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The M500 Society is a mathematical society for students, staff and friends
of the Open University. By publishing M500 and ‘MOUTHS’, and by organiz-
ing residential weekends, the Society aims to promote a better understanding of
mathematics, its applications and its teaching. Web address: www.m500.org.uk.

The magazine M500 is published by the M500 Society six times a year. It
provides a forum for its readers’ mathematical interests. Neither the editors nor
the Open University necessarily agree with the contents.

MOUTHS is ‘Mathematics Open University Telephone Help Scheme’, a directory
of M500 members who are willing to provide mathematical assistance to other
members.

The September Weekend is a residential Friday to Sunday event held each
September for revision and exam preparation. Details available from March on-
wards. Send s.a.e. to Jeremy Humphries, below.

The Winter Weekend is a residential Friday to Sunday event held each January
for mathematical recreation. For details, send a stamped, addressed envelope to
Diana Maxwell, below.

Editor – Tony Forbes

Editorial Board – Eddie Kent

Editorial Board – Jeremy Humphries

Advice to authors. We welcome contributions to M500 on virtually anything
related to mathematics and at any level from trivia to serious research. Please
send material for publication to Tony Forbes, above. We prefer an informal style
and we usually edit articles for clarity and mathematical presentation. If you use
a computer, please also send the file on a PC diskette or via e-mail.
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What’s in a theorem?
Sebastian Hayes
What is a theorem? Something that requires proof as opposed to an axiom,
a postulate, or a definition—these, taken together, are the four Euclidian
categories. Heath, the best translator of Euclid, speaks of ‘propositions’
rather than ‘theorems’ and in some ways this is better since it has the sense,
‘Hey! What do you think of this?’ A surprising number of the ‘theorems’
in Euclid are in fact constructions; the very first (Book 1. Prop. 1) is ‘On a
given finite straight line to construct an equilateral triangle’.

A theorem must have some generality: it is not the same as a ‘result’.
Strictly, to be classed as a theorem an assertion must actually have been
proved—otherwise it is a conjecture. But usage is not consistent here: for
some reason Fermat’s claims always seem to have been rated as ‘theorems’
although they were often inspired guesses, while we still talk of Goldbach’s
conjecture (‘Every even number greater than is the sum of two odd primes’).

On what grounds do we consider one theorem better than another?
After some ponderings I tentatively came up with the following desiderata.
A good theorem should ideally at once be true, simple, basic, unobvious,
illuminating, suggestive, beautiful and readily applicable.

(1) True Is this essential? Even if untrue a ‘theorem’ can be very
worthwhile if it fulfils some of the other categories, in particular if it is
suggestive (of new lines of research). Suppose, pace Wiles, Fermat’s Last
Theorem turned out to be false for some very large power This would hardly
matter because it has given rise to such interesting and important mathe-
matics over the centuries.

There are theorems which, though false, deserve to be true (e.g. Ra-
manujan’s formula for the distribution of the primes) while there are in
modern mathematics plenty of apparently true theorems that are so non-
sensical they deserve to be false (e.g. Banach’s two sphere theorem).

(2) Simple I mean simple to state not simple to prove—the question
of whether there exists a simple proof for a given theorem (or even a proof
at all) is a different issue altogether. Rather nicely the theorems of pure
mathematics that have given the most trouble are the simplest to state
(Fermat’s Last, Four Colour, etc.).

(3) Basic For example: Angle at centre = twice angle at circumference;
G.M. ≤ A.M.

The requirement of being basic conflicts with many other criteria.

(4) Unobvious. Is everything obvious? Nothing? Hardy considered
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that the term should be banned from mathematics but this approach, typical
of a modern author, is unhelpful to say the least. If we did not take certain
things as ‘obvious’, we would not be able to live, certainly not think. It is
fatuous to introduce the proposition A = A into a mathematical system as
a theorem—but one contemporary writer (I forget who) has done just this.

The statement 1+1 = 2 is best viewed as a definition. Alternatively we
can view it as a recipe for constructing the natural numbers: take a block
of something solid, add it to a similar one and carry on as long as you want
making copies as you go. Certain basic numerical and geometric notions
(nearness, farness, on, under &c.) are built into us: we have them, they are
givens, so why not admit it? These notions/perceptions must above all not
be presented as theorems—statements that require and can receive proof
because there is nothing more basic on which we can ground them.

On the other hand, Euclid is absolutely right to introduce a× b = b× a
as a theorem instead of taking it on board as one of the axioms for fields
as the moderns do. Viewed as a statement about the real world it is by no
means obvious and is, as a matter of fact, not that easy to prove—Euclid
has to appeal to seven or eight earlier theorems. A typical chieftain with
control over ten villages, each of which was able to provide seven young men
as warriors, would probably have been surprised to be told by his shaman
that his strength was no less and no greater than that of a rival who only
controlled seven villages each able to provide ten young men.

