
* ISSN 1350-8539

M500 291



The M500 Society and Officers

The M500 Society is a mathematical society for students, staff and friends of the
Open University. By publishing M500 and by organizing residential weekends, the
Society aims to promote a better understanding of mathematics, its applications
and its teaching. Web address: m500.org.uk.

The magazine M500 is published by the M500 Society six times a year. It
provides a forum for its readers’ mathematical interests. Neither the editors nor
the Open University necessarily agree with the contents.

The Revision Weekend is a residential Friday to Sunday event providing re-
vision and examination preparation for both undergraduate and postgraduate
students. For details, please go to the Society’s web site.

The Winter Weekend is a residential Friday to Sunday event held each January
for mathematical recreation. For details, please go to the Society’s web site.

Editor – Tony Forbes

Editorial Board – Eddie Kent

Editorial Board – Jeremy Humphries

Advice to authors We welcome contributions to M500 on virtually anything
related to mathematics and at any level from trivia to serious research. Please
send material for publication to the Editor, above. We prefer an informal style
and we usually edit articles for clarity and mathematical presentation. For more
information, go to m500.org.uk/magazine/ from where a LaTeX template may
be downloaded.

M500 Society Committee – call for applications

The M500 committee invites applications from members to join the Committee.
Please apply to Secretary of the M500 Society not later than 1st January 2020.

m500.org.uk
m500.org.uk/magazine/


M500 291 Page 1

The Brachistochrone Problem
Sebastian Hayes
The so-called Brachistochrone Problem has perhaps attracted the attention
of more great names in science and mathematics than any other mechanical
problem. The term comes from two Greek words meaning ‘shortest time’
and the problem in modern terms may be posed thus:

What is the path of shortest time between two points A and B
taken by a particle falling from rest under gravity?

At first sight, this looks like a no-brainer—a straight line is obviously the
path of shortest distance between two points and that is that. But, except
in the trivial case when B lies directly below A, a straight line is by no
means necessarily the path of shortest time. Since time = distance/speed
we would also like to maximize the speed, for example by choosing a path
with a large initial acceleration, i.e. a nearly vertical drop. The ‘ideal’ path is
thus going to be the result of a compromise between these two requirements,
i.e. a curved path that gives the particle a good initial velocity while not
deviating too far from a straight line.

A

B

Galileo, the first person to address the problem, suggested that an arc of
circle would be a better choice than a straight line which is indeed per-
fectly correct as timed experiments with actual chutes of different shapes
demonstrate.

However, Jacob Bernoulli was convinced he could do much better than
this and, in 1696, in an issue of the journal Philosophical Transactions, he
challenged the mathematicians of the day to find the all-round curve of
least time. The initial deadline was the end of the year but by then he
had received only one answer—from Leibnitz. The latter persuaded Johann
Bernoulli to extend the deadline to Easter 1697 and, when restating the
problem, Bernoulli managed to make a sly dig at Leibnitz’s great rival,
Newton (without actually naming him)—for Johann Bernoulli was the great
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champion of Leibnitz in the so-called ‘Calculus Wars’ about priority. To
make sure that Newton, who was now Master of the Mint, didn’t miss the
challenge, Bernoulli sent him a copy of the journal. The story goes that
Newton came back at 4 in the afternoon from a hard day’s work at the
Mint, opened the package and stayed up until 4 in the morning by which
time he had solved the problem.

Come Easter and the journal gave the solution to the problem, namely
the curve known as the cycloid, the path followed by a point on the cir-
cumference of a rolling wheel. The roll call of the successful puzzle solvers
goes:

1. Johann Bernoulli, who posed it;

2. Leibnitz;

3. Jacob Bernoulli, Johann’s brother (whom he detested);

4. the Marquis de l’Hôpital, author of the very first textbook on Calculus
and known to students via ‘l’Hôpital’s Rule’;

5. von Tschimhaus, inventor of the ‘Tschimhaus Transformation’;

6. an anonymous solution from England.

Regarding the last submission, Johann Bernoulli, not a generous man, al-
legedly said, “The lion is known by his footprint”. A modern historian
commented, “Newton was obviously getting old—in his youth he would
have solved the problem by midnight”.

So how did Johann Bernoulli reach his conclusion? Very neatly, if some-
what intuitively. Fermat had already shown that light, when moving from
one medium to another (such as air to water), always follows the path of
shortest time which is that dictated by Snell’s Law of Refraction

sin θ2
sin θ1

=
v2
v1
, or

sin θ

v
= constant.

