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Integer logarithms on finite fields
Tommy Moorhouse
Introduction In other articles we have considered integer logarithms of
the natural numbers. It seems natural to ask whether integer logarithms
exist for finite fields and, if so, to explore their properties. In fact these
logarithms do exist and in some cases form the basis of the ‘index calculus’
[Apostol]. In the circumstances below they are group isomorphisms and
have inverses, and we use these to construct and explore what is known as
a group action.

Readers who know something about groups (and those who don’t but
are willing to do some simple checking) should have no trouble understand-
ing, and hopefully enjoying, this article. All the terms will be explained
as they are introduced, but basic properties will be used without detailed
explanation. For facts about fields and so on I have included some useful
introductory books in the list of references at the end of the article.

Preliminary results Our first result is something of a negative one.

Theorem 1 There is no non-trivial integer logarithm function from a finite
field F into the same field.

Proof The number of elements of a finite field F is a power of a prime
number, say pα. Thus there is at least one element, say g, of the multiplica-
tive group F∗ of non-zero elements of F such that every element of F is a
power of g. Such an element is called a generator of F∗. For any logarithm
L we must have L(1) ≡ 0 (mod pα), since L(n) = L(1n) = L(1) + L(n).
Now gp−1 ≡ 1 (mod pα) and so L(gp−1) ≡ (p− 1)L(g) ≡ 0 (mod pα). Thus
L(g) ≡ 0 and since every element of F can be expressed as gr for some r we
see that L(a) ≡ 0 (mod pα) for all a ∈ F.

The reason for the nonexistence of logarithms into the same field gives
us a clue for proceeding. Given a field we can obtain any non-zero element
uniquely as a power of a generator. For example, if we take the field with
five elements (which is isomorphic to Z5 with the usual modular addition
and multiplication) the powers of 2 are 20 = 1, 21 = 2, 22 = 4 and 23 = 3.
We define L2(2n) = n, with L2 taking values in the additive group (Z4,+).
For future reference we note that, although (Z4,+) is a group and not a
field, there is also a field of order 4.
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Definitions We now proceed to define logarithms on certain fields. Initially
we will be concerned with the fields of order p where p is a prime number
and p = 2r + 1 for some r. In the general case the fields can have order
pn for any n > 0, and the reader is encouraged to consider how the results
below can be generalized. A good model for the more general case is the
field of order 9 with elements 0, 1, 2, α, 1 +α, 2 +α, 2α, 1 + 2α, 2 + 2α, where
α2 = 2. Note that in general generators are not the same as primitive roots
modulo pn, because fields have elements that are not ordinary integers. In
the case n = 1, however, the generators are just the primitive roots.

We return to the specific case introduced above, because it gives us
some concrete examples. Given a field of order p as above we denote its
multiplicative group by GF(p)∗. We denote the additive subgroup (Z2r ,+)
by Z2r . For any generator g of the multiplicative group of the field we denote
the logarithm with respect to g of any element n ∈ GF(p)∗ by Lg(n). This
lies in Z2r . The logarithm is a group isomorphism, which essentially means
that it maps one group to another having the same structure.

We denote the pre-image under Lg of any m ∈ Z2r by Eg(m) = gm,
lying in GF(p)∗. By definition Lg(Eg(m)) = m. The letter E is supposed to
suggest ‘exponential’: we avoid the use of ‘exp’ so as not to clash with the
notation of Apostol.

Now for any two generators g and g′ we have a sequence of maps

Z2r

Eg
−→ GF(p)∗

Lg′

−→ Z2r
.

This sequence permutes the elements of Z2r and is, in fact, an automor-
phism. This means that it maps Z2r to itself in a way that preserves the
group structure. We call this automorphism σg,g′ or, more suggestively,
〈g′|g〉. Let us establish some properties of this group.

Theorem 2 The maps σg,g′ = Lg′ ◦ Eg are automorphisms of Z2r .

Proof We have for elements a and b of Z2r

σg,g′(a+ b) = Lg′(Eg(a+ b))

= Lg′(Eg(a)Eg(b))

= Lg′(Eg(a)) + Lg′(Eg(b))

= σg,g′(a) + σg,g′(b).

It is easily checked that the kernel of σg,g′ is the zero element of Z2r , so
that σg,g′ is indeed a group automorphism.
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Not all these automorphisms are distinct. In fact we will prove that
there are exactly φ(2r) = 2r−1 of them in this case. We start with some
lemmas.

Lemma 3 If g and g′ are generators of GF(2r + 1)∗ where 2r + 1 is prime,
then Lg(g

′) is odd.