The combination Basic + Unobvious + True makes for a very impressive
theorem. An amazing amount of Euclidian geometry can be established on
the basis of Ptolemy’s theorem (rules for adding sines and cosines, half
angle formulae &c., even Pythagoras; see Eli Maor, Trigonometric Delights,
Ch. 6). But the theorem ‘The product of the diagonals of a quadrilateral
inscribed in a circle is equal to the sum of the products of the opposite sides’
seems at first sight implausible and for that matter hardly worth stating.

The Taniyama–Shimura conjecture (‘Every elliptic equation is linked to
an equivalent modular form’) was so unobvious as to appear quite fantastic
to most mathematicians at the time it was first proposed. It must in some
sense be basic since it was by proving this proposition that Wiles established
Fermat’s Last Theorem by a roundabout and incomprehensible route.

(5) Illuminating A computer, fed with a few logical axioms, can churn
out countless derivations—but how many of them will be worth reading?
Fermat scarcely ever gave any proofs and was occasionally wrong but he
had the knack of throwing light on all sorts of areas of number theory. Can
a theorem be basic without being illuminating? Yes. Pythagoras’ theorem
is a case in point: it doesn’t really give you any new insight into the subject
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while Euclid’s (or Eudoxus’) brilliant treatment of proportion and similarity
in Books V and VI makes the whole subject come alive and has inspired
not only professional mathematicians but countless architects and painters
as well.

(6) Suggestive I mean suggestive of further development. Certain
theorems close doors rather than open them. Indeed certain theorems are
designed to do just this, like the theorem which states that there does not
exist any algebraic formula capable of producing all the primes. I sort of feel
that a destructive theorem shouldn’t be rated as highly as a constructive
one: we don’t put Genghis Khan in the same league as Napoleon although
he is certainly as important historically.

(7) Beautiful Is beauty in the eye of the beholder? Are there any
guidelines? ‘Simplicity’ and ‘orderliness’ are often invoked. Someone said
of the theory of differential equations, ‘This is not mathematics, it’s stamp
collecting’. (But the applied mathematician cannot afford to ignore the real
world and Nature is not usually tidy.) Simplicity is especially prized when
it is not expected. Mathematicians at the time gave up the search for a sum
to the reciprocals of the squares until Euler fished out of his hat

1 +
1

22
+

1

32
+ . . . =

π

6
.

But richness of texture has its appeal also. If you can get incredibly
complicated expressions boiling down to some very simple sum or product
the resulting theorem has a baroque beauty as in so many of Ramanujan’s
discoveries (see M500 202 pp 7–8). Symmetry is attractive but not if it is
overdone. Once again it is particularly effective if it appears where one does
not expect it as in

tan
(n+ 1)α

2
=

sinα+ sin 2α+ · · ·+ sinnα

cosα+ cos 2α+ · · ·+ cosnα
.

Baudelaire considered that there must be an element of strangeness in
beauty; the strangeness shocks or at least attracts attention while orderli-
ness reassures. De Moivre’s formula and eπi+1 = 0 were surpassing strange
when they were first unleashed on the world but it is well nigh impossible to
startle a pure mathematician these days. The most surprising mathemati-
cal achievement in today’s world would be to discover something important
that the man in the street can actually understand.

(8) Readily applicable Alas, it is on this score that so many aspiring
mathematical belles get disqualified. Leibnitz’s

π

4
= 1− 1

3
+

1

5
− 1

7
+ . . .
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is a pretty enough result but useless for calculating π since it converges so
slowly. The same goes for Wilson’s crisp (p − 1)! ≡ −1 (mod p) as a test
for primality.

How does one discover a theorem of interest? There seems to be no lack
of inventive minds amongst the contributors to this magazine, so it would be
interesting to hear some of them tell us how they arrived at their discoveries.
As far as I can make out, there seem to be three main procedures, which I
baptise the inductive method, the deductive method and the exploratory or
playful method.

By ‘inductive method’ I do not mean mathematical induction as such
but simply the standard scientific method of scanning a mass of data and
trying to discern some underlying structure or pattern. One then inves-
tigates as to whether the pattern keeps on recurring and if it does, one
attempts to show that this feature is bound to persist (but this is part
of proving, not discovery). Most theorems in number theory are discov-
ered this way: I doubt if anyone ever deduced from first principles that
F2n = F 2

n+F 2
n−1 —almost certainly Lucas and others noted that 52+32 = 34

and 132 + 212 = 610 and went on from there. Even such a prestigious
theorem as the Prime Number Theorem originated in the scanning of data
(allegedly, Gauss, as a teenager, conjectured that π(x) varied with x/(log x)
after examining a published list of primes).

The ‘natural’ movement of the human mind is from the particular to the
general, the concrete to the abstract, which is why the inductive approach
comes much more easily to most people. By concentrating on the logical
aspects modern mathematicians have certainly tightened up the subject but
at the cost of completely alienating the general public. This is far from being
a good thing even for mathematics itself: it means that people for whom
aesthetic considerations are uppermost avoid mathematics like the plague—
the exact reverse of the situation that prevailed during the Renaissance and
baroque eras.

The deductive method usually proceeds either by generalizing some
known result, or by applying it to a particular case with unexpected con-
sequences. This magazine has printed several articles in the last year or so
which are generalizations of the Fibonacci sequence and one gathers from
M500 205 that Dennis Morris is currently involved in generalizing the hyper-
bolic functions, themselves generalizations of the trigonometric functions.

