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Functions f : Z+ → Z
Tommy Moorhouse

Introduction: A ring of functions

A ring is a mathematical structure whose properties are a generalization of
those of the integers. In a ring one can add elements to get other elements
and one can multiply elements together. Just as in the ring of integers the
elements of a general ring need not have a multiplicative inverse, but they
must have a ‘negative’ or additive inverse.

Ring multiplication need not be commutative (so that if a and b are
elements we need not have ab = ba) but the ring considered in this article
is commutative. We will consider a particular ring of functions and explore
some of its properties. You may find this an interesting exercise in itself,
and hopefully if you have little knowledge of rings you will be motivated to
learn more.

The ring F

The functions f : Z+ → Z, which are integer valued for all positive integer
arguments, inherit many of their properties from Z, which is the best known
example of a ring. In the ring of functions the elements can be added
to give another element; there is a ‘negative’ for every element, such that
f+(−f) = z where z is the zero element, i.e. the function such that z(n) = 0
for all n ∈ Z+; and there is multiplication between non-zero elements. The
non-zero elements need not have inverses (an inverse of an element t is an
element s such that st = ts = 1, where 1 denotes the multiplicative identity
element of the ring: for our functions this is denoted by I). We will denote
the ring of functions f : Z+ → Z by F.

In the ring of functions we have ordinary (pointwise) addition:

(f + g)(n) = f(n) + g(n).

The addition on the right is just the addition of the integers f(n) and g(n).
The fact that we are ultimately concerned with the addition of integers
strongly suggests that the properties of Z largely determine those of F. Our
multiplication is the Dirichlet ‘convolution’ product

f ∗ g(n) =
∑

dd′=n

f(d)g(d′),

which is shown by Apostol [1] to be commutative, associative and distribu-
tive over addition.
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Exercise 1 With addition and multiplication so defined show that F is a
ring.

The main theme of this article is an exploration of the structure of F.
The first property is established in Exercise 2.

Exercise 2 Show that there are no divisors of zero in F (that is there do
not exist non-zero functions f and g such that f ∗ g = z).

A suggested answer is given at the end of the article. Commutative
rings with this property will be called ‘entire’, following Lang [2].

Now we consider ideals in F. An ideal in F is a subset I of F that is
closed under addition (i.e. if f ∈ I, g ∈ I then f + g ∈ I) and such that if
a ∈ F and b ∈ I then ab ∈ I. A simple example of an ideal in the ring Z is
that of the even numbers: two even numbers can be added to give another
even number, and if we multiply any integer by an even number we get an
even number.

Characteristic sets C(n)

We now turn to the behaviour of functions f : Z+ → Z on some special
subsets of Z+. We define the set C(n) for any n ∈ Z as

C(n) = {d ∈ Z+ : d|n},

where the notation d|n means that d divides n. Thus C(n) is the set of all
(positive) divisors of n.

Definition 1 C(n) is the set of all divisors of n.

It is then quite straightforward to establish that for any n the set of
functions f such that f(d) = 0 for all d ∈ C(n) forms an ideal, say In, the
most important step in the proof forming Exercise 3.

Definition 2 The set of functions vanishing on C(n) is an ideal In.

Exercise 3 Show that the product of any f ∈ F with any g ∈ In is again
in In. (Hint – this follows from the definition of the convolution product.)

More generally, the functions f such that f(d) ≡ 0 (mod p) for d ∈ C(n)
form an ideal for each n and for each prime number p.

The sets C(n) are characteristic of the convolution product and indeed
any convolution product has its own characteristic sets. Multiplicative func-
tions vanishing (or congruent to 0 mod p) on any C(n) also vanish on any
integer divisible by any divisor of n.
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Definition 3 A prime ideal p is an ideal such that if ab ∈ p then either
a ∈ p or b ∈ p (or both).

Exercise 4 Show that the ideals In are not prime except when n = 1. Hint:
find functions that do not vanish on all divisors of n but whose product does
vanish on at least one such divisor.

The ideal I1 is prime but not maximal (the proof involves looking at
the quotient ring F/I1 and noting that not every element has an inverse).
This means that there is at least one proper ideal of F containing I1.

We conclude that I1 is contained in some maximal ideal. In fact there
are many maximal ideals containing I1. These are the ideals determined by
primes p and generated by the elements f with p|f(1), which clearly contain
I1 since p|0 for all n. (This is a consequence of the fact that for all n we
have n× 0 = 0.)

