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The M500 Society and Officers

The M500 Society is a mathematical society for students, staff and friends
of the Open University. By publishing M500 and ‘MOUTHS’, and by organiz-
ing residential weekends, the Society aims to promote a better understanding of
mathematics, its applications and its teaching.

The magazine M500 is published by the M500 Society six times a year. It
provides a forum for its readers’ mathematical interests. Neither the editors nor
the Open University necessarily agree with the contents.

MOUTHS is ‘Mathematics Open University Telephone Help Scheme’, a directory
of M500 members who are willing to provide mathematical assistance to other
members.

The September Weekend is a residential Friday to Sunday event held each
September for revision and exam preparation. Details available from March on-
wards. Send SAE to Jeremy Humphries, below.

The Winter Weekend is a residential Friday to Sunday event held each January
for mathematical recreation. Send SAE for details to Norma Rosier, below.

Editor – Tony Forbes

Editorial Board – Eddie Kent

Editorial Board – Jeremy Humphries

Advice to authors. We welcome contributions to M500 on virtually anything
related to mathematics and at any level from trivia to serious research. Please
send material for publication to Tony Forbes, above. We prefer an informal style
and we usually edit articles for clarity and mathematical presentation. If you use
a computer, please also send the file on a PC diskette or via e-mail. Camera-ready
copy can be accepted if it follows the general format of the magazine.
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Michael Falcus

With deep regret we have to inform you of the sudden death of M500 Com-
mittee member Michael Falcus.

Michael died of a heart attack in the early hours of 9 July, 2002. He
was 53 years old. His death came as a shock to those who knew him; he
was playing badminton the day before without any apparent ill effects.

Michael had been an active member of the Committee for a number of
years, and he will be fondly remembered by regulars at the M500 Revision
and Winter Weekends. As well as being an occasional contributor, he gave
valuable help in the preparation and production of the M500 Magazine.

We would like to express our sympathy to Michael’s family and friends.
He leaves four children and five grandchildren; the youngest was born just
two days after Michael died.

The Fibonacci series
Sebastian Hayes
A Fibonacci series is a recursive series which verifies the rule

un+1 = un + un−1.

The simplest Fibonacci series, hereafter called Fn, is such a series with

u1 = 1, u2 = 1.

It is probably the first recursive series to have been used in mathematics and
is named after the medieval mathematician who discovered it, Leonardo of
Pisa familiarly known as ‘Fibonacci’. The first few terms are given below.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Fn 1 1 2 3 5 8 13 21 34 55 89 144 233 377

Note that Fn does not need to be restricted to Z+ though it almost always
is. For ‘negative’ terms we have the following.

n −7 −6 −5 −4 −3 −2 −1 0
Fn 13 −8 5 −3 2 −1 1 0

If n is odd, F−n = Fn, if n is even, F−n = −Fn, and F0 = 0.

Relation between the golden section and the Fibonacci series. At first
sight there is no particular relation between the golden ratio, φ = (1+

√
5)/2,

and the series 1, 1, 2, 3, 5, 8, 13, . . . . However, repeated application of the
defining equation φ2 = φ+ 1 gives
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φ2 = 1 + φ,
φ3 = φ(1 + φ) = 1 + 2φ,
φ4 = 2 + 3φ,
φ5 = 3 + 5φ,

. . . ,

with general term

φn = Fn−1 + Fnφ, (i)

where Fn signifies the nth term of the Fibonacci series. In other words,
the successive terms of the Fibonacci series appear as coefficients in the
expansion of the powers of φ. (This result is easily proved by induction.)

Nor is this all. If we take the ratio of successive terms of the Fibonacci
series, i.e. 1/1, 1/2, 2/3, 3/5, 5/8, 8/13, . . . , we find that this series con-
verges to 1/φ, or alternatively, the ratio of a term to its immediate prece-
dent, 1/1, 2/1, 3/2, 5/3, . . . , converges to φ. Why is this?

Convergence of Fibonacci series to φ. As in many other situations, the
most efficient way of proving this particular result, namely the convergence
of 1/1, 2/1, 3/2, 5/3, . . . to φ, is to take the general case—though this is
certainly not how it was discovered in the first place.

Any series which verifies un+1 = un + un−1 is a Fibonacci series, not
just Fn, where u1 = 1, u2 = 2. Consider, then, the series defined by the
relation

un = aφn−1 + b(−1/φ)n−1,

where a and b are constants. Such a series is a Fibonacci series because

un+1 = aφn + b(−1/φ)n

and, adding, we obtain

aφn−1(1 + φ) + b(−1/φ)n−1(1− 1/φ)

= aφn+1 + b(−1/φ)n+1 (because 1 + φ = φ2 and 1− 1/φ = 1/φ2)

= un+2.

This relation holds whatever values we give to a and b. As n increases
without bound the second part of un, namely b(−1/φ)n, and the second
part of un+1, namely b(−1/φ)n+1, both go to zero and so we only need
to take into account the first parts aφn−1 and aφn. Thus, as n increases
without limit, the ratio un+1/un goes to φn/φn−1 = φ.
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Amazingly, for all series which can be expressed in this manner, the ratio
of a term to the preceding term converges to the golden section. Moreover,
each ratio will be alternately greater and lesser, or lesser and greater, and
approach closer each time to φ. For example, take, purely at random, the
numbers 7 and 19. The sum is 26; 19/7 is about 2.7—larger than φ; 26/19
is about 1.36—somewhat smaller than φ; 26 + 19 = 45 and 45/26 gives us
1.73. . . , already quite close to φ and greater than it; 45 + 26 gives 71, and
71/45 is about 1.58, a little less than φ. The series is obviously homing in
to some intermediate value and a few more computations will establish the
limiting value as 1.618 to three decimal places. Other starting points may
take longer to converge but in every case the limiting ratio is φ.

We can produce the basic Fibonacci series, Fn, by setting

a =
φ2

φ2 + 1
, b =

1

φ2 + 1
.

When we fit these values of a and b into aφn−1 + b(−1/φ)n−1 and give n
the values 1, 2, 3, . . . , the familiar 1, 1, 2, 3, 5, 8, 13, . . . results.