The starting point for an extension must itself already have some
generality—a single numerical case is of little or no value. However, the
starting point must not be too general: I don’t think any contemporary



M500 210 Page 5

pure mathematician ever sat down of an evening with the axioms of von
Neumann set theory in order to see what new theorems he or she could
deduce.

An example of the opposite process, particularizing, is Pascal consider-
ing the expansion of (a + b)n and setting a = 1, b = 1 thus showing that
the total number of possible combinations of n objects taken r at a time
is 2n. (This includes the choice of not making a selection at all.) Setting
some variable or variables at unity or at a multiple or submultiple of π
seems to be a standard stratagem that has yielded a surprisingly rich har-
vest of theorems. One would like to hear of other ‘tricks of the trade’ but
modern textbooks are surprisingly coy on the subject—I have yet to come
across a chapter, let alone a whole book, entitled How to Devise or Discover
Interesting Theorems.

The third method is not really a method at all: it is basically just mess-
ing about and seeing what comes up. Homo sapiens is, thank God, also
Homo ludens. Leonhard Euler, undoubtedly the most prolific mathemati-
cian of all time (his works run to seventy-five large volumes), played around
with mathematical formulæ as children play with toys (or did before the
computer age). What would happen if we did this? Or this? And then
that?

As far as I am concerned, mathematics is not an ensemble of watertight
logical systems but more like a series of wildlife reserves where strange plants
and animals can not only be observed but actually bred or grown from seed.
It is notable that many of the most inventive mathematicians were amateurs,
e.g. Leibnitz, Fermat. In contemporary theatre and above all ‘painting’
(conceptual art), originality is so much the order of the day that any sort
of rubbish is acceptable provided you are doing something that nobody has
done before. But for some reason in mathematics we have the opposite set-
up: rigour has stifled elegance and inventiveness. Mathematics was once one
of the ‘humanities’. I am not quite sure what the humanities were, or were
intended to be, but I assume the basic idea was that studying them did not
just make you more learned but more ‘human’. It would perhaps be going
too far to claim that the humanistic approach which viewed mathematics as
at once a science and an art and a philosophy of nature invariably produced
a better type of person—one gathers that Newton was rather a nasty man—
but there’s no doubt in my mind that trying to turn someone into a logical
machine is not likely to improve human nature. Est in medio verum—truth
lies in the middle.
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Solution 205.1 – Sphere in a cone
Given a finite cone of fixed height 1 m and apex angle α, a sphere
is inserted as far as possible into its open end. What is the
maximum volume of that part of the sphere which is inside the
cone?

Norman Graham
Let θ = α/2 and c =
cosec θ > 1. Let V be
the volume of the sphere
S inside the cone C. The
radius r of the sphere has
two critical values.

(1) Let the radius of
S be r1 when S touches
the plane P containing the
rim of C. If r < r1, S
is entirely inside C, and V
increases continuously as r
increases from 0 to r1.

(2) Let the radius of S
be r2 when S touches the
rim of C. If r > r2, S rests
upon the rim of C. As r
decreases from ∞ to r2, S
‘bulges’ further into C, so
V increases continuously.

From diagram (2),
r2 cos θ = tan θ. There-
fore

H3L

H2L

H1L

O x

y

r

r2

r1

Θ

Θ

Θ

r2 =
sin θ

cos2 θ
=

sin θ

1− sin2 θ
=

c

c2 − 1
.

It follows that Vm, the maximum value of V , occurs when r is at some
point R in the range [r1, r2]. For a given value, take the origin O at the
centre of S and the x-axis through the apex of C (diagram (3)). Then P is
the plane x = cr − 1 and

V =

∫ r

cr−1
πy2dx = π

∫ r

cr−1
(r2 − x2)dx = π

[
r2x− x3

3

]r
cr−1

.
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Therefore

V

π
=

2r3

3
− r2(cr − 1) +

(cr − 1)3

3

=
r3

3

(
c3 − 3c+ 2

)
− r2(c2 − 1) + rc− 1

3
.

When V/π is a maximum, (1/π)dV/dr = 0. So R satisfies

(c− 1)2(c+ 2)R2 − 2(c2 − 1)R+ c = 0.

Therefore

R =
1

(c− 1)2(c+ 2)

(
c2 − 1±

√
(c2 − 1)2 − c(c− 1)2(c+ 2)

)
=

c+ 1± 1

(c− 1)(c+ 2)
=

1

c− 1
or

c

(c− 1)(c+ 2)
.

But 1/(c − 1) is not a valid solution since it is greater than r2. Hence the
solution required is R = c/((c − 1)(c + 2)), which is in the range [r1, r2].
Inserting this value of r in the equation for V/π gives the answer after some
algebra:

Vm =
4π

3(c− 1)(c+ 2)2
, where c =

1

sinα/2
.

Additional comments. The volume of the cone is

VC =
π

3
tan2 θ =

π

3(c2 − 1)

and the volume of the optimum sphere is

VS =
4πR3

3
=

4πc3

3(c− 1)3(c+ 2)3
.