Proof Since g′ generates GF(p)∗ multiplicatively it follows that Lg(g
′)

generates Z2r additively and is therefore odd.

Lemma 4 For any a ∈ Z2r we have σg,g′(a) = Lg′(g)a.

Proof We have

σg,g′(a) = Lg′(Eg(a))

= Lg′(g
a)

= aLg′(g).

We thus see that the automorphisms induced by our logarithms are just
the action of multiplication by an odd number modulo 2r. The set of odd
numbers under multiplication modulo 2r is a group (which we shall callO2r ),
and we have what is known as a group action of O2r on the additive group
Z2r . Some further properties of the group can be derived. For example:

Lemma 5 σh,g ◦ σk,h = σk,g.

Proof From the definitions

σh,g ◦ σk,h(m) = Lg(Eh(Lh(Ek(m)))) = Lg(Ek(m)) = σk,g(m).

In our alternative notation we have

〈g|h〉〈h|k〉 = 〈g|k〉.

Examples We return to the simple example of GF(5)∗ with logarithms
L2(1) = 0, L2(2) = 1, L2(3) = 3, L2(4) = 2 and L3(1) = 0, L3(2) =
3, L3(3) = 1, L3(4) = 2. We find that σ2,3(0) = 0, σ2,3(1) = 3, σ2,3(2) =
2, σ2,3(3) = 1. This is multiplication by 3 (mod 4). The group of automor-
phisms is the (unique) group with two elements.

The next example of this type is GF(17)∗. The details are a little more
messy but the conclusion is the same: namely that the automorphisms
generated by the logarithms correspond to the multiplicative group of odd
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numbers modulo 16. In our limited considerations so far the only powers of
2 leading to this situation give rise to the Fermat primes [Burton]. However,
we have other possibilities.

Other fields As mentioned above there is a (unique) field with 2n elements
for any positive integer n. Note that this is not just the set Z2n with the
usual modular addition and multiplication. To get an explicit representation
of the field GF (4) consider the equation t2 + t + 1 = 0 over Z2. There are
no solutions in Z2 (try substituting 0 and 1 into the equation and reducing
modulo 2). We can add a solution, say α, to Z2 and form all the possible
sums and multiples to get a field with four elements: 0, 1, α and 1 +α. For
example α(1 + α) = α + α2 = α + α + 1 = 1 using the equation satisfied
by α and working modulo 2 so that α + α = 0. Now α2 = 1 + α, α3 = 1,
so α generates GF(4) and we can define our logarithms. Here 1 + α also
generates the group, so all the machinery used above can be used. The
induced automorphism group acting on Z3 is multiplication by 2.

The key point here is that in the case of fields of non-prime order we
cannot generate the whole multiplicative group from ordinary (sometimes
called ‘rational’) integers, but we can still define logarithms by means of the
generators. This gets us around the fact that there are no primitive roots
modulo 2n for n > 1, for example.

We will refer to logarithms formed from generators as ‘basic logarithms’.
It is readily seen that the sum of two logarithms is again a logarithm, that
is,

(Lg + Lg′)(1) = Lg(1) + Lg′(1) = 0 + 0 = 0

and

(Lg + Lg′)(nm) = Lg(nm) + Lg′(nm)

= Lg(n) + Lg(m) + Lg′(n) + Lg′(m)

= (Lg + Lg′)(n) + (Lg + Lg′)(m).

However, these derived logarithms may not be basic, and indeed include the
‘zero logarithm’ L0(n) = 0 among others.

Added interest arises from the fact that in some cases 2n − 1 is prime.
Since GF(2n)∗ is generated by at least one element (not an integer) we
can define the logarithm of any field element as above. The multiplicative
group induced by the primitive logarithms is easily found to be the action
by multiplication of the group of residue classes modulo 2n − 1 on the
additive group Z2n−1. In this case every non-trivial element of GF(2n)∗ is
a generator. Readers might like to test the following conjecture.
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Conjecture Given any field F of order pn, the set of maps obtained from
the set of basic logarithms defined for each generator by composition with
the inverse (‘exponential’) maps in every combination give rise to a group
action of the group of residue classes modulo pn − 1 on (Zpn−1,+), the
action being that of multiplication. There are φ(pn − 1) basic logarithms
and φ(pn − 1) elements in the group acting on (Zpn−1,+).