We can put this on a more rigorous footing by introducing a valuation
on a quotient ring of F. In our case a valuation is a function, denoted by ||v,
from a ring into Z (but valuations are usually considered as functions into
a field such as C).

Definition 4 A valuation on F is a function into Z satisfying

|f ∗ g|v = |f |v|g|v,
|f |v = 0 iff f = z, and

|f + g|v ≤ |f |v + |g|v.

To ensure that the second condition holds we form the quotient F1 =
F/I1 and define

|f |v = |f(1)|

on this quotient, where the right-hand side is the usual absolute value.
Then the maximal ideals are generated by elements f with p a prime and
p||f |v. The quotients F1/(f) are then isomorphic to the fields Zp. Other
(non-maximal) ideals are generated by functions f such that |f |v = n with
composite n. This also tells us that the ideals of F are finitely generated
and in fact principal. With this valuation we see that F1 contains a subring
isomorphic to Z.

The set of elements such that |f |v = 1 forms a multiplicative subgroup
of F1 called the unit group.
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Types of function

It is sometimes useful to consider functions with certain properties, and
clearly define what we mean by these properties. The definitions below are
intended to illustrate this.

Definition 5 EP: a function is said to be EP or eventually periodic (with
period M) if there exist integers M , N such that for all n ≥ N, f(n+M) =
f(n).

Definition 6 EC: a function is said to be EC or eventually constant if there
is an integer M such that for all n ≥ N, f(n+ 1) = f(n).

Definition 7 Bounded: a function is said to be bounded if there is a positive
integer N such that for all n, |f(n)| ≤ N .

Definition 8 EM: a function is said to be EM or eventually monotonic
if there are positive integers M , N such that for n ≥ M,f is either EC
or for all n ≥ M we have S(f(n + 1) − f(n)) ≥ 0 or for all n ≥ M
S(f(n+ 1)− f(n)) ≤ 0.

Here S(n) is the sign of n: either +1 if n > 0, −1 if n < 0, and 0 if
n = 0. A monotonic function, if it changes at all, always increases or always
decreases.

Exercise 5 Show that an EC function is EP. Show also that a bounded
EM function is EC.

The map L : F→ L

We define L to be the collection of all integer logarithm functions on Z+.
Each of these functions derives from (at least) one function in F as follows:

L(f)(pk1
1 p

k2
2 · · · pkr

r ) =
∑
i

kif(pi).

We see that L(f) is a function on Z+ of the logarithm type. The image of
L is the whole of L, but L is not injective (one to one).

If we restrict our attention to completely multiplicative functions L has
an interesting property:

L(f ∗ g) = L(f) + L(g).

The proof is as follows: since f and g are completely multiplicative we must
have f(1) = g(1) = 1. But f and g are completely determined (unlike
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general multiplicative functions) by their values on the primes. Moreover,
f ∗ g is completely multiplicative and so f ∗ g(p) = f(1)g(p) + f(p)g(1) =
f(p) + g(p). Since L depends only on the values of f ∗ g at the primes the
property is established.

We easily see that for all the ‘constant’ functions kI in F, kI(1) =
k, kI(n) = 0, L(kI) is the zero function z. Thus L(kI ∗ f) = kL(f);
L defines a group isomorphism from the group of completely multiplicative
functions to the group of completely additive (i.e. logarithm type) functions.

We can consider L as a map from the (completely) multiplicative func-
tions into the set of derivations on F since each logarithm type function
defines a derivative through ∇f(n) = L(g)(n)f(n) = Lg(n)f(n).

Cohomolgy

The ring of functions F with its ideals defined through the characteristic
sets C(n) give concrete examples of certain cohomological ideas, although
we shall not take them very far in this article. The sets C(n) cover Z in the
sense that any m ∈ Z is contained in countably many C(n). The collection

{C(n) : n ∈ Z}

does not form a topology for Z but the intersection C(n)
⋂
C(m) =

C((n,m)), where (n,m) is the greatest common divisor of m and n, so
it makes sense to work with these sets. We can form any finite intersection
C(n1)

⋂
C(n2)

⋂
· · ·
⋂
C(nr) and this is again of the form C(r) for some

integer r. These intersections are always non-empty because C(1) ⊂ C(n)
for all n.

We now consider collections of functions into Z, each function defined on
a particular C(n). Denote these collections of functions {fn, C(n)} (called
‘function elements’) where each function fn is defined on C(n) and even if
C(m) ⊂ C(n) fm need not be the restriction of fn to C(m). The conditions
for which the restriction relation fm = fn|C(m) holds are quite special.

