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Solution 284.2 – 13 cards
A standard pack of 52 playing cards is shuffled and dealt into 13
piles of four. Is it always possible to select one card from each
pile so that the chosen cards consist of 2, 3, 4, 5, 6, 7, 8, 9, 10,
J, Q, K, A, not necessarily of the same suit?

Reinhardt Messerschmidt
Such a selection is always possible. This is a consequence of the theorem
below, which is a version of Hall’s marriage theorem.

Suppose X, I are nonempty finite sets and (Ai)i∈I is a family of subsets
of X. The family (Ai)i∈I satisfies Hall’s condition if

|J | ≤
∣∣∣∣ ⋃
i∈J

Ai

∣∣∣∣ for every nonempty subset J of I.

A family (xi)i∈I in X is a system of distinct representatives (SDR) for
(Ai)i∈I if the xi are distinct and xi ∈ Ai for every i ∈ I.

Note that if (Ai)i∈I satisfies Hall’s condition and i ∈ I, then letting
J = {i} gives 1 ≤ |Ai|; i.e. Ai is nonempty.

Theorem 1 If X, I are nonempty finite sets and (Ai)i∈I is a family of
subsets of X that satisfies Hall’s condition, then (Ai)i∈I has an SDR.

Application of the theorem to the original problem

A card can be viewed as an ordered pair consisting of a suit from the set
{♣,♦,♥,♠} and a rank from the set

X = {2, 3, . . . , 10, J, Q, K, A}.

Let I = {1, 2, . . . , 13} represent the set of piles that the cards have been
dealt into. For every i ∈ I, let Ai be the set of distinct ranks in the i-th
pile.

We will show that (Ai)i∈I satisfies Hall’s condition. Suppose J is a
nonempty subset of I, i.e. J represents a subset of piles. Since each pile
has exactly four cards, the subset of piles has exactly 4|J | cards. Since the
subset of piles has exactly |∪i∈JAi| distinct ranks and each rank can be
paired with at most four suits, the subset of piles has at most 4|∪i∈JAi|
cards; therefore

4|J | ≤ 4

∣∣∣∣ ⋃
i∈J

Ai

∣∣∣∣;
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i.e. (Ai)i∈I satisfies Hall’s condition.

It follows from the theorem that we can select one card from each pile
so that the chosen cards have distinct ranks.

Proof of the theorem

The following proof is adapted from [1]. It uses induction on |I|.
Base case. Suppose I = {i0}. Choose any x0 ∈ Ai0 , then (x0) is an

SDR for (Ai)i∈I .

Inductive case. Suppose |I| > 1 and the theorem holds for families of
fewer than |I| subsets. A subset J of I is critical if ∅ ( J ( I and

|J | =

∣∣∣∣ ⋃
i∈J

Ai

∣∣∣∣.
Case 1. Suppose I does not have a critical subset. Choose any i0 ∈ I

and x0 ∈ Ai0 . Let K = I − {i0}. For every i ∈ K, let Bi = Ai − {x0}.
We will show that (Bi)i∈K satisfies Hall’s condition. Suppose J is a

nonempty subset of K. Since (Ai)i∈I satisfies Hall’s condition and J is not
a critical subset of I,

|J | <
∣∣∣∣ ⋃
i∈J

Ai

∣∣∣∣.
Furthermore, ⋃

i∈J
Ai −

⋃
i∈J

Bi ⊆ {x0};

therefore ∣∣∣∣ ⋃
i∈J

Ai

∣∣∣∣ ≤ ∣∣∣∣ ⋃
i∈J

Bi

∣∣∣∣+ 1;

therefore

|J | ≤
∣∣∣∣ ⋃
i∈J

Bi

∣∣∣∣;
i.e. (Bi)i∈K satisfies Hall’s condition.

It follows by the inductive hypothesis that (Bi)i∈K has an SDR. This
can be extended to an SDR for (Ai)i∈I by adding x0.

Case 2. Suppose I has a critical subset K. The family (Ai)i∈K has
fewer than |I| elements, and satisfies Hall’s condition because (Ai)i∈I does;
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therefore (Ai)i∈K has an SDR by the inductive hypothesis. For every i ∈
I −K, let

Bi = Ai −
⋃
j∈K

Aj .