Hence

Vm
VC

= 1−
(

c

c+ 2

)2

and
Vm
VS

=
(c− 1)2(c+ 2)

c3
.

As α increases from 0 to π, c decreases from ∞ to 1, Vm/VC increases from
0 to 8/9 and Vm/VS decreases from 1 to 0.

Example: α = 60◦, θ = 30◦, c = 2, r1 = 1/3, r2 = 2/3, R = 1/2,
VC = π/9, Vm = π/12, VS = π/6. Hence Vm/Vc = 3/4, Vm/VS = 1/2 and
the centre of S lies in the plane P .
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Solution 200.4 – Circle in a box
What is the locus of the centre of a unit-radius circle placed
such that the circumference touches the positive (x, y)-plane,
the positive (x, z)-plane and the positive (y, z)-plane?

Recall that in M500 209 Steve
Moon found the boundary of
the locus, three unit-radius
quarter-circles joining (1, 1, 0),
(1, 0, 1) and (0, 1, 1), and rea-
soned that the locus itself must
be a part of the sphere x2 +
y2 + z2 = 2. Dick Boardman
and I (ADF) are happy with
the boundary but we are a little
concerned about the amount of
arm waving used in the deduc-
tion of the final shape of the lo-
cus.

x
y

z

As explained below, the answer is obviously correct—but a proof that
can only be described as truly rigorous eludes us.

Dick Boardman

I have strong numerical evidence for the following but cannot prove it: The
locus of the centre of a coin in the corner of a box is a sphere, centre at the
corner, with a radius of

√
2 times the radius of the coin. The evidence is

provided by an algorithm and a computer program, which I describe here
in the hope that someone can convert it into a proof.

The edges of the box meeting at the corner may be treated as a set of
axes with origin at the corner. Choose three lengths a, b, c along the x, y
and z axes. These three points define a triangle in a plane. The in-circle of
that triangle will touch the sides of the box as a coin would.

The lengths of the sides of the triangle are found using Pythagoras’
theorem. The area is found from Heron’s formula. The radius of the in-
circle is 2× area/perimeter.

To find the centre of the in-circle I need some results from vector anal-
ysis. A vector has three coordinates v = (x, y, z) and a unit vector is one

where
√
x2 + y2 + z2 = 1. A line through a point whose vector is a in
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direction b is a + tb, where t is a parameter. A vector in the direction of
the angle bisector between unit vectors u1 and u2 is t(u1 + u2).

The in-centre is well known to be the intersection of the angle bisectors
of the triangle. To compute the coordinates of the in-centre I carry out the
following steps.

Compute unit vectors along the sides of the triangle.
Compute the lines which are the angle bisectors of the triangle.
Compute the point which is the intersection of those angle bisectors.
Compute the distance of this point from the origin.
Compute the ratio of this distance to the radius of the in-circle.

I wrote a computer program which carries out these operations and ran it
for a large set of values. In all cases it gave a final answer of

√
2 to within

the accuracy of the system.

Reference: C. E. Weatherburn, Elementary Vector Analysis.

Problem 210.1 – Determinant
Compute∣∣∣∣∣∣∣∣

4 a+ b+ c+ d a2 + b2 + c2 + d2 a3 + b3 + c3 + d3

a+ b+ c+ d a2 + b2 + c2 + d2 a3 + b3 + c3 + d3 a4 + b4 + c4 + d4

a2 + b2 + c2 + d2 a3 + b3 + c3 + d3 a4 + b4 + c4 + d4 a5 + b5 + c5 + d5

a3 + b3 + c3 + d3 a4 + b4 + c4 + d4 a5 + b5 + c5 + d5 a6 + b6 + c6 + d6

∣∣∣∣∣∣∣∣ .

Problem 210.2 – Cosecs
Show that

cosec 10◦ + cosec 50◦ − cosec 70◦ = 6.

Are there other interesting identities of the same kind?

GCSE question. Find x in this diagram:

Candidate’s answer. Here:    
   

   
 

5.0

1.0
xj

   
   

   
 

5.0

1.0
x
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MAXIMA: a free symbolic algebra package
Dick Boardman
Many people who earn their living using mathematics, people like system
designers, engineers and statisticians, use a symbolic algebra package. These
products are very good but also very expensive. Recently, I came across
a free package which does a lot of what the professional ones do. I can
recommend it to anyone who likes solving puzzles involving algebra, calculus
or large numbers. The package is called Maxima. It was originally written
at MIT under the name Macsyma and funded by the American government
on condition that it was made freely available. However, everybody’s baby is
nobody’s baby, and the package never received the publicity and support it
deserved. Some generous academics have adapted it to run under Windows
and made it available over the Internet.

An applied mathematician attacking a new problem must first express
the problem in mathematical terms, choosing variables, deciding what sim-
plifications and assumptions can be made, and setting up equations. He/she
then solves the equations, interprets the solution in terms of the original
problem and presents the results as clearly as possible.

A symbolic algebra system helps with the second and possibly the third
stages. As an example, I will show how Maxima can be used to solve a
recent M500 puzzle.