Exercise 6 Let fn be defined on C(n) and let fn(d) = (n, d) (the greatest
common divisor of n and d). Show that the fn are actually the restictions of
a single ‘global’ function f to each C(n) and describe this function. Further
show that the collection gn(d) = n/d does not define a global function.

We can define operators δi on the collection of functions defined on
i-fold collections of characteristic sets. First define, for a global function
f : Z+ → Z,

(δ0f)n = f |C(n),

the restriction of f to C(n) for each n. We thus obtain a collection of the
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type {fn, C(n)} with fn defined only on C(n). Next, for any collection of
the type {fn, C(n)} define

(δ1fn)m = fn|C((n,m)) − fm|C((n,m)),

which is of the type {fnm} with the functions fnm = −fmn defined for each
(ordered) pair of characteristic sets C(n), C(m). You should check that the
kernel of δ1 includes the collection of restrictions of global functions. The
image of δ1 is a set of antisymmetric function elements lying in the kernel
of δ2, which you may like to attempt to define on function elements of the
type {fnm, C(n), C(m)} (i.e. (δ2fnm)r = · · · ).

The question of whether the image of δ0 is actually equal to the kernel
of δ1 (and so on) is the subject of cohomology, which we will not pursue
further.

Appendix: Suggested proof that F is entire

Suppose there are functions f and g, not zero for all n, such that

f ∗ g(n) = z(n) = 0.

First we show by induction that if f(1) 6= 0 so that g(1) = 0 (since
f(1)g(1) = 0 and f(1) and g(1) are both ordinary integers) we must have
g = z. Now, for any prime p, 0 = f ∗ g(p) = f(1)g(p) so that g(p) = 0. To
carry out the induction suppose that g(pk1

1 p
k2
2 · · · pkr

r ) = 0 for all arguments
with

∑
ki prime factors or fewer, and consider 0 = f ∗ g(pk1

1 p
k2
2 · · · pkr

r q) =
f(1)g(pk1

1 p
k2
2 · · · pkr

r q), where q is any prime, since g vanishes on all other
factors. This establishes that g(pk1

1 p
k2
2 · · · pkr

r q) = 0.

Now suppose f(1) = 0 and g(1) = 0. Since f and g are non-zero there
are integers m and n such that f(n) 6= 0 and g(m) 6= 0. Let k, l be the
smallest such pair so that f(k) > 0 and g(l) > 0, and suppose kl = n, say.
Then

f ∗ g(n) =
∑

dd′=n

f(d)g(d′) = f(k)g(l) 6= 0,

with only one term in the sum since if dd′ = n (= kl) with d > k, say,
we must have d′ < l and, since l is the smallest integer for which g is non-
zero, we have g(d′) = 0. The same argument applies for d′ > l, when f(d)
vanishes. Thus f ∗ g 6= z.

References
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Problem 226.1 Conway’s prime machine
Tony Forbes

Denote by Qi the ith element of the list

Q =

(
17

91
,

78

85
,

19

51
,

23

38
,

29

33
,

77

29
,

95

23
,

77

19
,

1

17
,

11

13
,

13

11
,

15

14
,

15

2
, 55

)
.

Perform the following procedure.

Start with n = 2. In general, replace n by nQi, where i is the
smallest index r such that nQr is an integer.

For example, the first number you should obtain is 2, the starting point of
the iteration. The second number is 15 because the first element of Q that
has a denominator that divides 2 is Q13 = 15

2 , and 15 = 2 · 152 . The third
number is 825 = 15 ·55 since no other number in the list has a denominator
that divides 15. Next, 825 = 3 · 52 · 11 and the relevant fraction is Q5 = 29

33 ;
hence the fourth number is 825 · 2933 = 725. Continuing in this way produces
the sequence

2, 15, 825, 725, 1925, 2275, 425, 390, 330, 290, 770, 910, 170, 156,

132, 116, 308, 364, 68, 4, 30, 225, 12375, 10875, 28875, 25375,

67375, 79625, 14875, 13650, 2550, 2340, 1980, 1740, 4620, 4060,

10780, 12740, 2380, 2184, 408, 152, 92, 380, 230, 950, 575, 2375,

9625, 11375, 2125, 1950, 1650, 1450, 3850, 4550, 850, 780, 660, 580,

1540, 1820, 340, 312, 264, 232, 616, 728, 136, 8, 60, . . . .