Θ1

Θ2

Air

Water
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Note that the angle we are interested in is the angle the path of light makes
with the vertical.

Johann Bernoulli’s reasoning seems to have been something along the
following lines. A particle descending under gravity traverses successive
layers of space and may be considered to have a sort of ‘spatial index of
refraction’ which governs its speed, this speed depending on the vertical
distance from the highest point. Thus, by analogy with the behaviour of
light, an equivalent rule whereby (sin θ)/v remained constant should apply
to descent under gravity and, taking the limit as the spatial layers become
smaller and smaller, this feature should be implicit in the formula for a
continuous curve.

Although Newton’s Laws of Motion entail the conservation of momen-
tum, the principle of the conservation of energy did not enter physics as
such until very much later (Note 1). However, we can see Johann Bernoulli
groping towards an early enunciation of the principle. Today, we would
argue like this. If we make A’s initial position (0, h) and B’s (L, 0), then d,
the particle’s distance from the highest point at subsequent times will be
given by h− y.

If the particle falls from rest

K.E. + P.E. = 0 +mgh.

At any later time, when the height above the origin is y,

K.E. + P.E. = 1
2mv

2 +mgy.

Assuming no dissipation from heat, we equate the two formulae, giving

0 +mgh = 1
2mv

2 +mgy, or v =
√

2g(h− y).

Since 2g is a constant, the velocity thus varies with the square root of d,
the distance fallen,

v ∝
√
d =

√
h− y.

Bernoulli concluded that the required curve for a particle falling under grav-
ity should vary directly with sin θ and inversely with

√
d, i.e. (sin θ)/

√
d = C.

Was there such a curve known to mathematics? To Johann Bernoulli’s de-
light, it transpired that there was—the curve known as the cycloid that
Galileo, Pascal and others had studied.

It is by no means obvious that the cycloid does have the desired property,
and to show that this is the case we first of all need the following Lemma.
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Lemma If the tangent IPX to a curve at a point P makes an acute angle
θ with a base line, touching it at X, then the normal through P makes the
same angle with the base as the tangent makes with the perpendicular from
I.

T X

I

P

Θ
Ψ Θ

Ψ

Proof Angle TPX is a right-angle since PT is the normal to the tangent
at P . So, in 4PTX, ∠PTX + ∠PXT = π/2. So ψ + θ = π/2. But, if IT
is the perpendicular from I, 4ITX is right-angled. Thus ∠TIX = ∠PTX.

Corollary If IT is the diameter of a circle passing through P , then the
angle subtended at the centre by the arc PT is 2ψ (angle at centre = 2
(angle at circumference)), and by the arc IP is 2θ.

Now, the cycloid is by definition the curve traced out by a point on the
circumference of a circle that rolls, without slipping, along a straight line—
I suggest the reader consults Wikipedia or a similar site to see a mobile
representation. The cycloid is thus composed of a succession of arches,
one for each complete revolution of the rolling circle, where the horizontal
distance between the cusps is 2πr. Normally, we assume a circle, such as
the wheel of a carriage, rolling above a plane surface and moving from left to
right. For our purposes, however, we require the circle to roll underneath a
straight line. It still moves from left to right but the angle θ through which
a radius vector turns now has the opposite sense, i.e. turns anti-clockwise
instead of clockwise. This feature explains the minus sign in the Cartesian
formula for the cycloid when it is ‘upside down’.
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x
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0 2Πr

2r

As we are concerned only with the ‘absolute’ value of angles and line
segments, we can derive the main result using the more customary ‘above-
the-line’ cycloid. The maximum height of the cycloid curve occurs when
P , the point that traces the curve, coincides with the top of the vertical
diameter of the rolling circle, i.e. is at (0, 2R) if we make the bottom end
the origin. We compare this with a snapshot of P when the generating circle
has turned through θ radians.

A

B T

C

A1

B1

C1

P1Θ

Ψ

Thus AB = diameter = 2R, and P1T is the tangent to the cycloid at P .

The point P of the cycloid is originally coincident with A at its maxi-
mum height (0, 2R). When the rolling wheel has turned through θ radians,
the tracing point has traversed the arc A1P1 of length Rθ. This is also
the distance the entire wheel has moved to the right (since there is a one–
one correspondence between points on the wheel perimeter and the ground
covered). Thus the distance AA1 = BB′ = CC ′ = Rθ.

But P has also moved horizontally by an amount R sin θ. Thus, the x
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coordinate of P1 is Rθ+R sin θ. And P ’s y coordinate, originally set at 2R,
is now R+R cos θ. Thus,

P1 = (R(θ + sin θ), R(1 + cos θ)).