General formula for expansion of powers. We now consider the condi-
tions for integer solutions to the equation

a

φm
+

b

φs
=

1

φr
.

where r = 0, 1, 2, . . . , s and m are integers and s > m. Then aφs−m + b =
φs−r,

a(Fs−mφ+ Fs−m−1) + b = φs−r

(since φn = Fnφ+ Fn−1),

aFs−mφ+ b+ aFs−m−1 = φs−r.

Therefore aFs−m = Fs−r, b+ aFs−m−1 = Fs−r−1,

a =
Fs−r

Fs−m
, b = Fs−(r+1) − aFs−(m+1). (ii)

A theorem concerning Fibonacci numbers states that Fm/Fn is integral only
if n divides m—unless n = 1, 2, since F1 and F2 are both unity. Thus we
must have s−m = 1, 2 or s−m divides s− r.

Various useful rules can be derived from this. For example, if we make
r, m and s successive positive integers, calling them n, n+ 1 and n+ 2, we
have

a

φn+1
+

b

φn+2
=

1

φn
.
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Using the formula (ii),

a = Fs−r = Fn+2−n = F2 = 1

and

b = Fs−(r+1) − aFs−(m+1)

= Fn+2−(n+1) − Fn+2−(n+1)+1

= F1 − F0 = 1.

Thus
1

φn
=

1

φn+1
+

1

φn+2
. (iii)

For example,
1

φ2
is the sum of

1

φ3
and

1

φ4
.

Expansion of 1 in two powers of 1/φ. Another useful formula is obtained
by setting r in the general equation at zero and having m and s as successive
integers. We have to find a and b in a/φn + b/φn+1 = 1/φ0 = 1. Using
formula (ii),

a =
Fs−r

Fs−m
=

Fn+1−0

Fn+1−n
=

Fn+1

F1
= Fn+1,

b = Fs−(r+1) − aFs−(m+1) = Fn+1−1 − F0 = Fn.

So
Fn+1

φn
+

Fn

φn+1
= 1, (iv)

which gives the only solution for the ‘expansion’ of 1 in terms of two con-
secutive powers of 1/φ. For example, if we want 1 in terms of (1/φ)4 and
(1/φ)5, the only possibility is

F5

φ4
+
F4

φ5
= 1, or

5

φ4
+

3

φ5
= 1,

and there will be Fn+1 + Fn = Fn+2 individual terms in all.

If the powers are not consecutive, there may be other combinations.
Returning to the basic equation a/φm + b/φs = 1/φr and setting r = 0 we
have, by (ii),

a =
Fs

Fs−m
, b = Fs−1 − aFs−m−1,

where s > m.
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What are the conditions for positive integer solutions? If a is to be
greater than 0, as previously mentioned, either s − m must be 1 or 2, or
s−mmust divide s. And b will be greater than 0 whenever Fs−1 > aFs−m−1.
If s = m + 1, both these conditions are satisfied. If s = m + 2, that is, we
are dealing with the equation a/φn + b/φn+2 = 1, then

a = Fn+2, b = Fn+1 − Fn+2F1 = − Fn < 0.

For example, setting s = 6, m = 4, we have a = F6/F1 = 8, b = F5− 8F1 =
−3.

For other values of s and m (s > m), whether b is an integer or not
depends on the parity of m and s. Since b = Fs−1−aFs−m−1, where s > m
and a, assumed to be an integer, is Fs/Fs−m, we require

Fs−1 >
Fs

Fs−m
Fs−m−1, or

Fs−1

Fs
>
Fs−m−1

Fs−m
.

Now the ratio of successive terms of Fn, 1/1, 1/2, 2/3, 3/5, . . . , has
as limiting value 1/φ and, not only this, each successive ratio Fn/Fn+1 is
alternately greater than and less than 1/φ. Thus all terms Fodd/Feven, or
F2n−1/F2n, such as 1/1, 2/3, 5/8, . . . , are greater than all terms Feven Fodd,
or F2n/F2n+1, such as 1/2, 3/5, . . . . Thus, for example, if s is even and m

is even with s, m > 0 and s > m,
Fs−1

Fs
>

Fs−m−1

Fs−m
; e.g. for s = 8, m = 3

we have
F5

F6
=

5

8
>

F2

F3
=

1

2

and we have the solution a = 4, b = 5− 4F2 = 1; hence 4/φ3 + 1/φ6 = 1.

Expansion of other powers of 1/φ. We can expand other powers in the
same way. Thus

1

φ2
+

1

φ3
=

1

φ
,

2

φ3
+

1

φ4
=

1

φ
,

3

φ4
+

2

φ5
=

1

φ

and for 1/φ2 we have

1

φ3
+

1

φ4
=

1

φ2
,

2

φ4
+

1

φ5
=

1

φ2
,

so the same Fibonacci numbers keep reappearing. The general formula is

Fn−r+1

φn
+
Fn−r

φn+1
=

1

φr
, r = 0, 1, 2, . . . . (v)
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If r = n− 1, we obtain 1/φn + 1/φn+1 = 1/φn−1, or formula (iii). Thus, for
example, choosing n = 4 we have

. . . , φ2 =
13

φ4
+

8

φ5
, φ =

8

φ4
+

5

φ5
, 1 =

5

φ4
+

3

φ5
,

1

φ
=

3

φ4
+

2

φ5
,

1

φ2
=

2

φ4
+

1

φ5
,

1

φ3
=

1

φ4
+

1

φ5
,

1

φ6
=

1

φ4
− 1

φ5
,

1

φ7
=
−1

φ4
+

2

φ5
, . . . .

Expansion of 1 for negative powers. Formula (v) also works for negative
powers. For example, set n = −2. Then F−1/φ

−2 + F−2/φ
−1 = φ2 − φ = 1

and, more generally, making n > 0, F−(n−1)φ
n + F−nφ

n−1 = 1.

For odd n the above formula gives −Fn−1φ
n + Fnφ

n−1 = 1 and for n
even, Fn−1φ

n − Fnφ
n−1 = 1. This is more conveniently expressed in the

form

Fn+1 − Fnφ =
(−1)n

φn
.

Thus, for example, 5− 3φ = 1/φ4.