Now concentrate on the 20th and 70th numbers, namely 4 and 8. Notice
that both of these are powers of 2 and moreover the exponents are prime;
4 = 22 and 8 = 23. This is no coincidence. If you look further, you will see
that the 281st number is 25, the 708th number is 27, the 2364th number
is 211, the 3877th number is 213, the 8069th number is 217, and so on, all
prime powers of 2.

All we want you to do is explain why this works. In other words, show
that whenever a power of two appears its exponent is prime. Are all primes
generated in this way?

The algorithm is described by Richard Guy in an article about John
Conway printed in the book Mathematical People: Profiles and Interviews,
edited by D. J. Albers and G. L. Alexanderson.
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The Pascal tetrahedron
Stuart Walmsley
Denote by W1, W2, . . . the sequence 1, 1, 3, 7, 19, 51, . . . introduced by
Patrick Walker in M500 223. Here it is discussed in terms of the three-
dimensional analogue of the Pascal triangle (the Pascal tetrahedron?).

It is recalled that the elements of Pascal’s triangle are binomial coeffi-
cients defined by (

n

j

)
=

n!

j!(n− j)!
.

It is more convenient in the present context to replace them by a symmet-
rical notation:

(j, k) =
(j + k)!

j!k!
.

Higher-index coefficients are then readily defined, but attention is here con-
fined to the three-index terms:

(j, k, l) =
(j + k + l)!

j!k!l!
.

In the Pascal triangle, a given term is the sum of the two immediately
above it. In the new notation

(j, k) = (j − 1, k) + (j, k − 1),

a form which emphasizes the essential symmetry of the relation. It is easily
proved that the corresponding relation for the three symbol is

(j, k, l) = (j − 1, k, l) + (j, k − 1, l) + (j, k, l − 1).

The three-dimensional analogue of the Pascal triangle is a tetrahedron
in which successive faces have the following form.

(0,0,0) (1,0,0) (2,0,0)
(0,1,0) (0,0,1) (1,1,0) (1,0,1) . . .

(0,2,0) (0,1,1) (0,0,2)

Each successive layer is a progressively bigger equilateral triangle. The
layers with explicit values of the coefficients are shown below. Any particular
element is the sum of the three elements above it and the sum of the elements
in a plane is a power of 3.



M500 226 Page 9

The triangle formed by Patrick Walker shares these two properties, but
it is the sum of the elements in a horizontal line which is a power of 3. The
sequence referred to in the title is found in the central vertical column.

1
1 1 1

1 2 3 2 1

It is not surprising that the two are related. The elements in the triangle
are sums of vertical columns of elements in the planes of the tetrahedron as
shown.

1 1 1 1
1 1 2 2 3 3

1 2 1 3 6 3
1 3 3 1

1 1 1 1 1 2 3 2 1 1 3 6 7 6 3 1

Walker points out that in the Pascal triangle the sums of alternate
elements in a row are equal to one another and a power of two (or, as he
puts it the difference of the two sums is zero). In the Walker triangle, the
difference of the two sums is 1. The more direct analogue of the Pascal
result is that the sum of every third term in a line is a power of 3. Then the
elements in the sequence 1, 1, 3, 7, . . . are related to the (j, k, l) symbols by

W0 = (0, 0, 0),

W1 = (1, 0, 0),

W2 = (2, 0, 0) + (0, 1, 1),

W3 = (3, 0, 0) + (1, 1, 1),

W4 = (4, 0, 0) + (2, 1, 1) + (0, 2, 2).

These may be generalized, taking odd and even values of n separately:

W2n =

n∑
j=0

(2n− 2j, j, j),

W2n+1 =

n∑
j=0

(2n− 2j + 1, j, j).

In this way, explicit formulae are found for the elements in the sequence.
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Quaternions and permutation matrices
Dennis Morris
The eight 8× 8 matrices

A =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, B =



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


,

C =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0


, D =



0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


,

E =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


, F =



0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0


,

G =



0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


, H =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


with matrix multiplication form the quaternion group. (These are not the
only permutation matrices that form this group.)
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This group has four proper subgroups:

{A,B}, {A,B,C,D}, {A,B,E, F}, {A,B,G,H}

which correspond to the four parts of the quaternion {1, î, ĵ, k̂}. We have

{A,B} ∼= {1,−1}, {A,B,C,D} ∼= {1,−1, î,−î},
{A,B,E, F} ∼= {1,−1, ĵ,−ĵ}, {A,B,G,H} ∼= {1,−1, k̂,−k̂}.

We form the quaternion algebra (non-commutative) thus. Using the alge-
braic equivalences

[1] �

[
1 0
0 1

]
and [−1] �

[
0 1
1 0

]
we fold these 8×8 quaternionic permutation matrices into the 4×4 quater-
nionic permutation matrices like so:

F =



0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0


�


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 .