We will show that (Bi)i∈I−K satisfies Hall’s condition. Suppose J is a
nonempty subset of I −K. We have⋃
i∈J

Bi =
⋃
i∈J

(
Ai −

⋃
j∈K

Aj

)
=

⋃
i∈J

Ai −
⋃
j∈K

Aj =
⋃

i∈J∪K
Ai −

⋃
j∈K

Aj ;

therefore ∣∣∣∣ ⋃
i∈J

Bi

∣∣∣∣ =

∣∣∣∣ ⋃
i∈J∪K

Ai

∣∣∣∣− ∣∣∣∣ ⋃
j∈K

Aj

∣∣∣∣.
Since (Ai)i∈I satisfies Hall’s condition and K is a critical subset of I,∣∣∣∣ ⋃

i∈J∪K
Ai

∣∣∣∣ ≥ |J ∪K|, ∣∣∣∣ ⋃
j∈K

Aj

∣∣∣∣ = |K|;

therefore ∣∣∣∣ ⋃
i∈J

Bi

∣∣∣∣ ≥ |J ∪K| − |K| = |J |;

i.e. (Bi)i∈I−K satisfies Hall’s condition.

It follows by the inductive hypothesis that (Bi)i∈I−K has an SDR. Join-
ing the SDRs for (Ai)i∈K and (Bi)i∈I−K gives an SDR for (Ai)i∈I .

References

[1] http://homepages.warwick.ac.uk/~masgax/week10.pdf

(accessed 28 October 2018).

Problem 288.1 – Matrix powers

Given a1, b1, c1, d1, let M be a 2× 2 matrix defined by Mn =

[
an bn
cn dn

]
,

n = 1, 2, . . . . Show that bnc1 = b1cn for n = 1, 2, . . . .

http://homepages.warwick.ac.uk/~masgax/week10.pdf
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Flippin’ functions
Martin Hansen
When I first became a secondary school teacher of mathematics I rather
liked the visual approach to writing down the inverse of a function. A
typical GCSE examination question would begin by presenting a flow chart
and ask what function it described. For example:

x → + 4 → Reciprocal → × 5 → f(x).

Readers of M500 will have no difficulty in realising that the function de-
scribed by the diagram by flowing left to right as indicated by the arrows
is

f(x) =
5

x+ 4
, x 6= −4.

Rather attractively, clever pupils were able to write down the inverse func-
tion by simply moving against the flow, remembering that the inverse of
multiplication is division, and of addition is subtraction. Taking a recipro-
cal is self inverse. Thus:

f−1(x) =
5

x
− 4, x 6= 0.

For some pupils it proved helpful to make them draw the reversed flowchart
first;

f−1(x) ← − 4 ← Reciprocal ← ÷ 5 ← x.

My enthusiasm for this visual approach of obtaining the inverse of a function
lessened when a colleague told me it failed as the functions became more
complicated, and gave me, as an example,

f(x) =
x

x+ 1
, x 6= −1.

The problem is having an x in more than one place. The mainstream alge-
braic approach of, effectively, making x the subject of the formula seemed
the only way to cope with such questions. Recently, however, when looking
at this function with an A-Level class I began to wonder if I could, after
all, get the flow charting method to work. Some simple, if mildly sneaky,
algebra was employed to get the x into just one place;

f(x) =
x

x+ 1
=

x+ 1− 1

x+ 1

=
x+ 1

x+ 1
− 1

x+ 1

= 1− 1

x+ 1
.
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A flowchart followed:

x → + 1 → Reciprocal → Flip sign → + 1 → f(x).

x ⇒ x+ 1 ⇒ 1

x+ 1
⇒ − 1

x+ 1
⇒ − 1

x+ 1
+ 1,

which could be reversed:

f−1(x) ← − 1 ← Reciprocal ← Flip sign ← − 1 ← x,

x ⇒ x− 1 ⇒ − (x− 1) ⇒ 1

−(x− 1)
⇒ 1

−(x− 1)
− 1

and finally some algebraic manipulation:

1

−(x− 1)
− 1 =

1

1− x
− 1

=
1

1− x
− 1− x

1− x

=
1− (1− x)

1− x
=

x

1− x

got to the answer that I knew, from the algebraic approach, was correct;

f−1(x) =
x

1− x
, x 6= 1.