Recall the cyclic quadrilateral (M500 Problem 203.4).

Θ

Θ

R

c
d

a

b

x
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In M500 208, Ted Gore began by showing that

x2 = a2 + b2 − 2ab cos θ = c2 + d2 + 2cd cos θ

and that x = 2R sin θ.

For convenience, replace x2 by a variable called xsq, cos θ by ct, (sin θ)2

by st2, and the square of R, the radius of the circumcircle, by RR. In what
follows, lines beginning with labels like ‘(%i1)’ and ending with ‘;’ are the
inputs to Maxima and lines beginning with labels like ‘(%o1)’ are responses.

(%i1) e1: xsq = a*a + b*b − 2*a*b*ct;

(%o1) xsq = − 2 a b ct + b2 + a2

[We are cheating. In reality Maxima uses the standard character set and a
fixed-pitch font. So the above would look like this.

2 2

(%o1) xsq = - 2 a b ct + b + a

Although acceptable on a screen, it looks pretty ghastly on paper. And it
gets worse. So for your benefit we have translated all Maxima output to
‘proper’ mathematics. — ADF]

(%i2) e2: xsq = c*c + d*d + 2*c*d*ct;

(%o2) xsq = d2 + 2 c ct d+ c2

(%i3) e3: solve([e1, e2], [ct, xsq]);

(%o3)

[[
ct =

−d2 − c2 + b2 + a2

2cd+ 2ab
, xsq =

ab(d2 + c2) + b2cd+ a2cd

cd+ ab

]]
(%i4) e4: part(part(e3, 1), 1);

(%o4) ct =
−d2 − c2 + b2 + a2

2cd+ 2ab

(%i5) e5: part(e4, 2);

(%o5)
−d2 − c2 + b2 + a2

2cd+ 2ab



Page 12 M500 210

(%i6) st2: factor(1 − e5*e5);

(%o6) − (d− c− b− a)(d− c+ b+ a)(d+ c− b+ a)(d+ c+ b− a)

4(cd+ ab)2

(%i8) e6: part(part(e3, 1), 2);

(%o8) xsq =
ab(d2 + c2) + b2cd+ a2cd

cd+ ab

(%i10) xsq: part(e6, 2);

(%o10)
ab(d2 + c2) + b2cd+ a2cd

cd+ ab

(%i12) RR: xsq/4/st2;

(%o12) − (cd+ ab)(ab(d2 + c2) + b2cd+ a2cd)

(d− c− b− a)(d− c+ b+ a)(d+ c− b+ a)(d+ c+ b− a)

(%i13) factor(RR);

(%o13) − (ad+ bc)(bd+ ac)(cd+ ab)

(d− c− b− a)(d− c+ b+ a)(d+ c− b+ a)(d+ c+ b− a)

The square root of this quantity is the circumradius. Note the minus
sign at the beginning. This reflects the fact that the sum of any three sides
must exceed the fourth side so that d − c − b − a must be negative. Ted
Gore showed that

(area)2 =

(
ab+ cd

2

)2

(sin θ)2;

that is,

(area)2 =
(a+ b+ c− d)(d− c+ b+ a)(d+ c− b+ a)(d+ c+ b− a)

16
.

Note the similarity with Heron’s formula for the area of a triangle.

These results show that the area and circumradius of a cyclic quadri-
lateral depend only on the sides and not on the order of the sides round the
cyclic quadrilateral.
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Solution 207.2 – Parts of a partition
A partition of n can be represented as a vector (a1, a2, . . . , an),
where the ai are defined by

n = a1 + 2a2 + 3a3 + · · ·+ nan.

What is the maximum possible number of non-zero elements ai
in a partition of n? How many partitions of n use this maximum
number?

Steve Moon
To maximize the non-zero elements ai in a partition of n, start with the
premise that all ai = 1. Consider the case where ai = 1 fills the element
spaces from the left without gaps, thus.

n → (1, 1, . . . , 1, 0, 0, . . . , 0)

with the 1s stopping at the kth element. Then

n = a1 + 2a2 + · · ·+ kak = 1 + 2 + · · ·+ k,

and n is the kth triangular number. There are at most k non-zero elements
for triangular numbers nk = n, and this partition can occur only once. (Any
ai > 1 introduces at least one more zero.)

For n between two triangular numbers, nk < n < nk+1, the partition is
of the form

(1 + (n− nk), 1, 1, . . . , 1, 0, 0, . . . , 0)

with the ones stopping at the kth element. Here, a0 = 1 + (n − nk) and
this partition, which maximizes non-zero ai, can occur only once. When
n = nk, the next ak+1 position can be filled: a0 = ak+1 = 1.

Hence in a partition of n the maximum number of non-zero ai is given
by k, where nk is the triangular number such that nk ≤ n < nk+1. This
partition occurs once only.

Solution 207.4 – Sextic
Solve 500x6 − 13000x3 = 77613.