Now, suppose a tangent is drawn to the cycloid (not shown in diagram)
at point P1 striking the baseline at T and making an acute angle ψ =
P1TB1. Then, tanψ = dy/dx, where x, y are the cycloidal coordinates at
P1. Differentiating with respect to θ,

tanψ =
dy

dx
=

dy/dθ

dx/dθ
=

−R sin θ

R+R cos θ
=
− sin θ

1 + cos θ
.

Since

sin θ = 2 sin
θ

2
cos

θ

2
and 1 + cos θ = 2 cos2

θ

2

tanψ reduces to − tan 1
2θ, where the minus sign simply means that the angle

is pointing back towards the origin. We are only interested in the ‘absolute
value’ of the angle, so it transpires that ψ = θ/2, or θ = 2ψ. The conditions
of the Lemma are thus met.

What this means is that the tangent to the cycloid at any point P passes
through one end of the vertical diameter of the rolling circle and that the
normal at P passes through the other end. This is a most remarkable
property—but why is it relevant?

Since the property carries over to its mirror image, we can now pass to
the examination of the ‘upside-down’ cycloid.

T X A1

B1

C1

P1 Θ

Ψ

Ψ
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Here, TP1B1 is the tangent to the cycloid at P1, and P1A1 is the normal.
If ∠P1C1A1 = θ,

∠P1B1A1 = ∠XA1P1 = ψ = θ/2.

Also, since ∠P1XT is a right angle, ∠XP1T = ψ = θ/2. Moreover, XP1

is the perpendicular from TA1 to P1 and so, if P was originally coincident
with the top of the vertical diameter, XP1 = d, the distance fallen from
rest—or |y| if A is set at (0, 0).

Now, in 4A1P1B1, A1P1 = 2R sinψ. In 4XP1A1,

XP1 = A1P1 sin(∠XA1P1) = 2R sinψ sinψ = 2R sin2 ψ.

Thus d/(sin2 ψ) = 2R, or (sinψ)/
√
d = 1/

√
2R = constant.

This is precisely the relation that was desired since the angle ψ is the
angle between the tangent (representing the instantaneous trajectory of the
particle) and the vertical analogous to the angle light makes when mov-
ing from one medium to another. This seems to have been the crux of
Bernoulli’s highly imaginative solution (Note 2), though one would need to
show that the cycloid is the only curve with the desired property, and that
this property is sufficient.

The Brachistochrone Problem was one of a number of ‘extremal’ prob-
lems that eventually gave rise to what we now know as the Variational
Calculus. It can be solved algebraically by applying the Euler–Lagrange
equation

∂F

∂y
− d

dx

∂F

∂y′
= 0;

the somewhat tedious details are provided in ‘The Brachistochrone Integral’,
page 8.

Note 1 “It was [Thomson] who introduced the terms ‘energy’ and ‘ther-
modynamics’ into physics (in 1851) and then expanded ‘energy’ to cover
all applications, not merely the interaction of heat and work.” Jennifer
Coopersmith, Energy, the Subtle Concept, p. 300.

Note 2. This updated version of Bernoulli’s argument is based on a brief
paper by Mark Levy, the author of The Mathematical Mechanick; the paper
(with diagram) is given at the end of Steven Strogatz’s illuminating discus-
sion of the Brachistochrone Problem on the YouTube channel 3Blue1Brown.
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The Brachistochrone Integral
Sebastian Hayes
Making A = (0, h) and B = (L, 0) we wish to find the path of shortest
time for a particle sliding without friction from A to B under the influence
of gravity. In effect we require the path integral S =

∫
ds that makes the

time integral T =
∫
dt a minimum. This is a problem of the Calculus

of Variations and the answer is obtained by solving the Euler–Lagrange
Equation

∂F

∂y
=

d

dx

∂F

∂y′
= 0 (1)

for the appropriate functional F (x, y, y′).

Taking ds as the basic element of distance we have by Pythagoras ds2 =
dx2 + dy2; so

ds =
√
dx2 + dy2 =

√
1 +

(
dy

dx

)2

dx.

As for v, it will (because of gravity) vary according to the particle’s instan-
taneous vertical distance below A. However, if we situate B on the x axis
and make A’s initial position (0, h), we obtain positive (diminishing) values
for the particle’s height at all subsequent times. If the particle starts by
being at rest at A, from then onwards its height, henceforth given by the
y coordinate of its position, will decrease as it falls. We obtain the speed
from the principle of the conservation of energy. When t = 0, v = 0; so

K.E. + P.E. = 0 +mgh.