I’m going to conclude with a challenge.

• Can this ‘foot in the door’ be developed to tackle the ‘worst case’
GCSE inverse function questions which are of the form of a Möbius
transformation

f(x) =
ax+ b

cx+ d

but with a, b, c and d restricted to being integers, and x ∈ R, x 6=
−d/c?

• What other awkward functions can be handled, keeping in mind that
to have an inverse, a function must be one-to-one?

• For example, what about f(x) = x3 + x?
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Solution 283.2 – Another determinant
This is very similar to Problem 282.5, except that the answer is
very different. Compute

L(n, λ) = det


n n− λ . . . n− λ n− λ

n− λ n . . . n− λ n− λ
. . . . . . . . . . . . . . .
n− λ n− λ . . . n n− λ
n− λ n− λ . . . n− λ n

 ,
where n is the number of rows (or columns) in the matrix.

Tommy Moorhouse
That useful identity again. This problem can be solved in exactly the
same way as Problem 282.5 using the identity

det eA = exp(TrA).

This time we set L(n, λ) = λI+ (n−λ)U where I is the identity matrix and
U is the matrix with all its entries equal to unity. This is our candidate for
eA. Formally taking logarithms we get

A = log (λI− (n− λ)U))

= log λI + log
(
I−

(
1− n

λ

)
U
)

= log λI−
∞∑
k=1

1

k

(
1− n

λ

)k
Uk.

Now, Uk = nk−1U for k ≥ 1 giving
∞∑
k=1

1

k

(
1− n

λ

)k
Uk =

1

n

∞∑
k=1

1

k

(
n
(

1− n

λ

))k
U

= − 1

n
log
(

1− n
(

1− n

λ

))
U.

We have now determined that

A = log λI +
1

n
log
(

1− n
(

1− n

λ

))
U

so taking the trace gives

TrA = n log λ+ log
(

1− n
(

1− n

λ

))
.

Taking the exponential gives the required determinant as

detL(n, λ) = exp(TrA) = λn(1− n) + n2λn−1.
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Peter Fletcher
The matrix determinant lemma (see e.g. https://en.wikipedia.org/

wiki/Matrix_determinant_lemma) states that if A is an invertible n × n
matrix and u and v are length n column vectors, then

det
(
A + uvT

)
=
(
1 + vTA−1u

)
det(A).

We can write
L(n, λ) = det

(
λIn + uvT

)
,

where u is a length n column vector of 1s and v = (n− λ)u. Then we have

vTu = (n− λ)(1 1 1 · · · 1)(1 1 1 · · · 1)T = (n− λ)n.

Now we can write

L(n, λ) =

(
1 + vT

(
In
λ

)
u

)
det(λIn)

=

(
1 +

1

λ
vTu

)
λn =

(
λ+ vTu

)
λn−1 =

(
λ+ (n− λ)n

)
λn−1

=
(
n2 − (n− 1)λ

)
λn−1 = n2λn−1 − (n− 1)λn.

Stuart Walmsley
This is very similar to Problem 282.5. Both problems can be solved at once
using my solution to Problem 261.6 Determinant Equation, which appeared
in M500 263. Problem 282.5 concerned the determinant

Λ(n, λ) = det


λ −1 . . . −1 −1
−1 λ . . . −1 −1
. . . . . . . . . . . . . . .
−1 −1 . . . λ −1
−1 −1 . . . −1 λ

 .
Using the symmetry of the determinant as described in the solution to 261.6,

Λ(n, λ) = (λ− n+ 1)(λ+ 1)n−1.

This readily adapted to the present situation. To get a more general form
consider the mapping λ→ x, −1→ a. Then the new determinant, D(n, x)
say, is given by

D(n, x) = (x+ (n− 1)a)(x− a)n−1.

https://en.wikipedia.org/wiki/Matrix_determinant_lemma
https://en.wikipedia.org/wiki/Matrix_determinant_lemma
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The determinant under consideration in this problem L(n, λ) is given by
the mapping x→ n, a→ n− λ, leading to

L(n, λ) = (n+ (n− 1)(n− λ))(n− n+ λ)n−1,

which simplifies to

L(n, λ) = n2λn−1 − (n− 1)λn.