A straightforward proof could involve considering the isomorphism between
the multiplicative and additive groups, and mapping the generators of the
additive group onto those of the multiplicative group. This suggests a
method for obtaining all generators of a field GF(pn) from a single gen-
erator g. First write out the powers of the generator g to find the logarithm
Lg of each element. Next identify the elements ai of the reduced residue
system modulo pn − 1. Finally obtain all the generators of GF(pn)∗ from
the map Eg(ai) = gi (that is, looking up the element of GF(pn)∗ that maps
to ai under Lg).

Challenge Readers who know something of group cohomology might like
to see what H0(G,M) and H1(G,M) look like in the above case.

Useful books

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1998.

[2] I. Stewart, Galois Theory, Chapman & Hall, 1973.

[3] D. M. Burton, Elementary Number Theory, McGraw–Hill, 1997.

[4] S. Lang, Algebra, Springer, 2002,

Problem 228.1 – Odd expression
Tony Forbes
Show that the expression ⌊(

3 +
√

5
)n⌋

is odd for non-negative integer n. The notation bxc means the integer part
of x; that is, the largest integer which is less than or equal to x. Previously
I would have written [x] for this function but nowadays the ‘floor’ brackets
are more fashionable, and often used alongside or at least near the ‘ceiling’
brackets, which denote the integer you get by going the other way: dxe is
the smallest integer which is greater than or equal to x.

Algebra is nothing more than glorified clerking. G. H. Hardy
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Solution 224.1 – Three rolling spheres
If the times to roll down an inclined plane are t1 for a hollow
sphere, t2 for a solid sphere and t3 for a ‘semi-solid’ sphere (solid
except for a central hole of half the radius), prove that

t1 : t2 : t3 =

√
5

3
:

√
7

5
:

√
101

70
≈ 1.291 : 1.183 : 1.201.

Basil Thompson
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Referring to the diagram above, r is the radius of the sphere, m is its mass,
I is its moment of inertia, ma is the resultant force through O down the
slope, and F is the friction force acting up the slope.

The sphere obeys the equations of motion

mg sinα− F = ma, Fr = I
a

r
.

Thus

mg sinα− Ia

r2
= ma

and hence

a =
mg sinα

m+ I/r2
. (1)

The distance travelled is x = 1
2at

2, giving

t2 = 2x/a. (2)

Using subscripts 1, 2, 3 for the three cases, we have the following values for
the moments of inertia:

I1 =
2

3
m1r

2, I2 =
2

5
m2r

2, I3 =
31

70
m3r

3.
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The first two are to be found in most dynamics text books. The third one
is rarely quoted—I derive it at the end.

Hollow sphere From (1) we have

a1 =
m1g sinα

m1 + I1/r2
=

g sinα

1 + 2/3
=

3

5
g sinα,

and substituting this into (2) gives

t21 =
5

3

2x

g sinα
.

Solid sphere Similarly,

a2 =
m2g sinα

m2 + I2/r2
=

g sinα

1 + 2/5
=

5

7
g sinα,

t22 =
7

5

2x

g sinα
.

Half-solid sphere Again,

a3 =
m3g sinα

m3 + I3/r2
=

g sinα

1 + 31/70
=

70

101
g sinα,

t23 =
101

70

2x

g sinα
.

Hence the times t1, t2, t3 are in the ratios
√

5
3 :
√

7
5 :
√

101
70 , as stated

I conclude with a derivation of I3, the moment of inertia of a half-solid
sphere of radius r. This could be done by integration but is is possibly easier
to take the moment of inertia of a solid sphere and subtract the moment of
inertia of a solid sphere of half the radius.

Let m3 be the mass of the half-solid sphere. Then the mass of a solid
sphere of radius r made out of the same material is 8

7m3 and the mass of a
solid sphere of radius 1

2r is 1
7m3. So, using the formula I = 2

5mr
2 for the

moment of inertia of a solid sphere, we have

I3 =
2

5
· 8

7
m3r

2 − 2

5
· 1

7
m3

(r
2

)2
=

31

70
m3r

2.
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Sophie’s Diary: A Historical Fiction
by Dora Musielak

Eddie Kent
Some time ago I was asked to review this book for M500. Since I had recently
(M500 211 16) noticed the film Proof I began reading with enthusiasm.
Then I hit a snag—the book was dreadful. The style was convoluted and
pretty well unreadable, the grammar was alien and the spelling was at best
creative. I liked Sophie and was fascinated by what she did, but felt there
was no way I could induce anyone to pay money for this. Of course being a
moral coward I couldn’t possibly say so, and thus I put the book aside for
later consideration.