Families of φ. The number φ has been defined as the solution to the
equation x2−x−1 = 0. This solution we could call φ1. The solution to the
equation x − 1 = 0, namely 1, may be termed φ0. Continuing in the same
way, we term φ2 the solution to the equation x3−x2−x−1 = 0, and so on.
The approximate value of φ2 is 1.839. In this way we can define a whole
family of solutions, with φn converging to 2 as n goes to infinity. (Because
2n = 1 + 2 + 22 + 23 + · · ·+ 2n−1 + 1, so that the difference 2n−φnn is always
1 and phin is very nearly (2n)1/n for large n.)

Equation for the expansion of 1 in three terms. Leaving this aside for
the moment, we examine solutions in integers to

a

φm
+

b

φs
+

c

φt
=

1

φr
.

For the simplest case, take r = 0, and m, s and t successive integers,
that is, a/φn +b/φn+1 +c/φn+2 = 1, or aφ2 +bφ+c = φn+2. Using formula
(i), this provides the conditions a + c = Fn+1, a + b = Fn+2. There are
Fn+3 − a terms in all.

By taking various values of n = 0, 1, 2, . . . , we can see if it is possible to
expand 1 in terms of three successive powers n, n+1, n+2. If we are to have
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three non-zero solutions for a, b and c, n must be at least 2, since F1 = 1,
F2 = 1. For n > 1 it is always possible to expand 1 in three consecutive
non-zero powers of 1/φ and there are in fact n− 1 ways of doing this. For
given n there will be n + 1 possible values for a but a = 0 for one of these
and c = 0 for another.

More generally, if we consider the equation

a

φn
+

b

φn+1
+

c

φn+2
=

1

φr

we obtain the conditions a+c = Fn+1−r, a+b = Fn+2−r, with r = 0, 1, 2, . . . .
There will be n − 1 − r positive integer solutions for given n and r. Some
examples are tabulated on the next page.

The golden angle. A plant functions as a whole: there would be no
point in individual leaves or branches fighting amongst themselves for a
greater share of light or warmth. Assuming the recurrent production of
buds, and eventually branches, around a rigid, upright trunk, is there an
‘ideal angle’ to adopt for branch production? (By ‘angle’ I mean fraction of
a turn between one branch and the next: in the technical literature this is
called the divergence.)

There are two conflicting requirements: on the one hand we want a
fairly equal spacing of branches around the trunk, otherwise the tree will
be lop-sided, but we must avoid having one branch falling exactly above
another and thus blocking its light. If we choose a very small angle, say a
thirty-fifth of a whole turn, we satisfy the second requirement but not the
first; if we choose a large fraction like a half we get a balanced tree but all
the branches on top of each other.

To model this mathematically we ignore difference in height and con-
sider a disc with a full turn, 360 degrees, set at unity. We can limit ourselves
to angles of divergence of less than 1/2, since greater angles are the same
taken the other way round and the eventual pattern will be a mirror image.

We mark in a radius representing branch 1. To get a reasonably equal
spacing we can agree that the next radius, representing branch 2, should fall
within the middle third or, since we are only considering angles of divergence
less than 1/2, should lie between 1/3 and 1/2 (of a turn). Thus 1/3 < d <
1/2. We require a value of d which will never give rise to overlapping and
which will, if possible, continue to cut every gap within the middle third.
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a

φn
+

b

φn+1
+

c

φn+2
=

1

φr
.

r = 0, a+ c = Fn+1, a+ b = Fn+2

n Conditions Solutions Expansion of 1

n = 0 a+ c = 1, a+ b = 1 a = 1, c = 0, b = 0 1
a = 0, c = 1, b = 1 1/φ+ 1/φ2

n = 1 a+ c = 1, a+ b = 2 a = 0, c = 1, b = 3 2/φ2 + 1/φ3

a = 1, c = 0, b = 1 1/φ+ 1/φ2

n = 2 a+ c = 2, a+ b = 3 a = 0, c = 2, b = 3 3/φ3 + 2/φ4

a = 1, c = 1, b = 2 1/φ2 + 2/φ3 + 1/φ4

a = 2, c = 0, b = 1 2/φ2 + 1/φ3

n = 3 a+ c = 3, a+ b = 5 a = 0, c = 3, b = 5 5/φ4 + 3/φ5

a = 1, c = 2, b = 4 1/φ3 + 4/φ4 + 2/φ5

a = 2, c = 1, b = 3 2/φ3 + 3/φ4 + 1/φ5

a = 3, c = 0, b = 2 3/φ3 + 2/φ4

n = 4 a+ c = 5, a+ b = 8 a = 0, c = 5, b = 8 8/φ5 + 5/φ6

a = 1, c = 4, b = 7 1/φ4 + 7/φ5 + 4/φ6

a = 2, c = 3, b = 6 2/φ4 + 6/φ5 + 3/φ6

a = 3, c = 2, b = 5 3/φ4 + 5/φ5 + 2/φ6

a = 4, c = 1, b = 4 4/φ4 + 4/φ5 + 1/φ6

a = 5, c = 0, b = 3 5/φ4 + 3/φ5

r = 1, a+ c = Fn, a+ b = Fn+1 Expansion of 1/φ

n = 4 a+ c = F4 = 3 a = 0, c = 3, b = 5 5/φ5 + 3/φ6

a = 1, c = 2, b = 4 1/φ4 + 4/φ5 + 2/φ6

a = 2, c = 1, b = 3 2/φ4 + 3/φ5 + 1/φ6

a = 3, c = 0, b = 2 3/φ4 + 2/φ5

r = 2, a+ c = Fn−1, a+ b = Fn Expansion of 1/φ2

n = 4 a+ c = F3 = 2 a = 0, c = 2, b = 3 3/φ5 + 2/φ6

a = 1, c = 1, b = 2 1/φ4 + 2/φ5 + 1/φ6

a = 2, c = 0, b = 1 2/φ4 + 1/φ5
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Any irrational number would, of course, rule out overlapping. If a
branch is to cover a previous branch, we have nd = N+d, i.e. n applications
of the angle of divergence give rise to N full turns plus the original angle.
Then d = N/(n − 1), which is a rational number. If d is not rational, we
have a contradiction and so there can be no overlapping.

The problem can be rephrased thus: If we can find an angle d which
cuts every gap in the same ratio as it cuts the first gap and it cuts the first
gap (the whole disc) in a ratio between 1/3 and 1/2, then this will provide
a satisfactory solution to the spacing problem. This gives

x

1− x
=

1− 2x

x
, or x2 − 3x+ 1 = 0,

with solutions

x =
3 +
√

5

2
, or 1 +

1

2
(1 +

√
5) = 1 + φ = φ2,

x =
3−
√

5

2
, or 1 +

1

2
(1−

√
5) = 1− 1

φ
=

1

φ2
.