When we do this, we get

A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, B =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

, C =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

,

D =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

, E =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

, F =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

,

G =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

, H =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

.
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These matrices, of course, form the quaternion group under matrix
multiplication. We note that {B,D,F,H} are the additive inverses of
{A,C,E,G}. Putting independent real variables into {A,C,E,G} and
adding them (or {B,D,F,H}) produces the more usual matrix representa-
tion of the quaternions:

H =


a c e g
−c a −g −e
−e −g a c
−g e −c a

 , a, c, e, g ∈ R.

Of course, one could start with the smaller permutation matrices.

If we replace each 8 × 8 permutation matrix element with a real inde-
pendent variable and sum them, but ignore the identity, we get

0 b c d e f g h
b 0 d c f e h g
d c 0 b g h f e
c d b 0 h g e f
f e g h 0 b c d
e f g h b 0 d c
h g e f d c 0 b
g h f e c d b 0


.

(Incidentally, this is a copy of the Cayley table of the quaternion group.)
We get a matrix that satisfies all the algebraic field axioms except multi-
plicative commutativity and the guaranteed non-singularity. However, if we
exponentiate this matrix (the Baker–Campbell–Hausdorff formula confirms
this is possible), because this matrix has trace zero, we will get a matrix
with determinant unity. The determinant of the exponential of the iden-
tity is only zero if the identity is zero. We thus have, when exponentiated,
a non-commutative division algebra, but it is more than the quaternion
algebra.

Of course, we can do the same with any non-abelian group and thus
find an infinite number of non-commutative division algebras.

Problem 226.2 – Eight sins
Show that

sin4 π

20
+sin43π

20
+sin47π

20
+sin49π

20
+sin411π

20
+sin413π

20
+sin417π

20
+sin419π

20
=

13

4
.
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Problem 226.3 – Three functions
Define three functions P , Q and R by

P (z) = 1− 24

∞∑
k=1

kzk

1− zk
,

Q(z) = 1 + 240

∞∑
k=1

k3zk

1− zk
,

R(z) = 1− 504

∞∑
k=1

k5zk

1− zk
,

|z| < 1. Show that

z
dP

dz
=
P 2 −Q

12
, z

dQ

dz
=
PQ−R

3
, z

dR

dz
=
PR−Q2

2

and that

Q3 −R2 = 1728 z

∞∏
n=1

(1− zn)24.

Problem 226.4 – Three squares
Let T be a triangle with sides a, b, c and in-circle radius r. Let x be the side
of the square such that (i) one side of the square shares a common border
with side a of T , (ii) the other two vertices of the square lies on sides b and
c of T . Define y and z similarly in terms of sides b and c respectively. Show
that

1

x
+

1

y
+

1

z
=

1

a
+

1

b
+

1

c
+

1

r
.

��
�
��

�
��

��

@
@

@
@
@

a

bc

x

Problem 226.5 – Three circles
Three circles touch each other externally and have radii a, b and c. A fourth
circle of radius x touches the other three externally. Show that√

a+ b+ x

c
+

√
b+ c+ x

a
+

√
c+ a+ x

b
=

√
a+ b+ c

x
.
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Solution 223.3 – Factorization
For which integer values of d does x4 − x− d factorize?

Steve Moon
Let f(x) = x4 − x− d, d ∈ Z. We look for factorizations of the form:

case (i): f(x) = (x− a)g(x), a ∈ Z, g(x) a cubic polynomial in
x which may or may not factorize further;

case (ii): f(x) = (x+ kx+ l)(x2 +mx+ n), k, l,m, n ∈ Z, and
neither factor factorizes further.

Case (i)

If f(x) factorizes into f(x) = (x− a)g(x), then there exists some integer a
such that f(a) = a4 − a− d = 0. Hence d = a4 − a, x ∈ Z. Examples:

a d f(x)
−3 84 (x+ 3)(x3 − 3x2 + 9x− 28)
−2 18 (x+ 2)(x3 − 2x2 + 4x− 9)
−1 2 (x+ 1)(x3 − x2 + x− 2)

0 0 x(x3 − 1) = x(x− 1)(x2 + x+ 1)
1 0 (x− 1)(x3 + x2 + x)
2 14 (x− 2)(x3 + 2x2 + 4x+ 7)
3 78 (x− 3)(x3 + 3x2 + 9x+ 26)

Case (ii)

We have

f(x) = (x2 + kx+ l)(x2 +mx+ n)

= x4 + (k +m)x3 + (l + n+ km)x2 + (kn+ lm)x+ nl.

