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Solution 285.5 – 64 cubes
This is very similar to Problem 274.5 – 27 cubes. There are 64
cubes, where each face is painted using one of the four colours
red, blue, green, yellow. Moreover, the 64 cubes can be assem-
bled in four ways to form either a red, blue, green or yellow
4× 4× 4 cube. How can this be achieved?

What about n3 cubes, n colours and n monochromatic n×n×n
cubes?

Chris Pile
For n > 1, each n× n× n cube formed of n3 cubes has 8 vertex cubes with
3 faces visible. Between each vertex there are n − 2 cubes forming each of
12 edges, with two adjacent faces visible. The central (n − 2)2 cubes on
each face of the n× n× n cube have only one face visible. The core of the
n × n × n cube consists of (n − 2)3 cubes, which are not visible. That is,
every n× n× n cube has:

8 vertex cubes (V) with 3 faces (surrounding the vertex) visible;

12(n− 2) edge cubes (E) with 2 adjacent faces visible;

6(n− 2)2 face cubes (F) with only one face visible;

(n− 2)3 cubes hidden internally (H).

Thus
n3 = 8 + 12(n− 2) + 6(n− 2)2 + (n− 2)3,

the number of visible faces is

24 + 24(n− 2) + 6(n− 2)2 = 6n2

and the total number of faces on n3 cubes is 6n3. Therefore with n colours
available we need to determine the painting scheme to produce n monochro-
matic n× n× n cubes.

Faces
visible n 2 3 4 5 6 7 8 9 10

3 Vertex cubes 8 8 8 8 8 8 8 8 8
2 Edge cubes 0 12 24 36 48 60 72 84 96
1 Face cubes 0 6 24 54 96 150 216 294 384
0 Hidden cubes 0 1 8 27 64 125 216 343 512

Visible faces: 6n2 24 54 96 150 216 294 384 486 600
Total cubes: n3 8 27 64 125 216 343 512 729 1000
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In the diagrams that follow, each n3 cube is shown as a vertical column
of six faces with a letter denoting the colour. Where a cube has three faces
the same colour the faces must surround a vertex. Where a cube has two
faces the same colour the faces must be adjacent. The number at the top
of the column shows how many of the n3 cubes are painted the same. The
supplementary diagrams show how the cubes are assembled to form each
n× n× n cube with monochromatic external faces.

n = 2
8
R
R
R
B
B
B

n = 3 : 27 cubes
1 1 1 6 6 6 6
R R B R B G R
R R B R B G R
R R B R B G B
B G G B G R B
B G G B G R G
B G G G R B G
a b c d e f g

n = 4 : 64 cubes
8 8 24 24
R G R G
R G R G
R G B Y
B Y B Y
B Y G R
B Y Y B
a b c d

R B G
V a b d a c e b c f 8
E f g d g e g 12
F e f d 6
H c b a 1

R B G Y
V a a b b 8
E c c d d 24
F d d c c 24
H b b a a 8

n = 5 : 125 cubes
18 12 6 18 23 13 11 1 6 1 8 8
R R R R B B B B B R Y R
G G R R O O O O O R Y R
B B B O G G R R Y Y Y R
B B B O G G R G G G O B
O Y G G R Y Y G G G O B
O Y Y Y Y Y Y G G G O B
a b c d e f g h j k l m

Cube Vertex (8) Edge (36) Face (54) Hidden (27)
Red m c d g k a b e h f j l
Blue m a b c e f g h j d k l
Green h j k e f a b c d g l m
Yellow l b f g c d e j k a h m
Orange l a d e f g h j b c k m
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n = 6 : 216 cubes : see page 4

n = 7 : 343 cubes
45 15 30 15 15 30 15 15 60 30 30 15 8 8 4 4 4
R R R R R R B B B B B G R G P Y Y
G G O O O Y Y Y W R R B R G P Y Y
G G O O O Y Y Y W R R B R G P Y Y
B P P P W W W P P P P P B O W W P
B P P P Y O O O O O Y Y B O W W P
Y Y Y W G G G G G W W W B O W W P
a b c d e f g h j k l m n p q r s

Cube Vertex (8) Edge (60) Face (150) Hidden (125)
Red n k l a b c d e f g h j m p q r s
Blue n a m g h j k l b c d e f p q r s
Green p a b e f g h j m c d k l n q r s
Yellow r s f g h a b c e l m d j k n p q
Orange p c d e f g h j k a b l m n q r s
Pink q s b c d h j k l m a e f g n p r
White q r j d e f g k l m a b c h n p s

n = 8 : 512 cubes
24 72 72 48 24 72 72 24 24 48 8 8 8 8
R R R R B B B B B B B G Y W
G G G G O O O O O B B G Y W
Y Y Y Y P P P P P G B G Y W
S W W W W S S S S G R O P S
B O P S S Y W G R R R O P S
B O P S S Y W G R R R O P S
a b c d e f g h j k l m n p