We choose the second solution, 1/φ2, since we want an angle less than
1/2, but the first angle—which is 1/φ2 less than three whole turns and
so is equivalent to an anti-clockwise angle of 1/φ2—gives exactly the same
distribution going the other way. In fact, 1/φ2 is a little less than 0.382 and
so 1/3 < 1/φ2 < 1/2, as required. Its value is about 137.5 degrees.

The number 1/φ2 is known as the golden angle since it divides the disc
into two parts whose areas are in the ratio φ : 1. Why is this? Because the
remaining angle is 1 − 1/φ2 = 1/φ. The ratio of the areas, the greater to
the lesser, is thus 1/φ : 1/φ2 = φ : 1.

We obtain the following partition after each successive cut.

1. 1/φ0

2. 1/φ2, 1/φ1

3. 1/φ2, 1/φ2, 1/φ3

4. 1/φ4, 1/φ3, 1/φ2, 1/φ3

5. 1/φ4, 1/φ3, 1/φ4, 1/φ3, 1/φ3

6. 1/φ4, 1/φ3, 1/φ4, 1/φ3, 1/φ4, 1/φ5

7. 1/φ4, 1/φ4, 1/φ5, 1/φ4, 1/φ3, 1/φ4, 1/φ5

8. 1/φ4, 1/φ4, 1/φ5, 1/φ4, 1/φ4, 1/φ5, 1/φ4, 1/φ5

Note the following features: (a) every row adds to 1; (b) every row
contains three types of entries at most; (c) if the row number is a Fibonacci
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number, there are only two types of entries (or one for row 1); (d) the indices
are successive integers.

Since every natural number n either is a Fibonacci number or falls
between two successive Fibonacci numbers, we can number the rows: row
1 = F1, row 2 = F2 and, generally, row N = Fr+2 + r, where r takes
the values 0, 1, 2, 3, . . . , Fn+1 − 1. For example, row 10 would be row
F4+2 + 2 = F6 + 2 = 8 + 2, with n = 4, r = 2. Row N in the above is then
given by

Fn+1 − r
φn

+
Fn + r

φn+1
+

r

φn+2
,

where n takes the values 0, 1, 2, . . . .

The golden angle series—assuming it continues in the same way—can
be defined recursively by the double rule: (1) Row 1 = 1, and (2) every
row repeats the entries of the previous row except that (one of) the largest
interval(s) is split in golden section. Thus 1 produces 1/φ and 1/φ2 and
more generally 1/φn produces 1/φn+1 and 1/φn+2. The resulting series is
precisely that which results from giving a the various values 0, 1, 2, . . . ,
Fn+1 − 1 in the table but starting with the highest value for a instead of
zero.

The golden angle series thus seems to be the same as the series which
gives all the integral solutions to the expansion of 1 in three consecutive
powers of 1/φ taking successive values of n (and excluding repetitions).
Since such a series will only ever have three different sized intervals at any
one stage and will always cut the largest available interval in golden section
(i.e. between 1/2 and 1/3) this solves the ‘even spacing’ problem.

However, the above falls well short of a rigorous proof since it is by no
means obvious that using 1/φ2 as a constant angle will give this distribution
no matter how long we continue. What follows is simply a plausibility
argument which can (possibly) be made into a rigorous proof.

It is easy to show (simply by drawing) that up to a certain point we
have the consecutive power distribution. Take row 8. Since 8 is a Fibonacci
number there are only two types of sections, those of size 1/φ4 and those of
size 1/φ5. Moreover, row 8—like every row—must split up neatly into two
(composite) sections of value 1/φ and 1/φ2 respectively. We have in fact

5

φ4
+

3

φ5
= 1 =

(
3

φ4
+

2

φ5

)
+

(
2

φ4
+

1

φ5

)
=

1

φ
+

1

φ2
.

Now radius 8 has just been drawn in so that the section radius 7 to radius
8 is 1/φ2. The next radius is thus going to fall within the 1/φ part of the



M500 187 Page 11

disc and one of the sections 1/φ4 or 1/φ5 is going to be split into x and y.
Moreover, since the new radius (radius 9) is once more dividing up the disc
into 1/φ2 and 1/φ, x and y will not be in the same section; x (say) will be
in the 1/φ2 part and y in the 1/φ part.

It will be the section 1/φ4, the larger of the two basic sections, that will
be split. Why? Suppose the contrary. We then have to ‘make up’ 1/φ2 from
3/φ4+1/φ5 and x (y being excluded since it goes into the other part). Since
x < 1/φ5 < 1/φ4 this is impossible. If we take 2/φ4 and reject 1/φ5, x is
not big enough to make up 1/φ2, and the same goes if we take 1/φ4 + 1/φ5.
And we must include x.

Thus the section to be split is 1/φ4. Since 1/φ is the sum of 1/φ2 and
1/φ3 we have to make up 1/φ2 and 1/φ3 from 2/φ4 + 2/φ5 + x+ y, where
x, y < 1/φ5 and x and y are not in the same section. We cannot take 2/φ4 for
the larger section because there would be no room for x > 0 but 1/φ5 > x,
while if we take 1/φ4 this means x = 1/φ6 since 1/φ2 = 1/φ4 +2/φ5 +1/φ6,
which is the only available solution. Then y = 1/φ4 − 1/φ6 = 1/φ5 so that
1/φ4 has been cut in golden section, as desired.

This clumsy method can (presumably) be generalized to make an in-
ductive argument—but hopefully someone can come up with a neater proof
of the identity of the 1/φ2 series and the consecutive power series.

Problem 187.1 – Cosets
ADF
Let G be a group and let H be any subgroup of G. Let L be a set of
representatives of the left cosets of H in G. Thus we have a partition of G
into disjoint sets {xH : x ∈ L}.

Similarly, let R be a set of representatives of the right cosets of H. The
partition of G, {Hx : x ∈ R}, is not necessarily the same as {xH : x ∈ R}.

Question: Is it always possible to choose L = R?