Steve Moon
The six roots of the equation are
shown opposite. The one on the
right is 3.141592653695 · · · ≈ π (!).

r
r

r r
r
r
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A revolutionary view of numbers, a revolutionary
view of groups, the unification of mathematics,
and the unification of physics
Dennis Morris
The conventional view of numbers is that there are the real numbers and
that attached to them in some way to do with the polynomial x2 + 1 = 0
are the complex numbers. The conventional view is no more than this.
Research that I have recently done has driven me to a very different view,
which I now expound.

We begin with the standard form Cayley tables† of the first few abelian
groups:

C1 =
[
A
]
, C2 =

[
A B
B A

]
, C3 =

A B C
C A B
B C A

 .
We replace the elements of the group with real numbers:

C1 =
[
5
]
, C2 =

[
−3 2
2 −3

]
, C3 =

 6 77 0
0 6 77
77 0 6

 .
The first of these is an example of a 1-dimensional number—a real number.
The second is an example of a 2-dimensional number, and the third is an
example of a 3-dimensional number. Clearly, we can repeat this procedure
for all abelian groups.

We replace the numbers with real variables and proclaim the arrays to
be matrices:

C1 =
[
a
]
, C2 =

[
a b
b a

]
, C3 =

a b c
c a b
b c a

 .
These matrix forms (with restrictions upon the allowed values of the vari-
ables that are of no importance) are all algebraic fields.

What is it about the real numbers and the complex numbers that de-
serves the appellation ‘number’? Why, it is because they form an algebraic
field. Thus, the 2-dimensional and the 3-dimensional numbers are just as
much numbers as are the real numbers. We exponentiate the 2-dimensional
numbers:

exp

([
a b
b a

])
=

[
r 0
0 r

] [
coshχ sinhχ
sinhχ coshχ

]
=

[
x y
y x

]
.
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Within the polar form, there are no restrictions‡. Comparing determinants
gives r =

√
x2 − y2. Thus we have the rotation matrix, trigonometric

functions, and distance function of 2-dimensional hyperbolic space. Hence,
within the algebra of the 2-dimensional numbers is 2-dimensional hyperbolic
space. Similarly, every such algebra has a space within it.

We have elevated every abelian group to an algebraic field.
Within every one of these algebraic fields, there is a space. This
is the unification of groups, numbers, algebra, and geometry.

The algebras can be extended by the introduction of real ‘space squeez-
ing’ parameters:

C1 =
[
a
]
, C2 =

[
a b
jb a

]
, C3 =

 a b c
jc a kb

jb j
k c a

 .
These are algebraic fields for all values of j, k 6= 0. When j = −1, the 2-
dimensional algebra is the complex number algebra. The complex numbers
are now seen to be a form of the 2-dimensional numbers and not an extension
of the 1-dimensional real numbers. The exponentiation of the 2-dimensional
algebra with j = −1 will throw out the 2-dimensional euclidean space. This
is now seen to be a version of the 2-dimensional hyperbolic space.

Implications for theoretical physics

The standard theory of particle physics is written in the algebra of the
complex numbers but has within it groups other than C2. It seems to
me that the theory should be written in the algebra appropriate to each
particular group. My research has shown that if this were to be done,
the existing standard theory would be affected only by the introduction of
extra information. The existing theory would stand without a wrinkle. The
space squeezing parameters scream out general relativity. Together with the
application of the appropriate algebras to the standard theory, I suspect we
have here not only the unification of mathematics but also the unification
of physics.

� The standard form of a Cayley table is with the identities on the
leading diagonal.

� Which is why they are of no importance.

Quick problem. Compute
(0!)2

2!
+

(1!)2

4!
+

(2!)2

6!
+ . . . .
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Solution 207.1 – 25 points
Start with a 5 × 5 square array of unmarked points. (*) Mark
any four unmarked points which are at the corners of a square.
Repeat (*) as often as possible. How many times you can per-
form (*)? What about ‘corners of a square’ replaced by ‘corners
of a rectangle whose sides are parallel to the edges of the array’?

Ian Adamson
The question asks first for the number of squares in a 5 × 5 array. This
is six; we have found such a configuration and 6 · 4 = 24. The number of
rectangles with sides parallel to the edges is four by the following argument.

Let us suppose that an n×n array is maximally marked with 4r points
each at the corner of one of r rectangles. Now assume that n is odd and
partition the array into R, the 2n− 1 points on two adjacent edges and call
S the remaining (n− 1)2 points.

But first consider an n× (n− 1) array (say T ), that is without an edge
(say U) containing n of the points in R. Any marked points in U may be
replaced in pairs by points in T on lines perpendicular to U since each such
line contains (odd) n points and only at most (even) n − 1 points can be
the corners of a rectangle.

Now any remaining marked points in R are similarly replaced by points
in S. We still have the r rectangles but all their corners are in S. Is it possible
that 4r = (n−1)2 = |S| when r would equal its upper bound, (n−1)2/4? It
is easily seen that it is possible, for example ‘unit’ squares (n− 1)/2× (n−
1)/2. If we insist upon rectangles with the sense that their adjacent sides
are unequal then it is clear that such rectangles (‘overlapping’) are possible.

Finally assume n is even but, as that’s trivial, we claim the answer is
[n/2]2.