Equate coefficients with f(x) = x4 − x− d; we have

k +m = 0, l + n+ km = 0, kn+ lm = −1, nl = d.

From the first two k = −m and so

l + n−m2 = 0. (1)

From the first and the third, −mn + lm = −1. Therefore m(l − n) = −1
and hence m = 1/(n− l). Hence

m2 =
1

(n− l)2
. (2)
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From (1) and (2), we have

(n− l)2(n+ l) = 1.

In particular, there are no solutions for n = l (so d cannot be a square).

If n 6= l, n, l > 0, then n− l and n+ l are both integers and n− l 6= n+ l.
But both factors cannot divide 1. Hence there are no solutions.

If we put n = 0, then l = 1, d = 0, m = −1, k = 1 and we get
f(x) = (x2 + x+ 1)(x2− x) = (x2 + x+ 1)x(x− 1), which we already found
in case (i) for d = 0.

So the values of d for which f(x) = x4 − x − d factorizes are all of the
form a4 − a, a ∈ Z.

Archaeology
Tony Huntington
Did anyone watch the TV drama series Boneshakers recently? It was a brave
attempt to make archaeologists into exciting people with a Life instead of
their stereotype of Very Sad and Boring Nerds. The final episode included
one of the best dialogue lines I have heard in many years. Just before one of
the main characters joined in a fight with the baddies, he listed a series of
dates and events from British history and then yelled in a menacing voice:

“Don’t mess with me . . . I’m an archaeologist.”

This ranks, in my books, alongside perhaps the most terrifying phrase
ever uttered by an Angel of Mercy:

“Trust me . . . I’m a nurse.”

These two ‘sound bites’ set me wondering about other similar lines to strike
terror into the hearts of even the bravest of souls. I offer the following as
potential candidates:

“Honestly . . . I’m a lawyer.”

“I know what I’m talking about . . . I’m a politician.”

“Let me help you . . . I’m from the government.”

“I know what I’m doing . . . I’m an engineer.”

And of course,

“Count on me . . . I’m a mathematician.”
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Beware the percentage
John Bull
Recently, with the credit crunch and the financial crisis, we hear the gyra-
tions of the stock market reported on the news: today down five percent,
then up eight percent, then down three percent, etc. Suppose we hear that
the stock market fell by five percent, and then the next day we hear that it
rose by five percent. We breathe a sigh of relief. At least it fully recovered.
Well actually, no it didn’t.

Suppose on day zero we start with a sum s, and on day zero the market
falls by p percent. Then at the start of day 1 we have s(1 − p/100). Now
suppose on day 1 the market rises by p percent, then at the start of day 2
we have s(1−p/100)(1+p/100). Over successive days we have the following
sequence:

day 0: s,
day 1: s (1− p/100),
day 2: s (1− p/100)(1 + p/100),
day 3: s (1− p/100)2(1 + p/100),
day 4: s (1− p/100)2(1 + p/100)2,
. . . ,
day n with n odd: s (1− p/100)(n+1)/2(1 + p/100)(n−1)/2,
day n with n even: s (1− p/100)n/2(1 + p/100)n/2.

Suppose we start with 100 points, and go down 5 percent, up 5 percent,
down 5 percent, up 5 percent, etc, then on successive days the profile would
be:

day 0: 100.000000,
day 1: 95.000000, day 6: 99.251873,
day 2: 99.750000, day 7: 94.289280,
day 3: 94.762500, day 8: 99.003744,
day 4: 99.500625, day 9: 94.053557,
day 5: 94.525594, day 10: 98.756234.

After about 550 trading days, or 2.2 years, the market would be down to
around 50; that is, it would have halved. After about 2500 trading days, or
10 years, it would be down to around 5; that is, to 5 percent of its starting
value. After infinite time it falls to zero.

It matters little if the market rises first and then falls; that is, up 5
percent, down 5 percent, up 5 percent, down 5 percent, etc. The fate is the
same. In this case the sums on successive days would be
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day n with n odd: s (1 + p/100)(n+1)/2(1− p/100)(n−1)/2,
day n with n even: s (1 + p/100)n/2(1− p/100)n/2.

A fall of 5 percent would need a rise of at least a 5.3 percent to maintain
equilibrium. A rise of 5 percent would be corrected by a fall of no more
than 4.7 percent. So in a volatile market, with swings of 5 percent not
uncommon, the falls have greater significance than the rises. The mental,
rule-of-thumb adjustment needed to correct back to square one is about plus
or minus 0.3 percent.