For obvious reasons only non-Abelian groups are relevant. Take, for
instance, S3, the symmetry group of the triangle,

{1, θ, θ2, φ, φθ, φθ2}, θ3 = φ2 = 1, θφ = φθ2, θ2φ = φθ.

The left and right cosets of the subgroup {1, φ} are {{1, φ}, {θ, φθ2},
{θ2, φθ}} and {{1, φ}, {θ, φθ}, {θ2, φθ2}}, respectively. Hence in this case
we can choose L = R = {1, θ, θ2}.
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Solution 184.3 – Lake escape
A young lady is trying to escape from a man who is pursuing
her. She gets into a rowboat and rows to the centre of a circular
lake. The man waits for her to come ashore. He can run four
times as fast as she can row but she can outrun him once she is
on dry land. How does the woman escape?

What if the lake is not necessarily a circle?

Dick Boardman
Here is a not-too-serious solution. The lady can escape if the distance
between her boat and the shore is less than a quarter of the distance the
man must run round the circumference. At the start, if she rows straight
for the shore to the point opposite the man, she must row one radius and
the man must run π times the radius. However, π < 4; so this fails.

However, suppose she rows a curved track, always moving along a line
exactly away from where the man is at any instant. If she follows this rule
consistently, she will eventually reach the shore safely, having rowed some
2.25 radii. However, when she has rowed only 0.25 radii around the curved
track, she will be closer to her nearest point on the shore than 1/4 of the
distance than the man must run to reach the same point and may thus
safely make a straight line dash for safety.

Note that since she is always moving directly away from the man he may
change direction at any time and she can adjust her direction accordingly
without altering the distance to go.

The path she must follow is the solution to a differential equation. This
equation has (as far as I can see) no solution in terms of elementary functions
and must be approximated to by numerical means. Let the radius of the
lake be 1 distance unit and let the time unit be the time taken for her to
row one distance unit. This makes her speed 1 and his speed 4.

I used Euler’s numerical method. In this method, a very small time
interval dt is chosen (I used 0.001 time units) and the lady is assumed to
row in a straight line for this time interval and her direction is recalculated
every dt units while the man runs at a constant speed around the edge. This
would be a very inefficient method if pencil and paper and tables were used,
the number of calculations needed for a given level of accuracy being very
large. More accurate (and far more complicated) methods exist but, using a
modern computer, the time taken to enter and check the simplest equations
far exceeds the time needed to do the sums. To check the level of accuracy
achieved, repeat the calculation with one tenth of the time interval. If the
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results agree to the required number of decimal places, OK.

With regard to the more general problem, the same strategy will work
for many shapes of lake (row directly away from the man until the distance
to the nearest point is less than a quarter of the distance he must run). This
is because the circle is the curve which encloses the greatest area for a given
perimeter and is thus the worst case for the lady. However, the lady must
be very careful in her choice of lake. The simplest case where all methods
fail is if there is a large island in the middle of the lake leaving only a narrow
for her to row round. Assuming she cannot carry the boat over the island,
she has no escape.

Even if there are no islands, there may be other problems. We are told
that the lady can always outrun her pursuer on land. However, even the
fastest lady can only have a finite speed advantage.

Imagine a square lake containing what would be an island were it not
joined to the side by a single narrow isthmus. This island occupies most of
the centre of the lake. Furthermore this island consists of a single narrow
track in the shape of Peano’s space filling curve. The poor girl now has
a real problem. If she tries to land on the outside of the lake or near the
isthmus she is caught. If she lands on the ‘island’ she has an infinite distance
to run before she gets to the isthmus. Thus her pursuer need only pause
until she has run well into the maze before running round his finite distance
to the isthmus and waiting.

David Tansey gave a similar solution for the circle and showed that it
applies at least to an arbitrary convex lake.
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Solution 185.2 – Two streams
Water from a tank flows through a perfectly insulated pipe and
splits into two paths. One path goes directly to a tap at the
kitchen sink marked ‘cold’. The other enters a heating appliance
and then proceeds to a tap marked ‘hot’. On the other sides of
the taps the two streams merge into a single outlet. Explain
why the temperature of the water can be varied by adjusting
the ‘hot’ and ‘cold’ taps.

David Aldridge
I am not 100 per cent certain this is a maths problem. It’s more like an
engineering one. This suits me as I am an engineer, not a mathematician.
However, the answer can be investigated by applying the maths of a classic
engineering equation.

Basically, each tap is open to atmospheric pressure, and they both pour
into the kitchen sink. Switching on a tap creates a stream of water from
the (constant pressure) tank outlet to the tap.

Aside no. 1. I note that the question states that the two streams merge
into a single outlet on the other side of the taps, and this caused me some
confusion. A tap consists of a valve and an outlet to atmosphere. You may
be confusing the term tap with valve. In any case, I think that this may
be the basis of a mistaken assumption. On a kitchen mixer tap you do not
have the two streams joining together within the pipework prior to opening
to atmosphere instead you have two distinct tap outlets positioned together
(sometimes even one within the other) within the single tap unit. These
allow the hot and cold flows to mix as they emerge from the unit hence the
term. In such a case, the true situation remains as I have drawn it above,
except the plug is simply the point at which the streams mix just below the
tap outlet.

Aside no. 2. For the purposes of clarity, this type of mixer tap is
mandatory because it is often fed by two very different pressure systems.
The cold tap is often connected directly to the (usually high pressure) mains
supply, while the hot tap is connected to the (lower pressure) hot water
tank and ultimately to the house cistern. If the flows were able to mix
in the pipework behind the tap outlet, you could have a situation where
the cold water forces its way back up the hot water pipe and into the
tank/cistern. This could cause flooding of the cistern. Having both outlets
directed separately to atmosphere avoids this.

This situation can be assumed to be governed by Bernoulli’s equation,

P +
1

2
ρV 2 + ρgh = constant,

where P = pressure, ρ = density, V = velocity, g = gravitational constant
and h=height.

This equation is fairly reliable for steady-flow situations when the fluid is
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non-viscous, incompressible and non-rotational. All of these can be assumed
to hold true for water flow in a pipe system.

Now we can assume that the tank pressure P1 is greater than atmo-
spheric pressure. We can also assume that the tap is at the same height as
the outlet of the tank, so there is no height change. Finally, we can assume
that the velocity at the middle-bottom of the tank, V1, is zero. We want to
find V2, the velocity at the tap. We have

P1 = Patm +
1

2
ρV 2

2 .