Cube Vertex (8) Edge (72) Face (216) Hidden (216)
Red l j k a b c d e f g h m n p
Blue l a k e f g h j b c d m n p
Green m h k a b c d e f g j l n p
Yellow n f a b c d e g h j k l m p
Orange m b e f g h j a c d k l n p
Pink n c e f g h j a b d k l m p
White p g b c d e a f h j k l m n
Sepia p d e a f g h j b c k l m n
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n = 9 : 729 cubes
63 21 84 84 42 42 21 42 21 21 63 84 63 21 21 8 8 8 4 4 4
R R R R R B B B B B B B G G G R G Y W L S
G G O Y P P W W W S S L R R B R G Y W L S
G G O Y P P W W W S S L R R B R G Y W L S
B S S S S S S P P P P P P W W B O P S W L
B L L L L L L O Y Y Y Y Y Y Y B O P S W L
W W W W G G G G G G O O O O O B O P S W L
a b c d e f g h j k l m n p q r s t x y z

Cube Vertex (8) Edge (84) Face (294) Hidden (343)
Red r n p a b c d e f g h j k l m q s t x y z
Blue r a q f g h j k l m b c d e n p s t x y z
Green s a b e f g h j k n p q c d l m r t x y z
Yellow t d j k l m n p q a b c e f g h r s x y z
Orange s c h l m n p q a b d e f g j k r t x y z
Pink t e f h j k l m n a b c d g p q r s x y z
White x y g h j a b c d p q e f k l m n r s t z
Sepia x z k l b c d e f g a h j m n p q r s t y
Lilac y z m b c d e f g a h j k l n p q r s t x

n = 6 : 216 cubes
8 8 8 48 48 96
R G O R Y R
R G O R Y B
R G O B O G
B Y P B O Y
B Y P G P O
B Y P G P P

Vertex Edge Face

As each cube has six faces, the
painting and assembly is straight-
forward to give 8 vertex cubes, 48
edge cubes and 96 face cubes of
each colour. The hidden cubes
consist of 16 vertex cubes (4 un-
seen colours) and 48 edge cubes
(3 unseen colours). See Nested
monochromatic cubes, later.

n = 10 : 1000 cubes
96 96 96 96 96 96 96 96 96 96 8 8 8 8 8
R B G O Y P W S L T R G Y W L
R B G O Y P W S L T R G Y W L
W R R R R Y Y Y Y L R G Y W L
L L L G G G G W W W B O P S T
T T T T O O O O S S B O P S T
S S B B B B P P P P B O P S T
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The case n = 10 is straightforward as the ten different colour vertex
cubes can be arranged in 5 × 8 = 40 cubes of the 1000, leaving 960 cubes,
which is 10 times the number of edge cubes of each colour and 5/2 times
the number of face cubes of each colour. The 10th colour is T, Tan.

For n ≥ 10, the number of hidden cubes is greater than half of the total.

Since 6(n−2) = M is a common factor of the number of edge cubes and
the number of face cubes (E = 2M , F = (n − 2)M) it seems appropriate
to use this multiple when attempting to minimize the number of groups of
cubes painted in the same way. For some values of n, the arrangement is
straightforward (not necessarily optimum?), and for some values of n, the
arrangement is particularly difficult (e.g. n = 5, n = 7). In some cases the
(n− 2)3 internal cubes can be arranged to be an (n− 2)× (n− 2)× (n− 2)
cube that is monochromatic, suggesting a series of ‘nested’ monochromatic
cubes!

Nested monochromatic cubes

As n increases, the number of possible arrangements of painting and assem-
bly of the n3 cubes also increases. Hence there is scope for investigating
how other criteria can be satisfied. The arrangement for n = 6 is nicely
symmetric. Each of the six 6 × 6 × 6 monochromatic cubes can have the
outer shell of cubes removed to reveal a 4 × 4 × 4 cube that is monochro-
matic, which in turn can be ‘peeled’ to reveal a 2 × 2 × 2 monochromatic
core. Using the previous n = 6 diagram and colours, we can obtain the
following nested arrangements.

6× 6× 6 cube 4× 4× 4 cube 2× 2× 2 cube

Red Yellow Orange or Pink
or Orange Green or Yellow

Blue Pink Green or Yellow

Green Orange Red or Blue
Pink Red or Blue

Yellow Red Orange or Pink
Blue Orange or Pink

Orange Red Green or Yellow
or Blue Green or Yellow

Pink Green Red or Blue

152 cubes 56 cubes 8 cubes
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Critical sets and sudoku puzzles
Tony Forbes
Seeing Reinhardt Messerschmidt’s solution in M500 288 of Problem 284.2
– 13 cards (If a standard pack of 52 playing cards is shuffled and dealt into
13 piles of four, is it always possible to select one card from each pile so
that the chosen cards consist of 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A, not
necessarily of the same suit?) should remind me and other sudoku fans that
critical sets play an important role in the solution of sudoku puzzles.