For example:

L(2, λ) = 4λ− λ2,
L(3, λ) = 9λ2 − 2λ3,

L(4, λ) = 16λ3 − 3λ4.

Two specific forms may be noted: L(n, n) = nn, L(n, 0) = 0. Both these
results can, however, be deduced from the unexpanded form using simple
properties of determinants.

Problem 288.2 – Matrix
Mohammed Mehbali
For n a positive integer, construct a 3n× n3 matrix Mn as follows. Let In
denote the n× n identity matrix.

The first n rows of Mn is In with each column repeated n2 times.

For the next n rows, take n copies of In and repeat each column n times.

For the last n rows, take n2 copies of In.

Thus when n = 2 and n = 3 we have

M2 =


1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

, M3 =



1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1


.

Prove that the rank of Mn is 3n− 2.
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Solution 283.1 – Two integer equations
Given positive integers m and n, show that the number of solu-
tions in non-negative integers of

x1 + x2 + · · ·+ xn = m− 1 (1)

is equal to the number of solutions in non-negative integers of

x1 + x2 + · · ·+ xm = n− 1. (2)

Construct a one-to-one mapping between the solution sets.

Tony Forbes

The number of solutions to (1) is

(
n+m− 2

n− 1

)
. To see this, carry out the

following procedure, where m = 26 and n = 29 in the example.

Write down n+m− 2 copies of the symbol I and add parentheses.

(IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII)

Choose n−1 Is and change them to commas. The number of ways to make

this choice is

(
n+m− 2

n− 1

)
.

(,I,,I,II,,,I,I,,II,,II,III,,I,,IIIIIII,,,,,,,,,II,I,I)

Now interpret the n not necessarily non-empty blocks of Is in this list as n
Roman numerals to represent x1, x2, . . . , xn. (Recall that nothing (i.e. the
absence of something) denotes 0 in the Roman system, and I suppose you
could gather the Is in the usual way using V, X, L, C, D, M, but I don’t see
how that helps—if m is large and n is small, say m > 10100 and n < 100,
you are merely trading a lot of Is for a lot of Ms.) There are

n+m− 2− (n− 1) = m− 1

Is and hence
x1 + x2 + · · ·+ xn = m− 1.

Thus we have constructed a solution of (1). Clearly the process is reversible.
To get the corresponding solution of (2), interchange I ⇔ comma.

I am wondering if this theorem was known to Roman mathematicians.
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Discovery in mathematics
Sebastian Hayes
How does one discover a theorem of interest? There seems to be no lack of
inventive minds amongst the contributors to this magazine, so it would be
interesting to hear some of them tell us how they arrived at their discov-
eries. As far as I can make out, there seem to be three main procedures:
the inductive method, the deductive method and the exploratory or playful
method.

By ‘inductive method’ I do not mean mathematical induction as such
but simply the standard procedure of scanning a mass of data and trying
to discern some underlying structure or pattern. One then investigates to
see whether the pattern keeps on recurring and if it does, one attempts to
show that this feature is bound to persist—but this is, strictly speaking,
part of proving not discovery. Most theorems in Number Theory seem to
have been discovered in this way: I doubt if anyone ever deduced from first
principles that F2n = F 2

n + F 2
n−1; almost certainly Lucas and others noted

that 52 + 32 = 34 and 132 + 212 = 610 and went on from there. Even such a
prestigious theorem as the Prime Number Theorem apparently originated in
the scanning of data (allegedly Gauss, as a teenager, conjectured that π(x)
varied with x/(log x) after examining a recently published list of primes).

The ‘natural’ movement of the human mind is from the particular to the
general, the concrete to the abstract, which is why the inductive approach
comes much more easily to most people. By concentrating on the logical
aspects modern mathematicians have certainly tightened up the subject but
at the cost of completely alienating the general public. This is far from being
a good thing even for mathematics itself: it means that people for whom
aesthetic considerations are uppermost avoid mathematics like the plague—
the exact reverse of the situation that prevailed during the Renaissance and
baroque eras.

The deductive method usually proceeds either by generalizing some
known result, or by applying it to a particular case where it yields un-
expected consequences. This magazine has printed several articles in recent
years which are generalizations of the Fibonacci Sequence and one gath-
ers from M500 205 that Dennis Morris is currently involved in generalizing
the hyperbolic functions, themselves generalizations of the trigonometric
functions.