By rearranging the equation, we can see that

V2 =

√
P1 − Patm

ρ
.

If we assume that the tank is 1m high, P1 = Patm+ρgh, g = 10 m/s and
ρ = 1000 kg/m2, we have a differential pressure of P1 − Patm = 10000 Pa.

This leads to a velocity of V2 =
√

20 = 4.47 m/s.

Now the interesting thing about this is that the velocity at the tap is
completely unrelated to the diameter of the pipe the water has travelled
along.

So what happens when we open the second tap?

Well, if you imagine you have a lemonade bottle full of water and you
pierce a hole in the side near the bottom, you get a parabolic stream of
water coming out at a (relatively) constant velocity. If you make a second
hole at the same level on the other side (and keep bottle filled up) you get
a second stream with exactly the same velocity.

The same is true here. When you open the second tap, water flows out
of it at approximately the same speed at the water coming out of the first
tap. That’s what Bernoulli’s equation has confirmed: that the velocity of
the water at the outlet is constant.

If you have two outlets (taps) of the same size, switching on the second
will double the total output flow rate.

To answer the question, then, it is clear that the flow passing through
the heater does not change much when the second (cold) tap is opened. The
hot water remains flowing from the tap at the same (hot) temperature, but
the same amount of cold water is mixed in the sink and therefore the hot
water is cooled to a reasonable level at the outlet (the plug hole?).

It seems to me that the assumption the question was based on (that a
constant flow simply splits into two) was not right. Of course, in a real life
domestic water system, the flow through a pipe is limited by other factors
such as friction in the pipes, a lack of ability of the tank to maintain its
pressure, etc. An example of this is when you are in an electric shower and
someone turns on a tap.
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• The flow rate to the shower reduces (because your water pressure is
not high enough or stable enough to maintain both flows evenly).

• The constant-power heating element heats up the lower velocity (less
mass per second) water to a higher temperature.

• You get scalded.

This may be the kind of situation that was envisaged by the writer, in that
switching on one flow automatically affects another.

Dick Boardman
By the law of conservation of energy (heat inserted by the heater) = (heat
out of tap) = (volume of water per second) multiplied by ((temperature
out) − (tank temperature)). Thus (temperature out) − (tank temperature)
= (heat inserted by heater per second) divided by (volume of water per
second).

The problem compares two cases, all the water goes through the heater
and a proportion of the water goes through the heater. If the volume of
water and the heat inserted by the heater were the same in both cases then
the output temperature would be the same and this is what your argument
implicitly assumes.

However, the designer of the system, who wanted the temperature to
vary, has arranged that the two quantities are not the same. Firstly, by
adding a parallel path for the water to take, the total volume out must
increase when the cold tap is turned on. Secondly, the rate of flow of heat
is proportional to the temperature difference, and if the water in the heater
is hotter, then less heat will be transferred.

Finally, the designer of the heater must make the heat input depend on
the flow through the heater because otherwise, if the flow were very small,
the system would explode, and this I suspect is the main reason.

Ralph Hancock
Problem 185.2 was of interest because I lived in a house where this happened.
There was a gas geyser, and the amount of gas going into it was regulated
by the water pressure. When both taps were on, the rapid flow along the
main pipe caused a considerable drop in pressure, as per Bernoulli. This
reduced the flow of water through the geyser, but the pressure sensitive
valve reduced the gas supply by more than that, so the water was cooler as
well as less copious. It didn’t take much effort to deduce what was going
on, because you could hear and see the flame decreasing.

But that is probably not the answer to the question.
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Re: Problem 182.6 – n balls
There are n balls in an urn, all of different colours. Remove
two balls at random, paint the second of the pair to match the
first and replace both balls. Repeat until all balls have the same
colour. What is the expected number of turns?

Ted Gore
Not a solution but may be of interest. I use the notation Dn for the average
number of draws of two balls that are required to ensure that all n balls
are the same colour, and Dn,k for the average number of draws required to
reduce the number of colours from k to k − 1. Thus

Dn =

n∑
k=2

Dn,k.

As we have already seen [M500 184 17], computer simulation indicates that

Dn = (n− 1)2.

Computer simulation also gives the following results for Dn,k.

n Dn Dn,2 Dn,3 Dn,4 Dn,5 Dn,6 Dn,7

3 4 3 1
4 9 6 2 1
5 16 10 10/3 5/3 1
6 25 15 5 5/2 3/2 1
7 36 21 7 7/2 21/10 7/5 1

In each case

Dn,k =
n(n− 1)

k(k − 1)
(1)

and mathematical induction can be used to show that

n∑
k=2

n(n− 1)

k(k − 1)
= (n− 1)2.

Unfortunately I can’t prove (1).
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Solution 185.4 – Two sins
When does (sin a)/(sin b) = a/b?

Jim James
Rearranging the given equation, we see that the problem reduces to one
of establishing whether there exist a, b ∈ R such that (sin a)/a = (sin b)/b,
where a, b 6= 0 and a 6= ±b. Like many problems involving trigonometric
functions, it helps to examine a graph of the function concerned. Figure 1
is the graph of f(x) = (sinx)/x in the interval [−2π, 6π].

-2 Π -Π Π 2 Π 3 Π 4 Π 5 Π 6 Π
-0.2

0.2

0.6

1.
Figure 1

Several important points are immediately apparent as follows:

The graph appears to go through the point (0, 1). But f is not defined
at 0. There is a nice geometric proof available, however, that f(x) tends to
a limit as x approaches zero, from above and below and that this limit is 1.

The graph is symmetric about the y-axis. This results from sin−x =
− sinx, so that (sin−x)/(−x) = (sinx)/x. This suggests that we can safely
restrict our study of the properties of f to the case x > 0.

The graph is obviously periodic, passing through zero at each inte-
ger multiple of π. This property cannot be used to demonstrate that
(sin a)/(sin b) = a/b, however, since it would imply division by zero, which
is undefined.

Successive oscillations have decreasing amplitude as x increases. Con-
sider an arbitrary point, a, that lies on the curve such that a is greater
than the minimum close to x = 1.5π. A straight line drawn parallel to the
x-axis through a will intersect at least one corresponding point, b, such that
0 < b < a. The value of f(b) at this point equals f(a), thereby showing
that there exist a and b, not multiples of π, such that (sin a)/a = (sin b)/b,
a 6= ±b. Note that since there are infinitely many real numbers in any in-
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terval, there are infinitely many values of a and b which satisfy the specified
relationship.