We start with a typical puzzle that could have appeared in a popular
newspaper or magazine. Well, not quite. The squares which would normally
be left blank have been filled in with the symbols 1, 2, . . . , 9 to clearly
indicate that before you start solving the puzzle the correct numbers in
these cells for the unique solution are completely undetermined.

123
456
789

123
456
789

1

9 6
123
456
789

123
456
789

123
456
789

123
456
789

123
456
789

123
456
789

9

5
123
456
789

123
456
789

123
456
789

123
456
789

123
456
789

123
456
789

7
123
456
789

123
456
789

123
456
789

8
123
456
789

123
456
789

123
456
789

4 5
123
456
789

8
123
456
789

2

6
123
456
789

123
456
789

6
123
456
789

123
456
789

123
456
789

9
123
456
789

123
456
789

123
456
789

2

123
456
789

123
456
789

3

6
123
456
789

4
123
456
789

5 7
123
456
789

123
456
789

123
456
789

7
123
456
789

123
456
789

123
456
789

8
123
456
789

123
456
789

123
456
789

123
456
789

123
456
789

123
456
789

4

3
123
456
789

123
456
789

123
456
789

123
456
789

123
456
789

123
456
789

8 5

1
123
456
789

123
456
789

Attempt to solve the puzzle strictly according to the following algorithm,
which I refer to as the critical-set strategy.

(1) Look at a region (a row, a column or one of the nine 3× 3 boxes into
which the array is partitioned), R, and try to find a critical set in R.
This is a set of k cells in R such that collectively they contain exactly
k distinct numbers, d1, d2, . . . , dk, say. Then cross out d1, d2, . . . , dk
wherever they appear in the remaining cells of R.

(2) Repeat (1) until the array is stable.
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For example, you might notice that in the top row, each of the cells
in the 3rd, 6th and 8th columns contains just one number, 1, 9 and 7
respectively. Thus R = top row, k = 3, and the critical set is {1, 9, 7},
where, for simplicity, we refer to a cell by the symbol(s) contained in it. So
you remove all occurrences of 1, 9 and 7 from the remaining 6 cells of R.
Similarly, in the left column there is a critical set, {9, 4, 8, 6, 7}, of size 5
and hence you can eliminate 9, 4, 8, 6 and 7 from the 1st, 3rd, 7th and 9th
rows in the left column. But be warned that it is not always as simple as I
appear to be suggesting. You might need to make use of critical sets where
each cell has more than one element.

The size k can be anything from 0 to 9. However, 0 and 9 are vacuous
cases. Although you can always find critical sets of sizes 0 and 9, there is not
a lot you can do with them. So for practical purposes, you should restrict k
to 1 ≤ k ≤ 8. If you ever find a set of k cells that covers fewer than k distinct
symbols, you should give up and start again because something somewhere
has gone badly wrong. On the other hand, if you follow the procedure
correctly, you will solve the puzzle. As far as I am aware, the vast majority
of sudoku puzzles published in newspapers, even ones described as ‘hard’,
or ‘fiendish’, will eventually yield to the critical-set strategy. Nevertheless
there do exist puzzles that don’t.

Now try the critical-set strategy with this next one.

123
456
789

123
456
789

123
456
789

123
456
789

123
456
789

123
456
789

123
456
789

8 9

123
456
789

123
456
789

8
123
456
789

123
456
789

123
456
789

1
123
456
789

123
456
789

123
456
789

123
456
789

123
456
789

7 8 9
123
456
789

2
123
456
789

6
123
456
789

123
456
789

123
456
789

9 8
123
456
789

2
123
456
789

123
456
789

4
123
456
789

123
456
789

6
123
456
789

123
456
789

3
123
456
789

123
456
789

5
123
456
789

4 3
123
456
789

123
456
789

123
456
789

1
123
456
789

1
123
456
789

3 7 2
123
456
789

123
456
789

123
456
789

123
456
789

123
456
789

6
123
456
789

123
456
789

123
456
789

9
123
456
789

123
456
789

5 7
123
456
789

123
456
789

123
456
789

123
456
789

123
456
789

123
456
789

123
456
789

When stability has been achieved, and provided you (or I) have made
no mistakes, you will finish with the array on the next page.
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127 46 136
7

125 456 135
6

57 8 9

234
67 9 8
234
56 25 234

5

1 57 34

136 146 5

7 8 9
36 2 346

6 3 17

157 9 8
4 2 57

278 4 127
9

257 6 125
7

578 3 579

289 5 278

4 3 27

689 69 1

9 1 4

3 7 2
8 56 56

238 28 6
458 158 145

9 127 123
47

5 7 238

168
9

146
9 468

123 14 234

Although the puzzle is not solved, a situation has arisen where the cells
of each region can be partitioned into minimal critical sets, i.e. sets that
cannot be further partitioned into smaller non-empty critical sets. In the
bottom row, for example, there are four such sets, {8}, {56, 56}, {9} and
{127, 12347, 123, 14, 234} of sizes 1, 2, 1 and 5 respectively.1 You might even
notice that it is possible to construct a system of distinct representatives
from the nine cells, {8, 5, 6, 9, 7, 2, 3, 1, 4} for example, to give a solution to
just the bottom row and which is also compatible with the bottom-left 3×3
box. However these numbers might not be valid for the whole array.