The other day I dug it out for another look, but first I checked on
Amazon if it is still available. It is, but more—it is transformed. You know
how they sometimes let you look at random pages? Well, it was clear that
someone has done an amazing job of editing to allow the essential story to
shine through. I can now say that no student of mathematics should be
without it.

Pythagoras’s theorem leads to one of the best understood equations in
mathematics, that is, x2 + y2 = z2. There are countless whole-number
solutions to this equation and famously (apocryphally) Fermat declared
that this is the case only for the number 2. He never wrote his proof of this
down and callously died before he could, so the challenge became to prove
‘Fermat’s Last Theorem.’ By the time Sophie Germain was born in April
1776 proofs had been found in a couple of special cases of xn + yn = zn,
namely n = 3 and 4, but the impetus to tackle the infinity-minus-two ns
that remained was dying out.

Sophie’s father was a merchant, financially successful but not in the top
social class. If he had been things might have been easier. Although aristo-
cratic women were not actively encouraged to study mathematics, they were
expected to have sufficient knowledge of the subject to be able to discuss
the topic should it arise during polite conversation. In fact books existed
for this purpose. Francesco Algarotti’s Sir Isaac Newton’s Philosophy Ex-
plain’d for the Use of Ladies takes the line that women are only interested
in romance, thus he explains Newton’s discoveries through the flirtatious
dialogue between a Marquise and her interlocutor. The teacher outlines the
inverse square law of gravitational attraction, whereupon the Marquise gives
her own interpretation on this fundamental law. “I cannot help thinking
. . . that this proportion in the squares of the distances of places . . . is ob-
served even in love. Thus after eight days absence, love becomes sixty-four
times less than it was the first day.”

I tell this for your amusement only, not to imply that this genre of books
was responsible for inspiring Sophie Germain’s interest. That life-changing
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event occurred one day when she was browsing in her father’s library and
chanced upon Jean-Étienne Montucla’s History of Mathematics. The chap-
ter that caught her imagination was an essay on the life of Archimedes. The
account of his discoveries was interesting enough, but what particularly kin-
dled her fascination was the story of his death. She decided that if someone
could be so consumed by a problem in mathematics that it could lead to
his death, then mathematics must be a most captivating subject indeed.

So, at the age of 13, she set about teaching herself the basics of number
theory and calculus (of course having to learn Latin first, word by word),
and soon she was working late into the night studying the works of Euler
and Newton. But this interest in such an unfeminine subject drove her
mother quite frantic, and her parents tried desperately to deter her. A
friend of the family, Count Guglielmo Libri-Carrucci dalla Sommaja, wrote
how Sophie’s father confiscated her candles and clothes and removed any
heating in order to discourage her. Another blow was that the Church was
banned from functioning at this period, and so she couldn’t go to the nuns
for help with her Latin.

Sophie’s Diary is of course fictional, but it is solidly researched. As
each aspect of mathematics is mastered by Sophie it is described in detail,
and thus the book is dripping with equations, so it would be difficult to
recommend to an average 13-year-old girl, and some kind of mathematical
maturity is needed to enjoy it fully. The first equation she encounters is
the above x2 + y2 = z2; later she comes upon π and makes various approxi-
mations, and becomes adept at solving linear equations. Most importantly
she realises the value of proof. Her first major setback is at x3 + 1 = 0. It
is clear that −1 is a solution but she knows that a cubic must have three.
What can the others be?

As this is a diary, other events in the lives of ordinary people during
a revolution are described. There is a nice account of the Storming of the
Bastille, for instance, with its governor the Marquise de Launay having his
throat cut on the steps and his head paraded through the streets. And
endless meetings and discussions, her father being a deputy who had no
objection to little Sophie tagging along. So apart from being a fascinating
account of a person and a period, the book is also educational and an
inspiration. And the point about FLT above? Well, Sophie came close to
cracking it (see M500 211 17 for an account of Sophie Germaine’s theorem).

Although she was not taken seriously as a mathematician because of her
sex (having to call herself M LeBlanc) she did persevere, and was eventually
accepted by some notable men, not excluding Gauss himself; she now has a
street in Paris all of her own.

Buy the book; but do make sure you get the edited version (and en-
courage your 13-year-old daughter to read it).
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The affine transformation
Dick Boardman
The affine transformation maps a point (x, y) in one plane onto the point
(X,Y ) in another plane. The equations are

X = ax+ by + c, Y = dx+ ey + f, ae− bd 6= 0.