This answers the question posed in the problem, but added strength
to the argument can be given by providing an example of how, given a
value of a, a corresponding value of b can be determined. A numerical
interpolation appears to be called for and what better than the bisection
method? It is simple, reliable, does not require the evaluation of derivatives
and is easily programmed for a home computer (where, for a problem like
this, computational efficiency is not an issue).

Thus for a = 5.2π, the graph above indicates that a corresponding
value of b lies in the interval (3.5π, 4.0π). Using Visual Basic 6.2 with double
precision variables, we establish, in less than one second, the following result:

a = 16.3662817986660, b = 12.1153176248526,

sin a = − 0.5877852522924661, sin b = − 0.4359134541440360,

a

b
= 1.34839896934735,

sin a

sin b
= 1.34839896934735.

Dick Boardman
David Singmaster is guilty of at least one sin by arranging the equation so
as to divide by b and then saying that b = 0 is a solution [M500 185 22].

Apart from this, rearrange the equation to read (sin a)/a = (sin b)/b =
k, say. If (sin a)/a = k has multiple solutions then any pair will be solutions
to the original equation.

Look at the plot [opposite] of (sinx)/x. A line parallel to the x-axis and
fairly close to the axis will cut the plot many times until the oscillations are
too small to reach it. Thus (sinx)/x = 0.1 has solutions at x ≈ ±2.85234,
±7.06817 and ±8.4232. Any pair, say a = −2.85234 and b = 7.06817, will
be a solution.

Problem 187.2 – 29
Colin Davies
Find all solutions in integers n, a0, a1, . . . , an and b of

29

n∑
k=0

ak10k = 10

n∑
k=0

ak10k + b(10n+2 + 1),

where n ≥ 1, 1 ≤ an, b ≤ 9 and 0 ≤ a0, a1, . . . , an−1 ≤ 9.
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Re: Problem 184.9 – States
What is the probability of winning a game of Hangman restricted
to the names of USA states. Assume only one life. Assume also
that you and your opponent always play sensibly.

Tony Forbes
Despite its kindergarten origin, analysis of the problem seems to be inter-
esting and difficult. I do not have a solution except to observe that the an-
swer is at least 0.5. (Choose at random from {NORTH DAKOTA, SOUTH
DAKOTA}.) Indeed, it would not surprise me if the answer is exactly 0.5.
However I am not an expert in game theory, assuming one needs to be for
an adequate understanding of the problem.

To indicate the sort of difficulty that arises, suppose you write ‘ ’.
Your opponent reasons thus, ‘ALASKA, HAWAII, KANSAS and NEVADA
have a common letter, ‘A’; hence ‘A’ looks like a good choice.’ Therefore
to frustrate him/her you would have chosen OREGON. However your op-
ponent would surely see through this obvious play and perhaps choose ‘N’,
common to KANSAS, NEVADA and OREGON. But of course you have
already anticipated this attack and you opt for HAWAII or ALASKA. So
‘A’ might have been a good choice after all. . . .

Now that we have explained the problem in more detail, this is what
we really want you to do: Either

(i) find a strategy that enables you to win more than half the games (on
average); or

(ii) prove that no such strategy exists.

And to save you reaching for a map of North America, here is a list of
the states that cause trouble: Iowa, Ohio, Utah; Alaska, Hawaii, Kansas,
Nevada, Oregon; Alabama, Arizona, Florida, Georgia, Indiana, Mon-
tana, Vermont, Wyoming; Arkansas, Colorado, Delaware, Illinois, Ken-
tucky, Maryland, Michigan, Missouri, Nebraska, Oklahoma, Virginia; North
Dakota, South Dakota.

Problem 187.3 – Square wheels
A car has square wheels. On what sort of road can you drive it and expe-
rience a smooth ride?

Problem 187.4 – Cots
Prove that cot

π

2n
cot

3π

2n
. . . cot

(n− 2)π

2n
=
√
n for odd n.
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Solution 184.8 – Four regions
Draw a planar Venn diagram for four (or more) events.

Chris Pile
I drew the diagram, below, for four events, when I was involved in part-time
teaching of statistics some years ago. The four closed curves give rise to 16
mutually exclusive regions.

I also offer a symmetrical diagram for five events which yields 32 mu-
tually exclusive regions. I see no reason why this should not be extended.
Each additional event must intersect with all the existing regions and so
long as a continuous line can be drawn through all the regions a diagram is
possible, but not necessarily very useful!

[I was very impressed with the beautiful symmetry of Chris’s five-event
diagram, so I put it on the front cover of this issue. An isosceles triangle
with base [(−1, 0), (1, 0)] and apex angle 36◦ is rotated about the point
(φ/10,

√
φ), where φ = (

√
5 + 1)/2 is the golden ratio. I am not aware

of any deep theory relating to my choice of the centre of rotation; I just
experimented until I found one which made the thing look pretty. — ADF]

A B

C D

AB

AD BC

AC BDCD

ABCABD

ACD BCD

ABCD
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Solution 185.1 – Three strings
How do you time 105 minutes using three of the inflammable
strings described in Problem 187.5, below.

Andrew Pettit
Identify the strings as A, B and C. Light strings A and B at one end and
C at both ends. When string C is fully burned, one hour has passed and
strings B & C have one hour left to burn. At this point light the unlit end
of string B. It will be fully burned after a further half an hour. Now light
the unlit end of string C. It will be fully burned after a further quarter of
an hour. 1 hour + 30 minutes + 15 minutes is 105 minutes.

Also solved by Ralph Hancock, Peter Fletcher and John Hudson.
Obviously the problem cries out for generalization. So we ask . . .

Problem 187.5 – Strings
You have an unlimited number of pieces of string and a very large box of
matches.

A piece of string takes exactly two hours to burn from end to end. That
is, if you set light to one end of the string, the flame will reach the other
end precisely two hours later. However the flame does not necessarily travel
along the string at a constant speed.