When a sudoku puzzle is solved all the minimal critical sets will have
size 1, as you will have seen from the first example. Plainly this has not
happened here, and if you want to complete the puzzle you will have to resort
to some other means, brute force or, as a last resort, human ingenuity.

In the current array there are four regions that have minimal critical
sets of size 7, and none with size greater than 7. They occur in column 4,
column 5, and the 3× 3 boxes at the top-left and bottom-right.

Decomposing a region into minimal critical sets can be quite tricky; so
it is a good idea to get one’s computer to help. Suppose the region, R, you
want to partition has cells R1, R2, . . . , R9. Construct an incidence graph
that has vertices {1, 2, . . . , 9, R1, R2, . . . , R9} by creating an edge {i, Rj}
whenever i ∈ Rj . Then decompose the graph into its connected compo-

1Recall that {56,56} here means {(cell at 9th row, 2nd column), (cell at 9th row, 3rd
column)}; there really are two distinct elements.
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nents. Conveniently, Mathematica can do this. The sizes of the connected
components give, after dividing by 2, the sizes of the minimal critical sets.
Mathematica can also solve the marriage problem, i.e. finding a system of
distinct representatives for a set of sets G = {B1, B2, . . . , Bn}, that satisfies
Hall’s marriage condition,∣∣∣∣∣ ⋃

B∈S
B

∣∣∣∣∣ ≥ |S| for every subset S of G. (1)

Think of Bi ∈ G, i = 1, 2, . . . , n, as a list of boys each of which girl gi is
willing to put up with for a long time. The marriage theorem says that (1)
is sufficient (and necessary) for a successful one-to-one assignment of boys
to the girls {g1, g2, . . . , gn}.

Getting back to sudoku, here is a partly completed puzzle that has
reached stability under the critical-set strategy and which took me a little
while to find. It is noteworthy because there are eight minimal critical sets
of size 9: four in the border of the array, two in the central cross and two
in 3× 3 boxes. It is not obvious (to me) how to complete the puzzle but I
expect my computer program would make short work of it.

123
456
789

345
78

126
79

245
79 457 279

346
78

347
8 67

48 456
78 57

1 457 3

2 467
8 9

279 234
79

234
79

8 6 247
9

1 5 347

16 2 8
134
67 347 167

37 9 5

7 59 4
38 235

89 25

6 23 1

3 19 156
9

256
79

127
9

125
679

4 8 27

279 6 4
257
8 1 3
257
89 578 279

5 123
7 8

9 247 6
34 123

47 27

279 123
79

123
79

257 247 245
78

256
79

123
479

123
456
789

This suggests a very interesting problem.

Find a sudoku puzzle where the critical-set strategy produces an array with
at least 9 minimal critical sets of size 9. Or prove that no such thing exists.
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Solution 284.3 – Characteristic polynomial
Show that a square matrix is a root of its characteristic polyno-
mial. In other words, if M is an n× n matrix, and

PM (x) = det(xIn −M) =

n∑
i=0

aix
i

is its characteristic polynomial, show that

PM (M) =

n∑
i=0

(aiIn)M i = 0n,

where In is the n×n identity matrix, and 0n is the n×n all-zeros
matrix.

Reinhardt Messerschmidt
This result is known as the Cayley–Hamilton theorem. The following proof
is adapted from [1].

Terminology and notation

Suppose A is an n × n matrix. The (i, j)-th entry of A will be denoted by
Aij . The (i, j)-th minor of A, i.e. the (n−1)× (n−1) matrix obtained from
A by deleting its i-th row and j-th column, will be denoted by minorij A.
The adjugate of A, i.e. the matrix whose (i, j)-th entry is

(−1)j+i det(minor
ji

A),

will be denoted by adjA.

A property of the adjugate of a matrix

For every i, j,

(A(adjA))ij =

n∑
k=1

Aik(−1)j+k det(minor
jk

A).

If i = j, then the right-hand side of this equation is the determinant expan-
sion of A by its j-th row. If i 6= j and A′ is the matrix obtained from A
by replacing its j-th row with its i-th row, then the right-hand side is the



M500 289 Page 11

determinant expansion of A′ by its j-th row. Since the i-th and j-th rows
of A′ are equal, we have detA′ = 0. It follows that

A(adjA) = (detA)I.