The great virtue of the transformation is that it allows you to generalize
certain results which you only need to prove in one special case. Under this
transformation

• straight lines become straight lines,
• parallel lines become parallel lines,
• ellipses and circles become ellipses and circles,
• parabolas become parabolas,
• hyperbolas become hyperbolas,
• points at infinity become points at infinity,
• ratios of lengths on the same, or parallel line segments are preserved,
• points of intersection and tangent properties are preserved.

There are six parameters which can be determined by six equations, so
that three (non-collinear) points can be transformed into any other three
points; that is, any triangle may be transformed into any other triangle.
Some triangle properties, the intersection of the medians, for example, which
depend on the mid-points of the sides, are preserved but others, like the in-
centre, or the intersection of the altitudes, which depend on angle, are not.
The centre of a circle becomes the centre of an ellipse. In general, angles
and the ratios of line lengths on non-parallel lines are not.

Two congruent triangles with parallel sides become two congruent trian-
gles so that two identical squares in different positions become two congruent
parallelograms. From this it follows that the ratios of areas are preserved
since any area filled with tiny squares will become an area filled with the
same number of tiny parallelograms.

This leads to some interesting results. For example, imagine an equi-
lateral triangle with its in-circle. This is clearly the largest ellipse which
could be inscribed in that triangle. If we now transform this into any other
triangle, the result will be an ellipse in a triangle. This ellipse will be the
largest that could be inscribed in that triangle. The ratio of its area to that
of the triangle will be the same as the ratio of the area of the in-circle to
that of its equilateral triangle. Furthermore, it will touch the sides at their
midpoints and its centre will be the intersection of the medians. The circle
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through the vertices of an equilateral triangle will clearly be the smallest
ellipse through those points. This will transform into any other triangle and
the smallest ellipse surrounding it. Furthermore the centre of this smallest
ellipse will be the intersection of the medians.

-

q

q

q q
q

q

Continuous curves transform into continuous curves, so that a cubic
curve will transform into another cubic curve with the same topology.

If the coefficients a through f are rational, then rational points will
transform into rational points so that a cubic with a limited number of
rational points will transform into another cubic with similar limitations.
Transformations can be translations, rotations, reflections and expansions.
The amount of expansion can be different in different directions.

Parameters c and f control translations. The origin in the input plane
(0, 0) becomes (c, f) in the output plane. Pure rotations have the form

X = x cos t+ y sin t, Y = − x sin t+ y cosx.

In a pure rotation there is exactly one point which is unaltered.

A pure reflection in the y-axis would be

X = − x, Y = y.

In a pure reflection there is a line of unaltered points.

The set of all possible affine transformations forms a group. This means
that affine transformations have four properties.

• If two transformation are applied, one after the other, the result is an
affine transformation (closure).

• If there are three affine transformations A, B and C, then (A fol-
lowed by B) followed by C is the same as A followed by (B followed by C)
(associative law).
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• There is an identity transformation.

• Each transformation has a unique inverse.

However, A followed by B is not necessarily the same as B followed A.
When A is followed by B the result may be found by using the laws for
2-dimensional matrix multiplication and addition.

In summary, the affine transformation is a restricted form of the more
general projective transformation. Indeed, any of the theorems of projective
geometry will also apply to the affine transformation.

Relativity without c
Sebastian Hayes
I bring to the notice of all readers interested in relativity the fascinating
article Shedding Light by Mark Buchanan in the New Scientist, 1 Novem-
ber 2008. Here, the author summarizes papers by Feigenbaum and others
which claim that the various space/time anomalies of Special Relativity can
be deduced directly from the Galilean Relativity Principle (‘That the laws
of physics take the same form in all inertial frames’) without assuming the
invariance of the speed of light. They emerge from ‘even more basic, purely
mathematical considerations’. This, incidentally, allows us to attribute a
small mass to the photon (and other supposed ‘massless’ particles). I argued
in an article in the Journal of the Open Society for Science and Technology
over twenty five years ago that the idea of a massless particle is a contradic-
tion in terms, and by no means a necessary deduction from experiments—all
we can conclude from the data is that a photon’s mass would need to be
smaller than 10−49 grams.

According to this new approach, the celebrated space/time anomalies
can be deduced from consideration of certain ‘rotations’ and an overall
space–time curvature which does not depend on the mass/energy distri-
bution in the universe. ‘Allow them [these rotations] and the mangled
space-time of Einstein’s relativity emerges, complete with a definite but
unspecified maximum speed that the sum of individual relative speeds can-
not exceed’ (Buchanan, NS article). Buchanan quotes Feigenbaum as saying
that ‘these rotations . . . are the wellspring of physics’. Apparently, Feigen-
baum’s paper has not yet been peer-reviewed but can be downloaded from
www.arxiv.org/abs/0806.1234).