Determine the set, S, of intervals that can be timed exactly by set-
ting light to a finite number of pieces of string in a sequential manner—as
described in Solution 185.1, above. We have already seen that S includes
{0.25, 0.5, 1, 1.5, 1.75, 2}.

Problem 187.6 – Iteration
Peter Griffiths
Heron’s iteration formula for the square root of A takes the form

a → 1

2

(
A

a
+ a

)
.

What is the more general iteration formula for any rational nth root of A?

Contrary to the opinion in many textbooks, this has nothing to do
with calculus, but everything to do with finding the arithmetic means of
estimates.
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Letters to the Editors
Re: Problem 183.4
Dear Tony,

I was a little disappointed that you did not have more response to this
problem. The solution by Basil Thompson in M500 185 is fine, but there
are other ways. Here is a way to show the result using the the concept of
curvature, which involves the second derivative. The curvature of y(x) at
the point (x, y) is given by

y′′(x)

(1 + y′(x)2)3/2
.

Question: Find the values of t for which coshx < exp(tx2) for all x.

Consider the two curves: y = coshx and y = exp(tx2). If t < 0 the
inequality always fails, and if t > 0 the inequality succeeds for sufficiently
large x. Hence we are only concerned about the behaviour of the functions
for small x.

Sketching the curves show that both are concave from above and meet
at minima when x = 0 and y = 1. In the region of the minima, the curve
y = exp(tx2) must be inside the curve y = coshx, otherwise the curves
will cross for some x > 0. This requires that the curvature at (0, 1) for
y = exp(tx2) must be greater than that for y = coshx.

For y = coshx: y′ = sinhx, y′′ = coshx and y′′(0) = 1, giving a curva-
ture of 1. For y = exp(tx2): y′ = 2tx exp(tx2), y′′ = (2t + 4t2x2) exp(tx2)
and y′′(0) = 2t, giving a curvature of 2t. Hence 2t ≥ 1; that is, t ≥ 1/2.

John Bull

M500 185
Dear Tony

I have to say that I thought that problem 184.4 (Three real numbers)
was complex when I first read it—especially after I had seen how you had
modified the numbers. Following the reference from the contents page of
issue 185 I now realize that it is imaginary!

Slightly less frivolously: Surely there is a false assumption in Problem
185.2 (Two streams) because the rate of flow of the water is increased as a
result of opening the cold tap. The evidence is that the sink fills up more
quickly with both taps on.

Regards,

Andrew Pettit

Sorry about that. Such are the dangers of recycling!—ADF
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Observations on Problem 182.7
On p. 15 of M500 184 ADF asks, ‘For which integers p, q is it the case that

p∑
k=1

cos ak =

p∑
k=1

sin ak = 0 ⇒
p∑

k=1

cos qak =

p∑
k=1

sin qak = 0

for any real numbers a1, a2, . . . , ap?’

If we translate it to mechanics, we see that the problem concerns systems
of particles in equilibrium since, in order to have static equilibrium, we
must have the algebraic sum of the moments equal to zero in two mutually
orthogonal directions. We can assume a coefficient of unity before each cos
and sin, so we have n particles of unit mass lying on the circumference of a
circle with unit radius.

Some readers may find it more suggestive to imagine n particles ‘bal-
ancing’ rather than adopting the ‘path’ approach. Note that it is always
possible to arrange n particles around a circumference and obtain equilib-
rium since for any regular polygon with one vertex set at (l, 0) the condition∑

cos ar =
∑

sin ar = 0

is fulfilled. If we fix one particle at (l, 0) and only allow a position to be
occupied by a single particle, the condition is equivalent to making the
cosines of n−1 particles sum to −1. For a system of three particles there is
only one possible configuration and, since k ·0 = 0 for all k, the first particle
stays there for ever. To recover the initial configuration we need only reflect
in the x-axis, which, in terms of multiples of the angles, means—as Jim
James usefully suggests—that we must have a multiple ≡ 1 or 2 (mod 3).

For other sets of points it might be possible to meet the conditions (zero
sum of sines and cosines) without recovering the initial configuration. Also,
for other values of p there will generally be an unlimited number of starting
positions; e.g. for four points we only need the angles 0, pi, θ and π + θ,
with arbitrary θ, forming a cyclic parallelogram.

Finding other sets of values for the angles apart from 360/n means
relaxing the requirement that the polygon be regular—but still keeping
the requirement that all the vertices lie on the circumference of a circle.
One wonders whether some of the properties of regular polygons will carry
over to these irregular inscribed polygons in much the same way as certain
properties of squares or rectangles carry over to cyclic quadrilaterals.

Sebastian Hayes
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Problem 187.7 – Task
Tony Forbes
This will bring a smile to the face of anyone who has used commercial
computer software. You have a Very Important Task, T , to perform on
your computer. Normally the task takes t seconds to complete. However,
in any interval of duration one second while it is running T will fail with
probability p. When T fails it has to be started again from the beginning.

What is the expected total time for a successful completion of the task?

Problem 187.8 – Seven events
Tony Forbes
Inspired by Chris Pile’s Venn diagram for five events [this M500, p. −1] I
am wondering if it is possible to do the same for p = 7, 11, 13, . . . .

Take p = 7 for instance. Draw a closed curve representing event A and
rotate it through multiples of 2π/7 about a suitable point to obtain six new
closed curves representing events B, C, . . . , G. Do this in such in such a
manner that you create precisely 127 regions representing every non-empty
subset of {A,B, . . . , G}. Or prove that it can’t be done.

Note that this construction won’t work for p = 6, or 4, or any p that does
not satisfy 2p ≡ 2 (mod p). So p must be either a prime or a pseudoprime
to base 2.

Factorial digital invariants
David Singmaster
For a decimal number N , let S(N) be the sum of the factorials of the digits,
excluding leading zeros. At a recent meeting, a colleague stated that this
function has a cycle: (169, 363601, 1454).

There are five numbers such that S(N) = N , namely, 0, 1, 2, 145 and
40585. (Zero is a bit exceptional; since leading zeroes are excluded, the
sum is empty!) The largest number for which S(N) > N is 1999999 and
there are 208907 such numbers. Consequently the problem of finding all
the cycles of this function is finite. In fact, there are two other cycles, both
2-cycles: (871, 45361) and (872, 45362).

ADF—We have already published similar investigations involving n→
nk instead of n→ n!. Are there other interesting functions to analyse?
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