Proof of the Cayley–Hamilton theorem

Applying the above property of the adjugate of a matrix to xI −M ,

(xI −M) adj(xI −M) = det(xI −M)I

= PM (x)I =

( n∑
i=0

aix
i

)
I =

n∑
i=0

xi(aiI).

Each entry of adj(xI −M) is a polynomial in x of degree at most n − 1.
This implies that there exist matrices B0, B1, . . . , Bn−1 such that

adj(xI −M) =

n−1∑
i=0

xiBi;

therefore

(xI −M) adj(xI −M) =

n−1∑
i=0

(xi+1Bi − xiMBi)

= xnBn−1 +

n−1∑
i=1

xi(Bi−1 −MBi)−MB0;

therefore

n∑
i=0

xi(aiI) = xnBn−1 +

n−1∑
i=1

xi(Bi−1 −MBi)−MB0.

This matrix equation is equivalent to a system of n2 scalar equations. In
each scalar equation, the left-hand side and the right-hand side are poly-
nomials in x of degree at most n; therefore we may equate the coefficients
of xi for i = 0, 1, . . . , n. Equating coefficients in each scalar equation is
equivalent to equating coefficients in the matrix equation; therefore

a0I = −MB0, a1I = B0 −MB1,

a2I = B1 −MB2, . . . ,

an−1I = Bn−2 −MBn−1, anI = Bn−1.
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Multiplying both sides of the i-th equation from the left by M i−1 for i =
1, 2, . . . , n+ 1,

a0I = −MB0,

a1M = MB0 −M2B1,

a2M
2 = M2B1 −M3B2,

. . . ,

an−1M
n−1 = Mn−1Bn−2 −MnBn−1,

anM
n = MnBn−1.

The left-hand sides of these equations sum to PM (M), and the right-hand
sides sum to 0n.

References

[1] T. M. Apostol, Calculus, Volume II, 2nd ed., John Wiley & Sons, 1969.

Problem 289.1 – Odd divisor sum
Let

S(m,n) =
1

n2

2mn∑
k=n+1

q(k), m, n = 1, 2, . . . ,

where the function q(k) is defined by

q(k) =

{
k if k is odd,
q(k/2) otherwise;

i.e. q(k) is the largest odd divisor of k. (i) Compute S(1, 1) and show that

S(m+ 1, 1) = 4S(m, 1) + 1.

(ii) Show that in general S(m,n) is an integer that is (somewhat amazingly
(at least in the opinion of me (TF))) independent of n, and hence obtain a
closed formula for S(m,n).

This seems to be a generalization of a puzzle that appeared in Chalkdust,
issue 5.
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Solution 284.4 – Factorial square
For positive integers p and q, define

F (p, q) =
1

q!

p∏
j=1

j!.

(i) Show that F (4n, 2n) is always a square, or find a counter-
example. For instance,

F (12, 6) = 2! 3! 4! 5! 7! 8! 9! 10! 11! 12! = 4205055873908736000002.

(ii) With the exception of F (1, 1) = 1, show that F (p, q) cannot
be a square if p is odd. Or find another example.

(iii) Show that F (14, 9) and F (18, 7) are squares.

(iv) Prove the following, or find a counter-example. Apart from
F (14, 9) and F (18, 7), if F (2n, q) is a square, then n− 1 ≤ q ≤
n+ 1.

Tommy Moorhouse
I initially thought of an oblique approach to this problem, but the ‘brute
force’ route proved simpler. Writing out the full expression for

∏4n
k=1 k! we

have

(4n)!(4n− 1)!(4n− 2)!(4n− 3)! · · · 3!2!1!

= 4n(4n− 1)!2(4n− 2)(4n− 3)!2 · · · 4(3!)22(1!)2

= 2(2n)2(2n− 1)2(2n− 2) · · · 2((4n− 1)!(4n− 3)! · · · (3!)(1!))2

= 22n(2n)!((4n− 1)!(4n− 3)! · · · (3!)(1!))2.

Dividing by (2n)! we see that F (4n, 2n) is a square.

As a byproduct of my initial approach I found the identity

N∑
k=1

[
k

m

]
=

[
N

m

](
(N + 1)− m

2

([
N

m

]
+ 1

))
.

Here square brackets [x] indicate the integer part of x. Some tidy formulae
for m ≤ 7 are presented in the reference. Can you prove the identity in the
form shown above?

Reference Apostol, T., Introduction to Analytic Number Theory, Springer,
1976, Chapter 3, Ex 25, 26.
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Solution 285.3 – A coil and two capacitors
This is like Problem 256.5 –
Lost energy. Behold, a simple
circuit containing a coil of L
henrys and two capacitors of
C farads each. The diagram
represents the initial state,
with 100 volts across C1. As-
sume the wiring consists of
perfect conductors. What
happens when you close the
switch?