Summation convention, n. A mathematicians’ shindig held each year in
the Kronecker Delta. [Sent by JRH]
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Re: Mathematics in the kitchen – V
Recall that you were instructed to take a large, heavy, circu-
lar saucepan lid, hold it right-way up but at an angle of about
30 degrees to the horizontal, give it a spin, let it drop onto the
kitchen worktop and observe its behaviour. After some ungainly
spinning/rolling motion the lid reverses its direction and settles
down to a steady slow rotation on which is superimposed a vibra-
tion component. As gravity exerts its influence, the vibration
amplitude decreases but its frequency increases. Eventually a
noisy climax is reached and the saucepan lid comes to a sudden
halt.

Ken Greatrix
First of all, try it with a 2p coin on a smooth, flat, hard surface—such as a
piece of glass.

It’s much quieter and you get the same result. And if you do this in the
kitchen, it will then fit the theme of the exercise!

If you roll the coin along, it starts to go into a curve, the radius of
which gets smaller and smaller until it ‘falls over’. At this point, it’s going
round in a circle, but this has a diameter slightly smaller than the coin.
The coin itself is moving like an epicyclic gear and so will appear to be
revolving backwards; as observed with the saucepan lid. As the angle to
the horizontal becomes smaller, this diameter increases until it becomes the
same size as the coin’s—at which point motion has stopped. I suggest that
it’s this circular path being smaller than the diameter of the coin which
causes the appearance of ‘backwards’ rotation.

I tried another similar experiment: Stand the coin on edge and hold it
lightly with the left hand, then give it a deft flick with the right hand at its
right-hand edge.

It is then spinning around a vertical diametrical axis. Unless you give
it a ‘perfect’ flick, it will also be orbiting. Again, when it gets to a certain
point it begins its ‘falling-down’ process. Perhaps because the edge of a 2p
coin is square, it’s probably impossible for it not to follow this ‘orbiting’
path, but while it is doing this I think it might also be turning on a very
small radius circle. I tried looking at the revolving face of the coin to see
if it appeared to rotate but I couldn’t detect any such rotation. Perhaps
this is because the light wasn’t good enough and also because I couldn’t
maintain the spin for long enough.

Overall, it is obvious that energy in the system manifests itself in various
ways (angular momentum, oscillation, kinetic energy, etc.), but I wouldn’t
like to attempt to model them.
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Letters

How to solve quadratics
Dear Tony,

Re: M500 223 page 15, How to solve quadratics. In Countdown To
Mathematics Volume 3 by Lynn Graham and Dave Sargent (page 93) there
is a shortcut to solving quadratic equations ax2+bx+c where the coefficient
of x2 is greater than 1, which saves working it out by trial and error.

Example: 6x2 − 11x− 10 = 0.

(1) Multiply a by c: 6×−10 = −60.
(2) Find two numbers whose sum is b and whose product is ac: (−15, 4).
(3) Pair up those two numbers with the coefficient a: (6,−15), (6, 4).
(4) Factorize: 3(2,−5), 2(3, 2).
(5) Discard the common factors: (2,−5), (3, 2).
(6) We can now write down the factors: (2x− 5)(3x+ 2) = 0.

So x = 5/2 or −2/3.

Keith Drever

Toroidal planets
Dear Eddie,

Thoughts on Problem 225.1 – Toroidal planet. Remember that included
in the definition of a planet (which has recently been revised so as to exclude
Pluto) is the stipulation that it should be large enough for its own gravity
to collapse it into a sphere, or at least a spheroid.

So the answer is that if this planet-sized torus were to spring into ex-
istence, and were not revolving fast enough to keep its form, and you were
standing on its inner rim, you would travel towards the centre followed at
once by large amounts of rock as the thing adjusted its shape to the usual
form.

There is a rather good 1960s science fiction book, Mission of Gravity by
Hal Clements, in which humans visit a very large, very fast spinning planet
that has settled into the shape of a Smartie. They can just cope with life on
the edge, where the gravity is only about 3 G, but can’t go anywhere near
the poles. However, they encounter a wandering trader, a caterpillar-like
creature navigating a raft.

It also set me wondering about a similar problem. You are a main-
tenance man on the space station in the film 2001, which is a large torus
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revolving at a speed to create 1 G on the floor at the outer edge of the
ring—but not so large as to have any noticeable gravitational effect of its
own. You have to go outside to mend something on the outer edge of the
hull. Your lifeline becomes unhooked, so I suppose you now proceed at a
steady speed in a straight line tangential to the outer edge of the ring.