At any later time, when the height is y, with 0 ≤ y < h,

K.E. + P.E. = 1
2mv

2 +mgy.

Assuming no dissipation from heat, we can equate the two formulae, giving

0 +mgh = 1
2mv

2 +mgy, or v =
√

2g(h− y).

(Note that h = hmax = constant.) This allows us to determine the func-
tional, or ‘function of functions’, F (x, y, y′), where y′ = dy/dt = v and F is
the time integral = distance/speed which is to be minimized, i.e.∫ L

0

√
1 + (y′)2√
2g(h− y)

dx.
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The Euler–Lagrange Equation (1) reduces to the more tractable Beltrami
Identity,

F − y′ ∂F
∂y′

= C (2)

when, as here, x does not appear explicitly in F (x, y, y′).

First, we find the partial derivative of F with respect to y′:

∂F

∂y′
= ∂

( √
1 + (y′)2√
2g(h− y)

)
/∂y′ =

y′√
2g(h− y)(1 + (y′)2)

giving, when plugged into (2),√
1 + (y′)2√
2g(h− y)

− (y′)2√
2g(h− y)(1 + (y′)2)

= C.

We take
√

2g(h− y) over to the other side and multiply both sides by√
1 = (y′)2 yielding

1 + (y′)2 − (y′)2 = C
√

2g(h− y)
√

1 + (y′)2,

1

C
√

2g
=
√
h− y

√
1 + (y′)2.

We absorb the LHS into a new constant
√
K and square both sides, giving

K = (h− y)(1 + (y′)2) = h− y + (h− y)(y′)2,

(y′)2 =
K − h+ y

h− y
, y′ =

dy

dx
=

√
K − h+ y√
h− y

.

The RHS is a function in y only and, separating the variables, we obtain

√
h− y√

K − h+ y

dy

dx
= 1.

Integrating both sides with respect to x gives∫ √
h− y√

K − h+ y
dy = x.

The LHS can be integrated using the substitution

y = h−K sin2 θ

2
,

dy

dθ
= −K sin

θ

2
cos

θ

2
.
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Plugging this into the LHS we obtain

x =

∫ √
K sin2 1

2θ√
K −K sin2 1

2θ

(
−K sin 1

2θ cos 1
2θ
)
dθ

= −K
∫

sin 1
2θ

cos 1
2θ

sin 1
2θ cos 1

2θ dθ = −K
∫

sin2 1
2θ dθ

= − K

2

∫
(1− cos θ) dθ = − K

2
(θ − sin θ) +K2.

At x = 0, θ = 0; so K2 must be 0. We now have two parametric equations
for x and y:

x = − 1
2K(θ − sin θ),

y = h−K sin2 1
2θ = − 1

2K(1− cos θ) + h.

The unknown constant 1
2K, to be determined from the boundary conditions,

may as well be turned into a constant, b. Thus, we end up with

x = b(θ − sin θ), y = b(1− cos θ) + h.

These are known to be parametric Cartesian equations of a cycloid—the h
is present since we have situated the point A at (0, h) rather than at (0, 0)
as is more customary.

Problem 291.1 – Treasure
There is some valuable stuff buried on an island and to your delight you
have obtained precise instructions for digging it up.

Locate a tall wooden post. From there, not far away you will
see two tall stone pillars, one made of marble and the other of
sandstone. Go to the wooden post, walk to the marble pillar,
turn right, walk the same distance again and mark the spot.
Go to the wooden post, walk to the sandstone pillar, turn left,
walk the same distance again and mark the spot. The treasure
is mid-way between the two marked spots.

You arrive at the island and find the stone structures, but alas! the wooden
post has disappeared without trace. However, you had the foresight to
bring a replacement with you. You erect your wooden post somewhere on
the island, follow the instructions and successfully acquire the treasure.

How is this possible?
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Solution 222.1 – Rectangle construction
Two parallel lines are tangent to a circle C at its North and
South poles N and S. A segment of length l is constructed,
starting from S and terminating on the same line at a point A.

A second line segment is constructed as follows: the line NA is
drawn, intersecting the circle at a point E distinct from N . The
line SE is extended to meet the line tangent to N at B. The
line segment in question is NB which has length m.

Show that, whatever l we start with, a rectangle with sides of
length l and m constructed in this way has the same area as
the smallest square that completely encloses C (i.e. the square
enclosing C which touches C at exactly four points).

Peter Fletcher
Since the lines NB and SA are parallel and tangential to C at N and S
respectively, BN̂S = AŜN = 90◦.