Edward Stansfield
This hypothetical problem asks what happens when the switch is closed in
the lossless circuit shown here. The capacitors C1 = C2 = C farads and the
inductance is L henrys. Prior to the switch being closed at time t = 0 the
capacitor C1 is charged to v1(0) = 100 volts, capacitor C2 has no charge
and the current flow is zero. The initial conditions are thus:

v1(0) = 100, v2(0) = v3(0) = 0, i(0) = 0.

At time t after the switch has been closed we have the following.

Transient response By Kirchhoff’s Voltage Law we have

v1(t) = v1(0)− 1

C

∫ t

0

i(θ)dθ = v2(t)+v3(t) =
1

C

∫ t

0

i(θ)dθ+L
di(t)

dt
. (1)

Simplifying (1) yields

Cv1(0) = 2

∫ t

0

i(θ)dθ + LC
di(t)

dt
. (2)

Differentiating (2) once obtains

0 = 2i(t) + LC
d2i(t)

dt2
. (3)

The general solution of (3) is

i(t) = α sin(ω0t) + β cos(ω0t) + γ, (4)

where α, β and γ are constants. Differentiating (4) twice gives

d2i(t)

dt2
= − ω2

0(α sin(ω0t) + β cos(ω0t)) = ω2
0(i(t)− γ). (5)
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Substituting from (5) into (3) yields γ = 0, and ω2
0 = 2/(LC). Since the

voltage across a capacitor cannot change instantaneously, the voltage across
the inductor L immediately after the switch is closed must be equal to the
initial voltage across capacitor C1. That is, the initial conditions at time
t = 0 are

v3(0) = v1(0) = L
di(0)

dt
= αLω0.

Furthermore, since the current through an inductor cannot change instan-
taneously, the initial current in the circuit after the switch the switch is
closed must also be zero, i.e. i(0) = 0, which shows that β = 0. Hence we
have the particular solution of (4):

i(t) =
v1(0)

Lω0
sin(ω0t), where ω0 =

√
2/(LC).

In terms of the circuit components this is

i(t) = v1(0)
√
C/(2L) sin

(
t
√

2/(LC)
)
.

Observe that in this case there is no ‘steady state’ in the traditional sense,
since the current i(t) is sinusoidal with a constant amplitude at frequency
ω0 radians per second. The voltages v1(t) and v2(t) across the two capaci-
tors are necessarily also sinusoidal at the same frequency. Note that if the
inductance L is zero, the frequency ω0 is infinite.

To complete the analysis, the capacitor voltages are given by

v1(t) = v1(0)− 1

C

∫ t

0

i(θ)dθ, v2(t) =
1

C

∫ t

0

i(θ)dθ,

v3(t) = L
di(t)

dt
.

The current integral is∫ t

0

i(θ)dθ = v1(0)

√
C

2L

∫ t

0

sin(ω0θ)dθ =
C

2
v1(0)(1− cos(ω0t)).

Hence

v1(t) =
1

2
v1(0)(1 + cos(ω0t)), v2(t) =

1

2
v1(0)(1− cos(ω0t)),

v3(t) = v1(0) cos(ω0t).
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Observe that, as expected, the average values are given by

〈v1(t)〉 = 〈v2(t)〉 = v1(0)/2, 〈v3(t)〉 = 0.

Energy transfer At any time t the total energy E(t) stored in the two
capacitors and the inductor is given by

E(t) =
1

2

(
Cv21(t) + Cv22(t) + Li2(t)

)
=

1

2
v21(0)

(
C

4
(1 + cos(ω0t))

2 +
C

4
(1− cos(ω0t))

2 +
C

2
sin2(ω0t)

)
=

1

8
v21(0)C

(
(1 + cos(ω0t))

2 + (1− cos(ω0t))
2 + 2 sin2(ω0t)

)
=

1

8
v21(0)C

(
2 + 2 cos2(ω0t) + 2 sin2(ω0t)

)
=

1

2
v21(0)C.

This is the same as the initial energy stored on capacitor C1 prior to the
switch being closed, and as expected this implies that no energy is lost.
It oscillates at frequency ω0 between the two capacitors, with intermediate
storage in the inductor.

Problem 289.2 – Tetrahedron
A regular tetrahedron with side length 2

√
2 has its centre at the origin

and has vertices V1, V2, V3, V4. Let Wi = (Vi,x, Vi,y, Vi,z, 1), where
Vi = (Vi,x, Vi,y, Vi,z), i = 1, 2, 3, 4. Show that W1, W2, W3 and W4 have
magnitude 2 and are mutually orthogonal.

Problem 289.3 – Continued fractions
Prove the following continued fraction formulæ:

e+ 1

e− 1
= [2; 6, 10, 14, 18, . . . ],

e2 + 1

e2 − 1
= [1; 3, 5, 7, 9, . . . ].