However, G is defined as an acceleration of 9.81 metres per second per
second. As seen from the centre of the ring, at what velocity are you de-
parting?

Best wishes,

Ralph Hancock

Hotels
Dear Tony,

Re: Solution 202.3 – The puzzled hotelier. [See M500 225, page 16.
The original problem in M500 202 was to determine the (unique) set of
consecutive room numbers in the range 101–199 using information gleaned
from this conversation between me and an hotelier.

“They were,” he said, “off four corridors forming a square and ordered
so that the sums of pairs of numbers of adjacent rooms were all primes.”

He told me how many rooms there were, and I countered, “There
couldn’t have been fewer.”]

Did Steve Moon decide that the number of rooms must be a multiple
of four because there are four sides to a square? The respective numbers of
rooms on each of the four corridors aren’t necessarily the same.

The sequence of primes, not less than 101 + 102 = 203 starts 211,
223, . . . and since 223− 101 is 122 there must be at least 22 rooms. This is
the solution if and only if there is some cycle of that order consistent with
the data. And there is. Probably more than one cycle because of the higher
potential degrees of some of the vertices, for example vertices (the rooms)
119 and 120 have potential degree equal to 6. One possibility:

101, 110, 113, 116, 107, 104, 119, 114, 109, 102, 121,

120, 103, 108, 115, 112, 111, 118, 105, 106, 117, 122, (101).

Ian Adamson
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Steve Moon showed that the solution to this problem was 24 rooms and
listed one possible sequence of rooms. He wondered how many other se-
quences of room numbers satisfied the given conditions.

If we ignore the position of the start room number 101 and whether
we go round the corridor clockwise or anti-clockwise then the number of
solutions is 22, 842.

I have also looked at the solutions of the problem for all start room
numbers up to 500. It is clear that the only possible set of room numbers
for a hotel with 4 rooms is 2-1-4-3-. The lowest starting room numbers
which require 8, 12, 16, 20, 24, 28 and 32 rooms are 2, 4, 35, 52, 94, 230,
and 254 respectively.

If we also impose the restriction that there is a unique solution then the
corresponding starting room numbers are 6, 19, 36, 118, 156, 250, 381, and
unknown. These are shown below.

9-8-11-12-7-6-13-10-

22-25-28-19-24-29-30-23-20-27-26-21-

119-122-129-128-123-118-133-124-127-130-121-120-131-126-125-132-

159-158-173-164-167-170-161-156-175-162-169-168-163-174-157-160-
171-166-165-172-

261-260-263-258-265-256-267-254-269-272-251-252-271-270-253-250-
273-268-255-266-257-264-259-262-

394-393-404-383-386-387-400-397-390-407-402-395-392-381-406-405-
382-391-396-401-408-389-398-399-388-385-384-403-

Dave Wild

Problem 228.2 – Arithmetic progression
Martin Hansen
An arithmetic progression contains only positive integer terms. The sum of
the first three terms is 51. The sum of the last four terms is 332. Show that
only two arithmetic progressions satisfy these conditions and list those two
progressions.

Problem 228.3 – Another arithmetic progression
The three sides of a triangle are in arithmetic progression with common
difference 1. The largest angle exceeds the smallest by 90◦.

What are the sides?
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Mathematics in the kitchen – VI
Tony Forbes
Following the trend we started in M500 188 and continued occasionally
since then (the last one being M500 225), here is yet another experiment
that you can perform with materials available in any well-equipped kitchen.

You will need two matching circular table mats or similar, such beer
mats, or flattened paper plates, or in fact any pair of identical discs. Ideally
they should be very thin but rigid. You will also need a knife and some
glue. Make a slot in one of the discs along a radius and measuring exactly
2 −
√

2 ≈ 0.5858 radius-lengths. The thickness of the slot should be the
same as that of the material. Insert the other disc into the slot so that the
two discs are orthogonal to each other. Glue the assembly together. You
should end up with the two discs joined at right-angles to each other with
their centres

√
2 radius-lengths apart.

Now let the thing roll around on a perfectly flat kitchen worktop. If
your workmanship was sufficiently accurate, you will observe that there is
no unique stable position. The object naturally moves around just like a
perfect cylinder. In other words, the centre of gravity is always at the same
height above the surface.

Can you explain why? Is the ratio
√

2 special?

Thanks to Dick Boardman for the idea behind this experiment.