Let NS = d and AN̂S = θ. Because NS is a diameter, NÊS = 90◦ and
it follows that NŜB = 90◦− θ and NB̂S = θ. We also have NA =

√
d2 + l2

and SB =
√
d2 +m2.

Triangles NBS and NSA are both right-angled, so we have

sin θ =
SA

NA
=

NS

BS
,

or

l√
d2 + l2

=
d√

d2 +m2
;

so

l2(d2 +m2) = d2(d2 + l2),

l2d2 + l2m2 = d4 + d2l2,

d4 = l2m2

and

d2 = lm.

Therefore the rectangle with sides l and m has the same area as the smallest
square that completely encloses C.
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Solution 286.5 – Factorization
Given a positive integer n, denote by φ(n) the number of pos-
itive integers m < n such that gcd(m,n) = 1. If we know the
complete factorization of n, say n = pa1

1 p
a2
2 . . . par

r with positive
integers a1, a2, . . . , ar and distinct primes p1, p2, . . . , pr, we
can easily compute

φ(n) = (p1 − 1)pa1−1
1 (p2 − 1)pa2−1

2 . . . (pr − 1)par−1
r .

Is this process reversible? Given n and φ(n), is it possible to
construct the complete factorization of n without too much dif-
ficulty? If it is, try factorizing n = 1586 02481 31293 11974
04552 75968 73607 71145 55549 11334 22976 68001 07012 76942
47700 99421 02756 52867 12646 06754 07200 60245 86133 22978
29252 68997 66323 73467 11294 88572 28050 70734 96620 00789
92252 73781 given that φ(n) = 1586 02481 31293 11974 04552
75968 61357 52500 38117 66204 95814 65893 63834 77320 84117
64608 84450 72128 92453 11845 67688 17202 39729 99520 14675
73124 90380 04713 14884 75595 39954 75897 02033 54901 63971
74000.

Tommy Moorhouse
Given the expressions for n and φ(n) in terms of the prime factorizations
an obvious first step is to find gcd(n, φ(n)). This can be done extremely
efficiently, and Mathematica has an inbuilt function GCD[ ] that returns
the answer

gcd(n, φ(n)) =

217562429834685303748385019825119019861335147177168195894521

in a second or so. The factor turns out to be the square of the prime

p = 466435879660522367654413675211,

telling us that n has the form p1p2 · · · p3.
We also get the bonus that since p|n the prime factors of φ(n) include

those of p−1. Now we can divide φ(n) by p2 and factorize, and cancel away
the factors of p− 1 to get a fairly short list of prime factors of φ(n)/p2 :

{2, 2, 2, 2, 5, 5, 5, 7, 7, 11, 11, 11, 223, 379, 383, 503, 3877, 3967, 12689, 25999,

281663, 338159, 933782579083, 11096678434367, 136586140357561,

368382167483219, 136230490257812162183}



M500 291 Page 13

reducing to

{7, 7, 5, 5, 11, 379, 383, 503, 3877, 3967, 25999, 281663, 338159,

933782579083, 11096678434367, 136586140357561, 368382167483219}.

The factors of 2 can be set aside because we know that 2|pk − 1 for each
prime factor of n and consequently we know that n must have four or fewer
prime factors.

Now it is a matter of taking those combinations of the primes
q1, q2 · · · qN in this list such that M = 2q1q2 · · · qr + 1 is prime, and finding
gcd(n,M). If this is not 1 then we have found a prime factor of n. In fact
we take n/p3 instead of n to streamline the process. This can be coded
in your favourite computer language: I used Mathematica running on a
Raspberry Pi to quickly carry out the computation, finding that

n = p1p2p3p
3
4,

where

p1 = 562324418721793120042174985351,

p2 = 494179332730633784520908832239,

p3 = 562422394447827908154562532159,

p4 = 466435879660522367654413675211.

It seems it would be possible to produce an algorithm along these lines, but
in this case a little intuition can go a long way.

Problem 291.2 – Chocolate
A chocolate bar consists of 42 ‘squares’ arranged in a rectangular 14 × 3
array with deep grooves to allow easy breaking of any rectangular array of
squares into two parts. For example you might want to snap the original
bar along the 4th short groove from one end to create two slabs, 4× 3 and
10× 3.

It is required to disassemble the bar into its constituent 42 squares. How
is this achieved with the minimum number of snappings?

What about an n×m slab?
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Solution 287.2 – Magic cube
Arrange the numbers 1, 2, . . . , 27 in a 3× 3× 3 cube such that
each row, column and whatever the corresponding structure in
the third dimension is called sums to 42.