Problem 210.3 – Triangular sextics

Inspired by the solution of the equa-
tion at the bottom of page 13, find a
characterization of those 6th degree
polynomials whose roots lie exactly
on the vertices and the side mid-
points of an equilateral triangle.

r
r

r

r
rr
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Deal or no deal
Jeremy Humphries
There’s an interesting programme with a mathematical and psychologi-
cal basis on C4. There are 22 players, and each draws one of 22 sealed
boxes, containing £0.01, £0.1, £0.5, £1, £5, £10, £50, £100, £250, £500,
£750, £1000, £3000, £5000, £10,000, £15,000, £20,000, £35,000, £50,000,
£75,000, £100,000, £250,000. Nobody knows what’s in each box. One
player is chosen at random to be the contestant C for the day. He takes his
box to the chair, where the host is Noel Edmunds. His box remains sealed
until the game ends. The other players will get a chance to be C on another
day. Nobody is eliminated until they have played. When a player leaves a
replacement is brought in.

Round 1: C nominates five boxes, which are opened to reveal the con-
tents. There is then a phone call from ‘The Banker’, who is never seen, and
who makes an offer for C’s box. C can say ‘deal’ or ‘no deal’. Round 2: As
Round 1, except it’s three boxes, not five. Subsequent rounds: As round 2.

If the play goes all the way to round 6 without C accepting a deal, then
there are only two boxes left, C’s box and one other. The Banker makes a
final offer, which C can accept or reject. Sometimes the Banker will offer C
the opportunity to swop boxes with the other player at this point. Then C
accepts or rejects the swop (if offered), opens whichever box is then in his
possession, and gets the contents.

The Banker’s aim is to pay out as little as possible. Everybody else,
including the host, wants C to get a hefty amount, or at least pretends so.

Example. Round 1. Opened: £0.01, £250, £750, £50,000, £100,000.
Offer: £1,300. No deal. Round 2. Opened: £0.1 £100, £15,000. Offer:
£2,900. No deal. Round 3. Opened: £500, £75,000, £250,000. Offer: £700.
No deal. Round 4. Opened: £5, £10, £50. Offer: £4900. No deal. Round 5.
Opened: £1000, £10,000, £20,000. Still in play: £0.5, £1, £3000, £5000,
£35,000. Offer: £6500. Deal.

Is there a good strategy? The Banker’s offer is always less than the
expectation, which is the average of the remaining boxes. In the early
rounds it is dramatically less, though in the later rounds the discrepancy
is usually not so stark. Nevertheless, the mathematically sound strategy is
never to take the offer. If you played many times you would win an average
of £25,712.12 per play. However, when you play only once, is it sensible to
go with the mathematics?
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What’s the next number?
ADF
Recall Diana Maxwell’s problem on page 18 of M500 207. What’s next in
the sequence

4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, ?, . . .?

Obviously the answer is 4. But why? From the blurb accompanying the
original statement of the problem it is clear that we are looking at a feature
of the English language. After a certain amount of experimenting with
various kinds of word play one might deduce the following construction.

To compute the nth element of the sequence, write the English
name for n and count the letters to get another number. Repeat
with the new number. Stop when stability is achieved.

Thus, for example,

42 (forty two) → 8 (eight) → 5 (five) → 4 (four) → 4,

and from 4 there is nowhere else to go. We suggest that the 4s continue for
ever; perhaps someone can supply a proof that this is really so.

On the other hand, in Spanish we have

1 (uno) → 3 (tres) → 4 (cuatro) → 6 (seis) → 4 → 6,

and now the sequence is in a loop consisting of {4, 6}. But 5 (cinco) stabilizes
immediately. The sequence begins

{4, 6}, {4, 6} (dos), {4, 6}, {4, 6}, {5}, {4, 6}, {5} (siete), {4, 6}
(ocho), {5} (nueve), {4, 6} (diez), {4, 6} (once), {4, 6} (doce), {5}
(trece), {5} (catorce), {4, 6} (quince), {5} (diez y seis), {4, 6} (diez
y siete), {5} (diez y ocho), {4, 6} (diez y nueve), {4, 6} (viente), . . .

and at least for numbers of moderate size continues with {4, 6} and {5}, not
necessarily in any instantly recognizable pattern. However, we did detect a
significantly increasing bias towards {4, 6}, which led us to ask in 207 an
extremely interesting question: Is the number of occurrences of {5} infinite?

Of course, you can play this game in other languages, and, indeed, we
would be interested if you are prepared to do so and send us the results—
especially in those cases where the thing does not degenerate into a trivial
repetition of the same number. Meanwhile here is something completely
different, this time from Jeremy Humphries:

1, 11, 21, 1211, 111221, 312211, ?, ?
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Letters to the Editor

n-dimensional space–time
Dennis Morris’s article, ‘A revolutionary view of space’ (M500 207) is fas-
cinating and, as far as I can judge, important. But how are we supposed to
take it—as pure mathematics or as physics? As far as I am aware, Banach
spaces ‘don’t exist’ and I don’t think anyone wanting the State to spend
money looking for them would get much of a hearing. Green, however, the
co-inventor of string theory, apparently does believe in the existence of eight
(or is it eleven?) extra dimensions we don’t know are there and I believe
some attempts have been made to detect them, so far without success. One
would hope that Dennis Morris includes in his book suggestions of what ex-
periments could be done to provide support for the theory of CN spaces—I
don’t mean this as a criticism.