The starting point for an extension must itself already have some
generality—a single numerical case is of little or no value. However, the
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starting point mustn’t be too general: I don’t think any contemporary pure
mathematician ever sat down of an evening with the Axioms of von Neu-
mann Set Theory in order to see what new theorems he or she could deduce.

An example of the opposite process, particularizing, is Pascal consider-
ing the expansion of (a + b)n and setting a = 1, b = 1 thus showing that
the total number of possible combinations of n objects taking r at a time
is 2n. (This includes the choice of not making a selection at all.) Setting
some variable or variables at unity or at a multiple or submultiple of π
seems to be a standard stratagem that has yielded a surprisingly rich har-
vest of theorems. One would like to hear of other ‘tricks of the trade’ but
modern textbooks are surprisingly coy on the subject—I have yet to come
across a chapter, let alone a whole book, entitled How to Devise or Discover
Interesting Theorems.

The third method is not really a method at all: it is basically just
messing about and seeing what comes up. Homo sapiens is, thank God,
also Homo ludens. Leonhard Euler, the most prolific mathematician of
all time—his works run to seventy-five large volumes—played around with
mathematical formulæ as children play with toys (or did before the advent
of computers). What would happen if we did this? Or this? And then that?

As far as I am concerned mathematics is not an ensemble of water-tight
logical systems but more like a series of wild life reserves where strange
plants and animals can not only be observed but actually bred or grown
from seed. It is notable that many of the most inventive mathematicians
were amateurs, e.g. Leibnitz, Fermat. In contemporary theatre and above
all ‘painting’ (conceptual art), originality is so much the order of the day
that any sort of rubbish is acceptable provided you are doing something
that nobody has done before. But for some reason in mathematics we have
the opposite set-up: rigour has well nigh stifled elegance and inventiveness.
Mathematics was once one of the ‘humanities’. I am not quite sure what the
‘humanities’ were, or were intended to be, but I assume the basic idea was
that studying them did not just make you more learned but more ‘human’.
It would perhaps be going too far to claim that the humanistic approach to
mathematics, i.e. treating it at once as a science, an art and a philosophy
of nature, invariably produced a better type of person—one gathers that
Newton was rather a nasty man—but there is no doubt in my mind that
trying to turn someone into a logical machine is unlikely to improve human
behaviour (or even judgement in real world situations which are all too often
extremely messy). Est in medio verum—truth lies in the middle.
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Solution 283.5 – Primes
Show that

lim
N→∞

 ∏
p≤N, p prime
p≡1 (mod 4)

p

p− 1


 ∏

p≤N, p prime
p≡3 (mod 4)

p

p+ 1

 =
π

4
.

Tommy Moorhouse
Forming a Dirichlet L-function We can recast the expression to be
taken in the limit N →∞ in the form (where all products extend to p ≤ N) ∏

p≡1
(mod 4)

p

p− 1


 ∏

p≡3
(mod 4)

p

p+ 1

 =

 ∏
p≡1

(mod 4)

1

1− p−1


 ∏

p≡3
(mod 4)

1

1 + p−1

 .

In this form it is easier to see that the product is related to the Dirichlet
series

L(s, χ2) =
∏
p

1

1− χ2(p)p−s
,

where χ2 is the non-principal Dirichlet character modulo 4 (i.e. χ2(1) = 1,
χ2(2) = 0, χ2(3) = −1, χ2(4) = 0; see Chapter 6 of [Apostol]).

We will take the limit N →∞ from the outset, but take s = 1 + ε (say)
to ensure that the Dirichlet L-function converges. Using the definition

ζ(s, a) =

∞∑
n=0

(n+ a)−s

we see that

L(s, χ2) = 4−s
(
ζ

(
s,

1

4

)
− ζ

(
s,

3

4

))
.

The expression on the right hand side can be evaluated at s = 1 because of
cancellations between the terms of the ζ function, and we find

lim
s→1

L(1, χ2) =
1

4

(
1

1/4
+

1

5/4
+ · · · − 1

3/4
− 1

7/4
− · · ·

)
= 1− 1

3
+

1

5
− 1

7
+ · · ·

= arctan 1 =
π

4
.