Christopher Pile
In each direction there are 9 separate
groups of three numbers. Since∑27

n=1 n = 378

each group must sum to 378/9 = 42. The
3 × 3 × 3 cube has 8 vertices (V1 to V8),
12 edges (E1 to E12), 6 faces (F1 to F6)
and one central position (C).

I recall this problem from the ‘Dipole’
column in IEE News in August 1980!
An unfolded cube was shown with the
squares on each face to be filled in with
numbers 1 to 27 with the omission of one
number, which turned out to be the cen-
tral (hidden) number.

V8

E12

V4

E8

F5

E4

V5

E9

V1

E7

F4

E3

F6

C

F1

E5

F2

E1

V7

E11

V3

E6

F3

E2

V6

E10

V2

By dint of symmetry and having regard to the construction of magic
squares, the central number is expected to be C = 42/3 = 14.

The opposite face cubes (F1 +F6, F2 +F4, F3 +F5) must therefore sum
to 28. With the removal of number 14, the remaining 26 numbers give 13
possible pairs (1:27, 2:26, etc.). The 26 numbers remaining consist of 14
odd numbers and 12 even numbers. Each group of three numbers which
sum to 42 must be either all even, or one even plus two odd. There are only
12 ways of choosing three even numbers which sum to 42 from the twelve
available. These are 27 orthogonal sums in total, and each number appears
three times:

3 sums F + C + F, 12 sums V + E + V, 12 sums E + F + E.

Solutions can be characterized by the three smallest face numbers:

(1, 3, 9), (1, 3, 7), (3, 7, 9), (1, 7, 9).

In each case the central slice in each of the three places is a magic square
(including diagonals), and the main ‘space’ diagonals also sum to 42 through
the centre (e.g. E4 + C + E6 and V1 + C + V7).
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20 6 16

18 19 5

4 17 21

15 25 2

1 14 27

26 3 13

7 11 24

23 9 10

12 22 8

19 5 18

17 21 4

6 16 20

15 25 2

1 14 27

26 3 13

8 12 22

24 7 11

10 23 9

26 6 10

15 19 8

1 17 24

12 25 5

7 14 21

23 3 16

4 11 27

20 9 13

18 22 2

22 8 12

18 19 5

2 15 25

17 21 4

1 14 27

24 7 11

3 13 26

23 9 10

16 20 6

Problem 291.3 – Mileage claims
Tommy Moorhouse
A uniform random variable X represents the event of choosing a number x
in the interval [0, 1] with the probability of x falling within a range of length
δ being equal to δ. Here is an example for you to test.

My milometer displays the whole number of miles my car has travelled
to date. If I make a mileage claim I can only claim full miles, and if I travel
less than a mile the milometer reading may or may not change. Show that,
under certain assumptions, the probability of the milometer changing from
n to n + 1 (represented by event X) on a short trip (and leaving me in
pocket) is equal to the fraction of a mile travelled (up to one mile). Deduce
that X is a uniform random variable on [0, 1].

How many journeys would I need to make between two fixed points (all
starting with randomized mileage) to determine the distance between the
points to an accuracy of 0.1 miles? What about 0.01 miles? Assume that
we can take the milometer to consistently give an accurate reading.
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Solution 289.5 – Cubic coefficients
A cubic x3+ax2+bx+c has a double root at x = α and another
root at x = β. Show that the coefficients a, b and c are all real
if and only if both α and β are real. Or find a counter-example.

Peter Fletcher
Using the well-known expressions for the sums and products of a polyno-
mial’s roots, we can write

a = − (2α+ β), b = α2 + 2αβ, c = − α2β.

Let
α = α1 + α2i and β = β1 + β2i

where α2 6= 0 and β2 6= 0.

Then we find

a = − 2(α1 + α2i)− (β1 + β2i);

=(a) = − (2α2 + β2);

b = (α1 + α2i)2 + 2(α1 + α2i)(β1 + β2i)

= α2
1 − α2

2 + 2α1α2i + 2(α1β1 − α2β2 + α1β2i + α2β1i);

=(b) = 2(α1α2 + α1β2 + α2β1);

c = − (α1 + α2i)2(β1 + β2i)

= − (α2
1 − α2

2 + 2α1α2i)(β1 + β2i);

=(c) = − (α2
1β2 − α2

2β2 + 2α1α2β1).

If a is real, then β2 = − 2α2 and

=(b) = 2(−α1α2 + α2β1);

=(c) = − (−2α2
1α2 + 2α3

2 + 2α1α2β1);

If b is also real, then β1 = α1 and

=(c) = − 2α3
2.