Is there a nice expression that has continued fraction [1; 2, 3, 4, . . . ]?

A certain mathematician devised a theorem which meant he didn’t have to
pay for food in restaurants. What did he call it?

Later he came up with another theorem, which meant he didn’t get to
taste any of that restaurant food. What did he call that one?

— Sent by Jeremy Humphries.
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Number fields from prime pairs
Tommy Moorhouse
Background This problem concerns properties of a certain family of num-
ber fields and makes use of basic properties of rings and fields. All the math-
ematical background can be found in standard texts, and I’ve suggested a
couple in the references. Essentially a number field is an extension of the
field of rational numbers Q by some irrational number satisfying a polyno-
mial equation. For example, appending

√
2 (a solution of t2 − 2 = 0) to Q

gives a number field including the rational numbers and combinations such
as a+ b

√
2.

Integers A number field has an associated ring of integers O, just as Q
has ring of integers Z, the ordinary integers. In a general number field
integers are those elements satisfying a monic polynomial equation (that is,
the leading coefficient is 1) with coefficients in Z. The ring of integers O
can contain some unlikely looking members. For example if the square-free
integer m is congruent to 1 (mod 4) then 1/2 +

√
m/2 is an integer.

The prime pairs number field Here we will consider a number field
given by Q[

√
p,
√
p+ 2] where p and p + 2 form a prime pair. You could

show that this is the same field as Q[
√
p+
√
p+ 2], which we will call Q[θ].

Integral basis An integral basis for the ring of integers in Q[θ] is a subset
of O consisting of integers such that any integer in O is uniquely expressible
as a linear combination (over Z) of the elements of the basis. Note that the
Q-basis {1, θ, θ2, θ3} (consisting of integers of Q[θ]) is not an integral basis
because not all integers in Q[θ] can be written as sums of powers of θ with
integer coefficients, as we will see.

Some properties You are invited to explore the properties of Q[θ]. To
start, find the minimum polynomial of θ and deduce that θ has four conju-
gates (including the trivial one). Now consider the following conjecture:

Conjecture Q[θ] has integral basis{
1, θ,

1

2
+
θ

2
+
θ2

4
,

1

2
+
θ

4
+
θ3

8

}
if p ≡ 1 (mod 4), and{

1, θ,
1

2
+
θ

2
+
θ2

4
,

1

2
+

3θ

4
+
θ3

8

}
if p ≡ 3 (mod 4).
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Prove this conjecture or find a counterexample. One way to proceed
is to write out the monic polynomial satisfied by each listed basis element.
Requiring that the coefficients of this polynomial be ordinary integers gives
some conditions on the residue class of p (mod 4). This establishes that
each basis element is an integer when p satisfies the conditions. You could
try this out on a simpler number field such as Q[

√
p] to start with.

Further investigation You could explore the integers of this family of
number fields, which offers some nice examples to work with. For example,
is there an integral basis of the form {1, φ, φ2, φ3} (a monogenic basis) for
some integer φ? What about number fields like Q[

√
−p+

√
−(p+ 2)]?

References
S. Alaca and K. Williams, Introductory Algebraic Number Theory, Cam-
bridge, 2004.
I. Stewart and D. Tall, Algebraic Number Theory and Fermat’s Last Theo-
rem (3rd ed.), A. K. Peters, 2002.

Solution 285.6 – Two integrals
Show that ∫ 1

0

(
cos(1/x)

x
+ (sinx)(log x)

)
dx = − γ

and that ∫ 1

0

(
2x cos

1

x
− (sinx)(log x)

)
dx = γ + cos 1− sin 1.

Recall that γ = lim
n→∞

(
n∑

k=1

1

k
− log n

)
=

∫ ∞
1

(
1

bxc
− 1

x

)
dx =

0.57721566 . . . .

Tommy Moorhouse
This problem can be solved using some classical results on the gamma func-
tion and its relatives. Our first step is to prove the

Lemma

I(x) ≡
∫ ∞
0

tx−1 sin t dt = Γ(x) sin
πx

2
.

Proof The first step is to note that∫ ∞
0

e−ata−xda = Γ(1− x)tx−1.
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This is essentially a statement of the Laplace transform for powers of a
variable. Now we use this expression for tx−1 and change the order of
integration:∫ ∞

0

tx−1 sin t dt =
1

Γ(1− x)

∫ ∞
0

(∫ ∞
0

e−ata−xda

)
sin t dt

=
1

Γ(1− x)

∫ ∞
0

da a−x
(∫ ∞

0

e−at sin t dt

)
=

1

Γ(1− x)

∫ ∞
0

da
a−x

1 + a2
.

The last line uses the Laplace transform for sin t. Now substitute u = a2 to
get

I(x) =
1

Γ(1− x)

∫ ∞
0

u−(1+x)/2du

2(1 + u)
=

β((1 + x)/2, (1− x)/2)

2Γ(1− x)

where we have used the expression for the β function

β(y, x) =

∫ ∞
0

sx−1ds

(1 + s)x+y
.