Thus the original product is equal to π/4.
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Alternative approach We could make use of the relation (Theorem 12.2
of [Apostol])

Γ(s)ζ(s, a) =

∫ ∞
0

xs−1e−ax

1− e−x
dx

to rewrite L(s, χ2) as

lim
s→1

L(s, χ2) =
1

4

∫ ∞
0

e−x/4 − e−3x/4

1− e−x
dx

=
1

4

∫ ∞
0

e−x/4(1− e−x/2)

1− e−x
dx

=
1

8

∫ ∞
0

dx

cosh(x/4)

=
1

2
arctan(sinh(x/4))

∣∣∞
0

=
π

4
.

The last equality may be found in standard texts, such as [Abramowitz &
Stegun]. This leads to an interesting problem.

Problem Using the above alternative methods to analyse the product ∏
p≡1 mod 6

p

p− 1

 ∏
p≡5 mod 6

p

p+ 1

 ,

or otherwise, show that

1− 1

5
+

1

7
− 1

11
+

1

13
− · · · =

√
3π

6
.

The integral∫
cosh(x/6)

1 + 2 cosh(x/3)
dx =

√
3 arctan

(
2 sinh(x/6)√

3

)
(which you can check by differentiation) may be of use.

References

[Apostol] Apostol, T., Introduction to Analytic Number Theory, Springer,
1976.

[Abramowitz & Stegun] Abramowitz, M., and Stegun, I. A., Handbook of
Mathematical Functions, Dover, 1972.
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Solution 283.6 – Pistachio nuts
A bowl contains n pistachio nuts and an equal number of empty
half shells. You can’t see what you are taking from the bowl,
and may therefore get a nut or a half shell. A single pistachio
nut supplies 10 kcal of energy, but 0.1 kcal is used in opening the
shell and eating the nut. Also, 0.1 kcal is used in removing an
object from the bowl, and another 0.1 kcal in replacing an object
in the bowl.

You can therefore devise a bizarre and pointless ritual of remov-
ing, opening and eating nuts, and replacing some or all of the
half shells or unopened nuts in the bowl, that will ensure that
you gain or lose no energy by consuming all the nuts. What
is the simplest ritual, i.e. involving the fewest actions, that will
produce this result for any value of n?

Ralph Hancock
I think this is the simplest solution. No one said you couldn’t sort what
you get out of the bowl. So it’s utterly banal, involving no mathematical
procedure more advanced than counting. But at least it leaves the table
tidy.

1. Remove the entire contents of the bowl, one by one.

2. Replace all the half shells in the bowl, again one by one.

3. Remove all the half shells again.

4. Repeat steps 2 and 3 46 times.

5. Finally replace all the half shells in the bowl.

6. Shell and eat the nuts.

7. As you do this, return all the newly opened half shells to the bowl.

Problem 288.3 – Digit powers
Take a positive integer, n, and compute P (n) =

∑
d d

d, where d runs
through the (decimal) digits of n. For example, recalling that 00 = 1,
P (3210) = 27 + 4 + 1 + 1 = 33. Show that n = 1 and n = 3435 are the only
instances where P (n) = n. Or find another.

This is not dissimilar to ‘Factorial digital invariants’ by David Singmas-
ter, M500 187, where he sums d! instead of dd. Here, the only fixed points
of n 7→

∑
d, d runs through the digits of n d! occur at n = 1, 2, 145 and 40585.
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Problem 288.4 – Two dice
You go to the casino to play a game involving two dice and the redistribution
of wealth. The casino’s die has its faces marked 2,3,6,6,6,7, and yours is
marked 1,1,5,5,9,9. At each turn the dice are thrown and the winner is
whoever’s die shows the higher number. The odds are 1 : 1 and the loser
pays the winner the agreed stake.

As usual, the game is biased in favour of the casino, as you can verify
by examining all 36 possible outcomes (or otherwise). After a while you
detect this bias and you refuse to play any more unless the game is made
fairer.

You suggest throwing each die twice and taking the average of the two
scores. For example, if the casino throws (6,7) and you throw (1,9), you lose
because 6.5 is greater than 5. The casino, whose ultimate aim is to ruin
you, agrees on the additional condition that it wins if the averages are the
same—as would happen if the scores were (7,7) and (5,9). You agree and
the game continues under the new rules. Was this wise?