We have found that if α and β are complex, then a and b can be real but
this then forces c to also be complex.

Therefore the coefficients a, b and c are all real if and only if both α
and β are real.
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Richard Gould
I wasn’t sure what starting point the author expected for this solution but,
using induction, it may readily be proved that, for complex numbers zi,

n∑
i=1

zi =

n∑
i=1

zi,

and

n∏
i=1

zi =

n∏
i=1

zi.

Hence, if the polynomial

n∑
i=0

ai z
i has a root z = z0 then

n∑
i=1

ai zi0 = 0 = 0,

so

n∑
i=0

ai z0
i = 0.

If the coefficients are real then ai = ai and

n∑
i=0

ai z0
i = 0.

From the above it is clear that if a polynomial with real coefficients has a
complex root then its conjugate is also a root. A cubic with real coefficients
can therefore only have either three real roots or one real root and two
complex conjugate roots. Conversely, a cubic with a single or repeated
complex root cannot have real coefficients, proving the ‘only if’ part of the
proposition.

Demonstrating the ‘if’ part of the proposition is trivial. If the roots are
real and as given then the cubic may be written as

(z − α)2(z − β) = z3 − (2α+ β)z2 + α(α+ 2β)z − α2β,

the coefficients on the RHS being all real.

The Einstein–Pythagoras theorem: E = mc2 = m(a2 + b2).
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Solution 289.2 – Tetrahedron
A regular tetrahedron with side length 2

√
2 has its centre at

the origin and has vertices V1, V2, V3, V4. Let Wi =
(Vi,x, Vi,y, Vi,z, 1), where Vi = (Vi,x, Vi,y, Vi,z), i = 1, 2, 3, 4.
Show that W1, W2, W3 and W4 have magnitude 2 and are
mutually orthogonal.

Peter Fletcher
In the following, let i, j = 1, 2, 3, 4 and i 6= j.

The radius of a regular tetrahedron’s circumsphere is, in terms of its
edge-length a,

√
3/8 a per, e.g.,

https://en.wikipedia.org/wiki/Tetrahedron.

The length of each edge is 2
√

2 =
√

8, so we have a =
√

3. This means that
the squared radius is, since the centre of the tetrahedron is the origin,

V 2
i,x + V 2

i,y + V 2
i,z = 3.

We then have

|Wi|2 = Wi·Wi = V 2
i,x + V 2

i,y + V 2
i,z + 1 = 4

and |Wi| = 2.

The length of each edge may also be written |Vi−Vj |, so we can write
down

|Vi −Vj |2 = (Vi,x − Vj,x)2 + (Vi,y − Vj,y)2 + (Vi,z − Vj,z)2

= V 2
i,x + V 2

i,y + V 2
i,z − 2(Vi,xVj,x + Vi,yVj,y + Vi,zVj,z)

+ V 2
j,x + V 2

j,y + V 2
j,z

= 3− 2(Vi,xVj,x + Vi,yVj,y + Vi,zVj,z) + 3

= 8

so that

(Vi,xVj,x + Vi,yVj,y + Vi,zVj,z) = − 1,

or

(Vi,xVj,x + Vi,yVj,y + Vi,zVj,z) + 1 = 0.

But
(Vi,xVj,x + Vi,yVj,y + Vi,zVj,z) + 1 = Wi·Wj ,

so that Wi·Wj = 0 and Wi and Wj are orthogonal.

https://en.wikipedia.org/wiki/Tetrahedron
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Stuart Walmsley
This problem concerns the representation of a regular tetrahedron (of side
length 2

√
2) in four dimensions.

It is conveniently solved using a property relating a regular tetrahedron
to a cube. Explicitly, a cube has eight vertices. The four vertices of a
suitable subset lie at the corners of a regular tetrahedron. The length of an
edge of the tetrahedron is equal to the length of a diagonal of the square
face of the cube.

In this problem, the tetrahedron has edges of length 2
√

2, so that the
corresponding cube has edges of length 2. Then if Cartesian coordinates are
chosen to link the midpoints of opposite faces of the cube, the coordinates
of the vertices of the cube are

(+1,+1,+1), (+1,−1,+1), (−1,−1,+1), (−1,+1,+1),

(+1,−1,−1), (+1,+1,−1), (−1,+1,−1), (−1,−1,−1),

and the four vertices of the tetrahedron may be chosen to be:

(+1,+1,+1), (+1,−1,−1), (−1,+1,−1), (−1,−1,+1).