Another common fallacy is that a rise of p percent, followed by a second
rise of q percent, produces a rise of p+ q percent. No it doesn’t; it produces
a rise of p+q+pq/100 percent. So two successive rises of 5 percent produce
an overall rise of 10.25 percent. Similarly, successive falls produce slightly
greater losses than one might imagine.

None of this is particularly advanced mathematics, but it is interesting
how news reports can be misleading, even to the mathematician who doesn’t
take care.

TF writes. There is a similar second-order differential effect which is known
to anyone who has ever had an interest in horses, especially the racing
thereof and the wagering thereon. Originally the process of betting was
simple. Punters bet, horses raced, bookmakers paid the winners. However,
all that changed when the Government decided to tax betting.

A simple 10 percent tax was levied on all monies paid out to punters
by bookmakers. So see how it works, suppose you bet £20 on a horse to
win a certain race. It wins! The odds are twenty-to-one. So the bookmaker
must pay you £420. But the Government takes its share and the payout is
reduced by £42 to £378. A significant part of your winnings is lost. This is
even more serious if you had backed the favourite (in another race) at the
short odds of ten-to-one on. In this case your return from the bookmaker
when the horse wins, £22, is reduced by £2.20 to £19.80—you have actually
lost money!

As a service to punters, most leading bookmakers once offered you the
chance to pay the 10 percent tax on your stake. You pay the bookmaker
£22 instead of £20 but your winnings of £420 remains untaxed, and you
are extremely happy. However, this practice has been banned by law, since,
contrary to what the example might lead one to believe, it actually works
to the bookmaker’s advantage. Can you see why?
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Gigantic prime triplets
Tony Forbes
You may remember back in December 2002 we defined a titanic prime as
a non-composite number consisting of at least 1000 decimal digits (Titanic
prime quintuplets, M500 189, pages 12–13). In the same article I reported
the discovery of a large prime quintuplet:

31969211688
∏

p < 2400
p prime

p + 16061 + d, d = 0, 2, 6, 8, 12,

by Norman Luhn, and I was sufficiently impressed to place all 1034 digits
of the first number on the front cover of that issue.

This novel and interesting usage of ‘titanic’ was introduced in an article
by Samuel Yates in 1985. Well, the next power of ten up from one thousand
is ten thousand, and, as you can imagine, there is also a technical term for
primes of this magnitude. In 1992, when titanic primes were beginning to
become commonplace, Yates again realized that a new word was needed;
and so he made another definition.

A gigantic prime is defined as a prime number which has at least
10000 decimal digits.

This same definition is used by Chris Caldwell in his database of large
primes at http://primes.utm.edu/. You will obviously want to know that
the smallest gigantic prime is 109999 +33603. This was already ‘well known’
ever since computer programmers learnt how to do serious arithmetic, but
the world had to wait until 2003 for a proof—by Jens Franke, Thorsten
Kleinjung and Tobias Wirth.

Now, as I write this, two truly remarkable things have happened.

First, I was most surprised when the same Norman Luhn wrote to me
on 13th October 2008 to report a new gigantic probable prime triplet,

2072644824759 · 233333 + d, d = −1, 1, 5, (∗)

at 10047 digits beating his own previous world record of 6223 digits (M500
220, cover). The first two members (d = ±1), each being a factorizable
number plus or minus one, are easily proved to be prime by elementary
methods. However, the third (d = 5) is not of this form, and therefore its
primality proof would require a much greater effort. And at 10047 digits,
it was at the time not at all clear how this could be done without about 6
months to a year of computing.
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Then surprise turned into astonishment when a few weeks later, on
17th November, Norman reported that his third number had been veri-
fied in record time by François Morain with a new version of his elliptic
curve primality prover, FastECPP. Using a cluster of nine AMD Athlon-64
3400+ processors, Morain achieved the primality proof in a record 111 days
of computer time and was able to deliver the required primality certificate
in only three weeks, thus confirming (∗) as true prime triplet.

There is an element of history repetition here. A long time ago I re-
ported the 1041-digit probable prime triplet

23456 + 5661177712051 + d, d = 0, 2, 6,

found in July 1995 (M500 145, page 19). If the primes could have been
verified quickly, it would have been the first ever titanic example of its
kind. However, I had to wait a little longer than Norman—actually more
than two years longer—for the primes to be certified by the same François
Morain in January 1998 (M500 161, page 13).