There is also a conceptual/methodological problem. Dennis Morris
says that ‘the higher-dimensional CN spaces are “folded up” in the lower-
dimensional CN spaces (string theory?).’ Taken to its logical conclusion
the whole lot must be ‘enfolded’ in a one-dimensional all-round space–time
‘something’ which is reminiscent of the ‘original Tao’ of ancient Chinese phi-
losophy. We have here a two-tiered schema which seems to be cropping up
time and again in cosmology and theoretical physics; what we can observe
pre-exists in a more subtle and rarefied state which is not directly observ-
able but which nonetheless ‘contains’ the former. Thus, some theorists, the
so-called Brussels School, view the entire universe as a runaway fluctuation
of a pre-existing quantum field.

The question is now, ‘Why didn’t this more fundamental entity just stay
as it was?’—the modern equivalent of Leibnitz’s by no means stupid ques-
tion, ‘Why is there something instead of nothing?’ There is, for example, no
strictly mathematical or physical reason why the wave function of quantum
mechanics should ever collapse at all, and some physicists have seriously
suggested that it is human (or maybe even feline) consciousness that trig-
gers the change. This doesn’t appeal to me much as it puts the clock right
back to subjectivism. But the wave function is continually collapsing since
otherwise no elementary particle would have a precise position at all, would
be ‘all over the place’—and there would be nothing recognizable around us
at all.

In the days when people believed in a Creator God, they could of course
always say, ‘Such and such happened because God wanted it to.’ Today we
can’t do that but we still seem to need the idea of natural laws governing
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physical behaviour. We should, then, maybe introduce a basic law which
states that the wave function must always collapse eventually, and that, in
the present context of CN spaces, lower-dimensional space(s) must always
unfold into higher (with possibly an upper limit). This ‘law’ can perhaps
be viewed as a generalization of the Law of Entropy though I’m not so
sure about this—it depends whether one views, for example, our physical
universe as being more, or less, ordered than what it emerged from.

Sebastian Hayes

Precision
I was reading a medical piece on blast injuries, and it said this:

The positive pressure phase of the blast wave lasts only a few mil-
liseconds, but close to an explosion it may rise to over 6894 kN/m
squared (kilonewtons per metre squared).

I wondered how they came up with such a precise figure as 6894. Then I
worked out that 6894 kilonewtons per metre squared (or kilopascals) is 1000
psi.

It reminds me of those recipes which tell you to take 397 grammes of
some ingredient. What they mean is ‘open a 14-ounce tin’.

Jeremy Humphries

What’s next?
I was looking at 1, 2, 4, 8, 20 (connected with Conway soldiers) and
while I was there thought I’d see what Sloane [www.research.att.com/∼
njas/sequences] had to say about Diana’s seventeen 4s [page 18]. He lists 72
such sequences, mostly continuing with a 5 as next number. I submit the
genuine next number is 19. One day I might try to prove it.

Eddie Kent

Problem 210.4 – Coal
There is a coal deposit that occurs underground in a plane inclined at angle
θ to the horizontal. You make vertical holes at points A, B and C in a
horizontal plane on the surface, detecting the coal seam at depths a, b and
c respectively. If AB = x, AC = y and ∠BAC = α, what is θ?
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Problem 210.5 – A monkey and a pole
Ken Greatrix
A monkey climbs a pole alongDC to
a height, y. It is tethered by a line
to a drum of radius R which rolls
on its axle of radius r along a flat
bed PQ. During this rolling, the
drum moves horizontally by a dis-
tance x. You may assume that the
pole isn’t high enough for the drum
to collide with it, that the drum rolls
back to its start position when the
monkey climbs down again and that
the line is always tangential to the
drum. What is the relationship be-
tween x and y?

I already have a solution but it’s iterative and clumsy. Is there a direct
function that can be applied here? I have deduced that ABCD is a cyclic
quadrilateral, because ABC and ADC are right-angles. Ptolemy’s theorem
doesn’t apply because there are too many unknowns.
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Mathematics Revision Weekend 2006
The 32nd M500 Society Mathematics Revision Weekend will be held
at Aston University, Birmingham over 8–10 September 2006.

The cost, including accommodation (with en-suite facilities) and all
meals from bed and breakfast Friday to lunch Sunday is £195 – £230. The
cost for non-residents is £100 (includes Saturday and Sunday lunch). M500
members get a discount of £10. For full details and an application form,
see the Society’s web page, www.m500.org.uk, or send a stamped, addressed
envelope to

Jeremy Humphries, M500 Weekend 2006.

The Weekend is open to all Open University students, and is designed
to help with revision and exam preparation. Tutorial sessions start at 19.30
on the Friday and finish at 17.00 on the Sunday. We plan to present most
OU mathematics courses.
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