In the notation of the problem:

V1 = (+1,+1,+1), V2 = (+1,−1,−1),

V3 = (−1,+1,−1), V4 = (−1,−1,+1).

The vectors are extended to four dimensions by adding to each a coordinate
with value +1:

W1 = (+1,+1,+1,+1), W2 = (+1,−1,−1,+1),

W3 = (−1,+1,−1,+1), W4 = (−1,−1,+1,+1).

In each case, the scalar product

Wj ·Wj = 4

so that the magnitude of each vector is 2, proving the first result required
by the problem.

Similarly
Wj ·Wk = 0, j 6= k.

So that the vectors are mutually orthogonal, proving the second result.
The set of four directions from origin to the four vertices could therefore be
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chosen as Cartesian axes. With a suitable rotation of axes (and halving the
scale factor), the vertex coordinates become

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1).

A similar result applies to the corresponding structure in two dimensions,
the equilateral triangle. Its vertices can be represented in three dimensions
by the set of coordinates

(1, 0, 0), (0, 1, 0), (0, 0, 1).

There is a corresponding structure for each dimension, known as the (n-
dimensional) regular simplex.

Solution 286.4 – Evaporation
A solution of sodium chloride contains 90 per cent water. After
a while, due to loss by evaporation, the solution contains only 80
per cent water. What percentage of the water has evaporated?

Peter Fletcher
Let s be the mass of salt, w1 the mass of water at time 1 and w2 the mass
of water at time 2. We are told that

w1

s+ w1
=

9

10
and

w2

s+ w2
=

4

5
.

This means that

s+ w1

w1
=

10

9
, so

s

w1
=

1

9
and w1 = 9s,

and
s+ w2

w2
=

5

4
, so

s

w2
=

1

4
and w2 = 4s.

Then the proportion of water lost is

w1 − w2

w1
= 1− w2

w1
= 1− 4s

9s
=

5

9
,

or 55.6%.
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M500 Mathematics Revision Weekend 2020
The forty-sixth M500 Revision Weekend will be held at

Kents Hill Park Training and Conference Centre,

Milton Keynes, MK7 6BZ

from Friday 15th to Sunday 17th May 2020.

The standard cost, including accommodation (with en suite facilities) and
all meals from dinner on Friday evening to lunch on Sunday is £275 for
single occupancy, or £240 per person for two students sharing in either a
double or twin bedded room. The standard cost for non-residents, including
Saturday and Sunday lunch, is £160.

Members may make a reservation with a £25 deposit, with the balance
payable at the end of February. Non-members must pay in full at the time
of application and all applications received after 28th February 2020 must
be paid in full before the booking is confirmed. Members will be entitled to
a discount of £15 for all applications received before 14th April 2020. The
Late Booking Fee for applications received after 14th April 2020 is £20,
with no membership discount applicable.

There is free on-site parking for those travelling by private transport.
For full details and an application form, see the Society’s web site:

www.m500.org.uk.

The Weekend is open to all Open University students, and is designed
to help with revision and exam preparation. We expect to offer tutorials for
most undergraduate and postgraduate mathematics OU modules, subject
to the availability of tutors and sufficient applications.

End of year quiz
Find the function that maps A onto B. Answer in the next issue.

A = {AIP, BRJ, BTLOTSM, C, CJ, DND, IAGF, IHTJ, ISYIMD, J, LCB,
LM, LMOLM, LOB, MDIY, ML, MOD, OMB, PDETD, PT, ROTHS, S,
SMNF, SW, TBOJ, TFT, TGBB, TMWKTM, TP, TPG, TTOIA, TTOL,
TTOM, TWPS, TWT, WSYGE, WWYWTLWO, YAH, YMWAH},
B = {AA, AM, BB, CT, CT, CW, DD, EDJ, ES, EWA, GG, GLK, IP, JA,
JB, JCM, JH, JJ, JK, JM, JM, JN, JO, JW, KBW, KP, KRM, KW, LR,
LT, MG, MG, MH, MJC, MW, NC, PF, RE}.

www.m500.org.uk
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Problem 291.4 – Zero-free powers
Observe that the 57-digit number

1944 = 184144368549628275143663229532787625188711914273876985521

has no zeros. Show that it is the largest zero-free number of the form ab

with positive integers a < b. Or find a larger one.

Problem 291.5 – Points
A unit cube with the usual metric contains a set S of points such that each
point p ∈ S has an open neighbourhood that does not contain any point of
S other than p. Show that S has measure zero, or find a counter-example.

Front cover Wheel graph with five spokes.