Norman’s triplet is printed full on the front cover of this magazine.

Some more prime number records, as at 18 December 2008. Notation:
x# =

∏
2≤p≤x, p prime p.

Largest prime: 243112609 − 1, August 2008, Edson Smith, George Wolt-
man, Scott Kurowski, et al. (GIMPS), 12978189 digits.

Largest prime twins: 2003663613 ·2195000±1, January 2007, Eric Vautier,
Dmitri Gribenko, Patrick W. McKibbon, Michaek Kwok, Andrea Pacini and
Rytis Slatkevicius, 58711 digits.

Largest prime quadruplets: 4104082046 · 4800# + 5651 + d, d = 0, 2, 6,
8, April 2005, Norman Luhn, Primo, 2058 digits.

Largest prime quintuplets: 283534892623 · 2500# + 1091261 + d, d = 0,
2, 6, 8, 12, April 2006, Norman Luhn, 1069 digits.

Largest prime sextuplets: 328481121285 · 1000# + 16057 + d, d = 0, 4, 6,
10, 12, 16, January 2006, Norman Luhn, 427 digits.

Largest prime septuplets: 251733155478 · 650# + 1146779 + d, d = 0, 2,
8, 12, 14, 18, 20, January 2006, Norman Luhn, 282 digits.

Largest prime octuplets: 330846961 · 503# + 349129635971 + d, d = 0,
2, 6, 8, 12, 18, 20, 26, February 2008, Jens Kruse Andersen, 218 digits.
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Largest prime nonuplets: 3336884 · 331# + 80877403191701 + d, d = 0,
2, 6, 8, 12, 18, 20, 26, 30, September 2007, Dirk Augustin and Jens Kruse
Andersen, 140 digits.

Largest prime decuplets: 24698258 · 239# + 28606476153371 + d, d = 0,
2, 6, 8, 12, 18, 20, 26, 30, 32, Sept. 2004, Jens Kruse Andersen, 104 digits.

Largest prime 11-tuplets: 24698258 · 239# + 28606476153371 + d, d = 0,
2, 6, 8, 12, 18, 20, 26, 30, 32, 36, September 2004, Norman Luhn and Jens
Kruse Andersen, 104 digits.

Largest prime dodecuplets: 8486221·107#+4549290807806861+d, d = 0,
2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, May 2006, Dirk Augustin and Jens
Kruse Andersen, 50 digits.

Largest prime 14-tuplets: 381955327397348 · 80# + 18393209 + d, d = 0,
2, 8, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 50, December 2007, Norman Luhn,
46 digits. Includes largest prime 13-tuplets.

Largest prime 15-tuplets: 107173714602413868775303366934621 +d, d =
0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50, 56, April 2008, Jens Kruse
Andersen, 33 digits.

Largest prime 18-tuplets: 11298510058634407483251313 + d, d = 0, 4,
6, 10, 16, 18, 24, 28, 30, 34, 40, 46, 48, 54, 58, 60, 66, 70, December 2008,
Jaroslaw Wroblewski, 26 digits. Includes largest prime 16- and 17-tuplets.

Problem 226.6 – Two bombs
There is a collection of bombs, all of identical construction. Your task is
to determine the minimum height from which a bomb must be dropped
for the detonation mechanism to work. Great accuracy is not necessary.
Measurement to the nearest 10 feet is all that is required. And fortunately
there is a convenient very tall building whose floors are spaced ten feet
apart.

If you are given just one bomb to test, all you can do is this, starting at
n = 1. Drop the bomb from floor n and see what happens. If it explodes,
report ‘10n feet’. If not, retrieve the bomb and repeat the test from floor
n+ 1. You may assume that a bomb which survives being dropped will not
sustain any damage, and therefore a future test will be valid. On the other
hand, once the bomb explodes it cannot be used again.

Now suppose instead you are given two test bombs. How can you im-
prove your strategy?
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Problem 226.7 – Squaring the circle
S. Ramanujan
In the diagram, AOB is a diameter of the circle with centre O, The radius
of the circle is |OA| = 1. Also CO is perpendicular to AB, |AD| = |CE| =
|EF | = 1

3 , |AH| = |AE|, GH is parallel to EF , DI is parallel to OG, AJ is
perpendicular to AB and |AJ | = |AI|. Show how to construct the diagram
with ruler and compasses only. What is 3

√
|OJ | ?
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Problem 226.8 – 999 nines
Emil Vaughan

What are the last nine digits of the number whose
value is an exponential tower of 999 nines?

999
· ·
· 9

99
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