Problem 288.5 – Lines
In the picture, X is the midpoint of AB, Y is the midpoint of CD, E is the
intersection of AY and CX, F is the intersection of BY and DX, and Z is
the intersection of AD and BC. Show that Z is on EF .

A B

C

D

E

F

X

Y

Z

Problem 288.6 – Icosahedron in a cylinder
What is the smallest radius of a cylinder into which you can insert a regular
icosahedron with edge length 1?
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Problem 288.7 – Number representation
Here’s a chance for an M500 reader to make some money. All you have to
do is decide the following conjecture.

Every integer greater than 7 can be written in the form

p+ 2k + (1 + (n mod 2)) · 5m,

where p is an odd prime, k and m are nonnegative integers, and
2k + (1 + (n mod 2)) · 5m is squarefree.

Here, squarefree means not divisible by the square of a prime, and (n mod 2)
means 0 if n is even, 1 if n is odd. The conjecture is saying that every
sufficiently large even number can be expressed the sum of a prime and a
squarefree integer which is itself the sum of a power of 2 and a power of 5.
Clearly one is being reminded of Goldbach’s conjecture: every sufficiently
large even number can be expressed the sum of a prime and a squarefree
integer which is itself a prime. However, squarefree numbers which are
not necessarily prime are much easier to deal with than primes, and so it
is possible that the problem might be attackable. The conjecture for odd
numbers is the same except that we must multiply the power of 5 by 2. For
example,

8 = 3 + 22 + 50,

9 = 3 + 22 + 2 · 50,

10 = 3 + 21 + 51, . . . ,

20000000001 = 7792968719 + 25 + 2 · 514, . . . .

For the last one, you can verify that 7792968719 is prime and that

20000000001− 7792968719 = 2 · 3049 · 2001809.

You might want to look up https://oeis.org/A304081, where it states
that Zhi–Wei Sun, the originator of the problem, is offering $2500 for a
proof or $250 for a counter-example. It also states that the conjecture has
been verified up to 2 · 1010. (Actually 2 · 1010 + 1; see above.)

Problem 288.8 – Binomial coefficient sum
Show that

k∑
i=0

(
k

i

)2(
n+ 2k − i

2k

)
=

(
n+ k

k

)2

.

https://oeis.org/A304081
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Problem 288.9 – Chain
A chain of length 2C is suspended between the tops of two vertical poles
of height H, 0 ≤ H ≤ C and just grazes the ground at its centre. How far
apart are the poles?

A large company was and possibly still is offering H = C = 40 m, as a
test for job applicants. Presumably, mathematical skills are irrelevant and
one’s employment prospects are determined only by how long it takes to
discover that this special case is trivial.

Problem 288.10 – 12-vertex 5-regular graphs

Tony Forbes
A graph is d-regular if every vertex has
d neighbours. A graph is planar if you
can draw it on a sheet of paper without
any lines crossing. (I leave it to you to
transform this vague explanation into
a precise definition.) Suppose graph G
has 12 vertices and is 5-regular. Show
that if G is planar then it must be the
vertex-edge graph of the icosahedron.

q qq
q

qq
q

q
qq q

q
If you go to

http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html#CRG,

you will find a lot of information about d-regular graphs. In particular,
there are 7849 5-regular graphs with 12 vertices (7848 connected, 1 not),
which can be downloaded in compressed form. So one way to solve the
problem is to test each of the these graphs for planarity. However, I am
hoping there is a proof that avoids a lot of computation.

More stuff wanted Once again we are running out of substantial arti-
cles. Please get writing! May I (TF) especially urge those of you who are of
the opinion that much of M500 is incomprehensible to send us mathematical
stuff that you and other readers of M500 can readily understand.

Fortunately we do have plenty of solutions to M500 problems. But to
make sure there is something to print in M500 289 I have retained material
relating to problems that have appeared in M500 285 and beyond. They
provide an essential backstop against possible shortages.

http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html#CRG
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Front cover Four magnificent 10132-digit primes,

667674063382677× 233608 + d, d ∈ {−1, 1, 5, 7},

discovered by Peter Kaiser in February 2019. A new world record and
the first example of a prime quadruplet breaking the 10000-digit barrier.


