard has sent this problem from the 1978 International Mathematical Olympiad. 

a = f(l), f(2), f(3), ... , and b = g(l), g(2), g(3), ... are two sequences of positive integers. 

Every positive integer is in either a or b, but not both.   a and b are increasing. 

n, g(n) = f(f(n)) +1. 

Find f(240) without finding all previous terms. 

 

PROBLEM 57.2 FUNCTIONS 57 BOB ESCOLME  

Bob has sent this from the 1977 Olympiad. 

Given a function f: ℕ ℕ where ℕ is the set of positive integers, prove that if f(n+1 > 
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 f(f(n)) nℕ then f(n) = n nℕ. 

PROBLEM 57.3 GARMENTS RICHARD AHRENS 

a) A and B work in the garment industry. A can make nine garments while B is making five. 

However, the quality of their work is such that three of B’s garments earn the same profit as 

seven of A’s garments. 

Find numbers to represent the relative values of A and B to their employer. 

b) Why do we add (or average) marks when determining an overall grade for a student? 

Would it be more sensible to multiply?. 

Richard says that this problem owes a lot to Lewis Carroll - A Tangled Tale. 

PROBLEM 57.4 ANGLES 57 

 

The square things are squares. Show that a + b = c. 

There are many proofs of this. Charles W Trigg collected fifty five. See how many you can 

find. 

Since I expect the response to overwhelm me I shall not set a fifth problem this time. (Well - 

you got six in the Libby’s Hats issue, didn’t you?) 

___________________________________________________________________________ 

Brian Woodgate once asked for a book on prime number theory. I think I have mentioned 

before  

 Elementary Number Theory by Underwood Dudley, Freeman, 1969. 

Section 21 is called “Formulas for Primes”, section 22 “bounds for (x)”. I think the book is 

good. It contains a bibliography of books Dudley thinks are good. 

One book included in the bibliography is L E Dickson’s History of the Theory of Numbers. 

He says that when you make a new discovery in the theory of numbers look in Dickson to 

find out who has already used it before 1918. 

(Ed - He won’t have out prime generating polynomial though. For something like that try 

Concepts of Modern Mathematics by I Stewart, Penguin 1975.) 

___________________________________________________________________________ 
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An interesting problem came up in one of those computer magazines recently (Datalink, 30 

October). I suppose it’s old hat to those involved in the business but I found it puzzling. First, 

how do you code a date, unambiguously, so as to be able to compare it with another. This is 

not difficult, of course. Two methods are mentioned in the article. One views the date as 

constructed from three fields: year, month and day. Multiply the first field by the maximum 

range of the second, then add the second, less one; and so on. To keep the numbers from 

growing too large DEC start from the year 1964 so the formula becomes 

 (year – 1964) 12 + (month – 1)  31 + day – 1. 

The second method, used by ICL, merely counts the number of days elapsed since 

31.12.1899. 

The problem is, given a number, to produce the corresponding date as economically as 

possible. Obviously with the first method it is easy: you just reverse the formula (go on; do 

it:) Equally obviously the way to do it in the second case is to buy a set of calendars and 

count. However it should be possible to produce a formula. (Don’t forget the leap years - 

there was not one at 1900 but there will be at 2000.) 

Here are a couple more quotes from The Times. (Do you remember The Times’?) November 

7: “St John the Evangelist has rewritten his Gospel after a course in OU-speak at the Open 

University: At the initial moment in time was a verbalization situation, and the verbalization 

situation was in the environmental totality, and the verbalization situation was the 

environmental totality. The same was in an ongoing linguistic doghouse situation.” 

I copied that for two reasons: first it isn’t often the OU gets a mention of any kind; and 

secondly if anyone is being attacked it certainly is not the maths faculty. I can’t think of any 

reason for putting in the next, except that it might raise a laugh though it deserves the opposite 

reaction. It was picked up by Philip Howard and printed on the 28th November. 

“Least attractive event of today, unless you know NHS-speak: a lecture at the London School 

of Hygiene and Tropical Medicine by Professor M Aitkin. The synopsis goes: ‘Exponential 

and Weibull models may be fitted to complex survival data in GLIM using the EM algorithm 

to give maximum likelihood estimates of the parameters when some lifelines are censored’.” 

I’ve just done a simple calculation. If M500 ran to twenty pages, and if it came out ten times a 

year, and if, furthermore, the SOCIETY had four hundred members, then all I would need to 

fill the magazine with no problem at all would be half a page from each member a year. 

Surely that couldn’t possibly hurt. 

Finally, since Jeremy has only given you four problems this month, here is one from me. It 

comes from The Changeling which I saw the other night: 

A fool before a knave, a fool behind a knave, and between 

every two fools, a knave. How many fools and knaves? 

Quick! Got it? Too late.  

 