Expanding the β function in terms of Γ functions we find

I(x) =
Γ((1 + x)/2)Γ((1− x)/2)

2Γ(1− x)
.

This simplifies with the help of various Γ function identities, including

2
√
π2−2sΓ(2s) = Γ(s)Γ

(
s+

1

2

)
, xΓ(x) = Γ(1 + x)

and
Γ(x)Γ(1− x) =

π

sinπx

to give the stated result.

Next consider

d

dx

(∫ ∞
0

tx−1 sin t dt

)
x=1

=

∫ ∞
0

log t sin t dt.

Using the lemma above we easily see that this is −Γ′(1) = −γ.
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Now we are ready to tackle the first integral set out in the problem:

J ≡
∫ 1

0

(
cos(1/x)

x
+ sinx log x

)
dx.

Substitute y = 1/x in the first term and note that∫ 1

0

f(x)dx =

∫ ∞
0

f(x)dx−
∫ ∞
1

f(x)dx

to arrive at

J =

∫ ∞
1

d

dx
(cosx log x) dx+

∫ ∞
0

log x sinx dx.

The first term is an exact differential and can be taken to vanish, while the
second term is I ′(1) = −γ.

For the second integral (call it K) we look at the term∫ 1

0

2x cos(1/x)dx.

Making the substitution y = 1/x and relabelling we find by integration by
parts:

K =

∫ ∞
1

(
2

x3
cosx+ sinx log x

)
dx−

∫ ∞
0

sinx log x dx

=

[
−1

x2
cosx

]∞
1

−
∫ ∞
1

1

x2
sinx dx+

∫ ∞
1

sinx log x dx−
∫ ∞
0

sinx log x dx

=

[
−1

x2
cosx

]∞
1

+

[
1

x
sinx

]∞
1

−
∫ ∞
1

1

x
cosx dx+

∫ ∞
1

sinx log x dx

−
∫ ∞
0

sinx log x dx

= cos 1− sin 1 + γ

using the previous result.

Problem 289.4 – Squares
Find all solutions in positive integers d and n of

n2 ≡ n (mod 10d).

Or, if you prefer, find all numbers which are the last d digits of their squares.
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Things you can’t buy in shops – II
Following on from the list in M500 278, here are a few more useful, everyday
items you might consider enquiring about when your peaceful browsing in
a shop is interrupted by an enthusiastic salesperson.

1. A door chime that can be heard above a noisy vacuum cleaner.

2. An anticlockwise corkscrew.

3. Fireworks where the explosive yield of each item is clearly indicated
in microtons. Here, one is reminded that food items must be labelled
to indicate their energy value in kilocalories. Curiously, the units are
identical; 1 microton = 1 kilocalorie. The microton was originally
intended to represent the energy yield of 0.000001 tons of TNT and
is now standardized to 1000 calories. The actual yield of 1 gram of
TNT can vary from about 4184 − 1500 to about 4184 + 2500 joules,
depending on how it is detonated. The (thermochemical) calorie, or
nanoton, is exactly 4.184 joules. Although we do of course have the
larger multiples kiloton and megaton for grading nuclear bombs, I am
not aware of the unscaled unit ton ever being used in this way.

4. A toaster which pops up as soon as the bread is actually toasted rather
than after a number of seconds that has to be set on each and every
occasion by an expert authority on bread and the charring thereof.

5. Leakproof batteries that do not leak.

6. An upright vacuum cleaner that is effective all the way to the wall.

7. A compact umbrella that will survive intact after being turned inside-
out by a strong wind.

8. A pocket scientific calculator that supports the mod function (in ad-
dition to having at least 12 digits precision; cf M500 278).

Just as someone said that the greatest insult to the scientist by the computer
programming language C is the lack of a to-the-power-of operator, I (TF)
claim that the greatest insult to the number theorist by the commonly avail-
able scientific calculator, whether or not it has at least 12 digits precision,
is the lack of the ability to do integer calculations modulo something.

Problem 289.5 – Cubic coefficients
A cubic x3 + ax2 + bx + c has a double root at x = α and another root at
x = β. Show that the coefficients a, b and c are all real if and only if both
α and β are real. Or find a counter-example.
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Problem 289.6 – 52 Cards
I take a standard deck of 52 playing cards, randomized and placed on the
table face down. One by one I turn over the cards. Before a card is turned
over I invite you to guess what it is. Assuming you play intelligently, how
many do you expect to get right?

The game is played again, but this time you are to guess only the rank of
the card. The suit is irrelevant. Again, how many do you expect to get
right?

Front cover 125 coloured cubes to make any one of 5 monochromatic
5×5×5 cubes according to the specification in the table for n = 5 on page
2 of Chris Pile’s article. (It works better when viewed in colour.)