Warning. Solvent-based gluing substances should always be used with
care and in a well-ventilated environment. Do not perform the experiment
if you are unwilling to take responsibility for accidents.
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Numbers on the brain
Rob Evans
This article shall be concerned with Problem 152.2. For those readers who
do not have a copy of M500 152 to hand, a verbatim wording of that problem
follows.

Algernon and Charles are seated, facing each other. Each has
a piece of card attached to his forehead on which is written
a positive integer. Each can see the other’s number, but not
his own. On a blackboard which both can see are written two
positive integers. They know that one of these numbers is the
sum of the numbers on their foreheads, but they do not know
which one it is. They take it in turns to ask each other: “Do
you know the number on your forehead?” Will it always be the
case that one or other of them will eventually be able to answer
“Yes” to this question?

Unfortunately, the above wording is not a very clear statement of the prob-
lem that I think that the author(s) had in mind. I think that they in-
tended that there should be no transfer of information between Algernon
and Charles by way of hand signals; variations in the way they speak; vari-
ations in the length of the intervening periods of silence etc. If I am right
about this then I am almost certain that the answer to the question posed
at the end of the problem has to be “No”. However, if I am wrong about
this then I am absolutely certain that (assuming the existence of a suitable
agreement beforehand between Algernon and Charles on how to interpret
each other’s actions) the answer to that question is “Yes”. One possible
course of action for them to take would be to agree beforehand on a suit-
able ‘unit of time’ (e.g. one second) and then proceed as follows.

(1) Algernon to ask: “Do you know the number on your forehead?”

(2) Charles to remain silent for a period of time whose length (as mea-
sured in terms of the agreed unit of time) is equal to the number on Alger-
non’s forehead.

(3) Charles to ask: “Do you know the number on your forehead?”

(4) Algernon to answer “Yes” to the question asked in (3).

(N.B. Algernon’s answer is truthful since he knows that the number on
his forehead is equal to the length (as measured in terms of the agreed unit
of time) of the period of silence in (2).)
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This course of action has the advantage that knowledge of the number on
Algernon’s forehead is transferred by Charles to Algernon in a particularly
inconspicuous way (à la Derren Brown, perhaps?). But, as I indicated
before, this is just one possible course of action. There are (as readers can
confirm) many others.

So, depending on which interpretation one has of the author’s(s’) orig-
inal wording, the answer to the question posed at the end of the problem
seems to be either an obvious “No” or an obvious “Yes”. Either way the
problem does not seem to be very interesting. All this leaves me thinking
that I might have got hold of the wrong end of the stick! In which case, if
any reader can provide clarification of the problem then I would be most
grateful if they did so.

Problem 228.4 – Perfection
Tony Forbes
This is based on Number 128 of Robin Whitty’s Theorem of the day,

http://www.theoremoftheday.org/Theorems.html.

A perfect number, is a positive integer, N , for which the sum of the divisors
of N is 2N ; in symbols,

∑
d|N d = 2N . The sequence begins

6, 28, 496, 8128, 33550336, 8589869056, 137438691328,
2305843008139952128, 2658455991569831744654692615953842176,
191561942608236107294793378084303638130997321548169216, . . . .

Prove the following assertions.

(i) The number N is perfect iff
∑
d|N 1/d = 2.

(ii) An even number N is perfect iff N = 2p−1(2p − 1) for some prime
2p − 1.

(iii) All even perfect numbers end in 6 or 28.

(iv) An even perfect number has digital root 1. To compute the digital
root of a positive integer n, replace n by the sum of its decimal digits, and
then repeat this process at least log n times.

(v) A sufficiently large even perfect number is the sum of the first few
odd cubes.

And if you have time,

(vi) decide whether the qualifier ‘even’ can be removed from items (ii)–
(v), above.
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Right-angled triangles
Chris Pile
Using generators p, q to give x = p2 − q2, y = 2pq, z = p2 + q2, we can
create triangles in pairs with either x + y square or z square [see Problem
225.2 – Pythagorean triangles].

x+ y is a square z is a square
p q x+ y p− q p q z p+ q p− q

5 4 49 = 72 1 4 3 25 = 52 7 1
13 6 289 = 172 7 12 5 169 = 132 17 7
25 8 961 = 312 17 24 7 625 = 252 31 17
17 10 529 = 232 7 15 8 289 = 172 23 7
41 10 2401 = 492 31 40 9 1681 = 412 49 31
61 12 5041 = 712 49 60 11 3721 = 612 71 49
37 14 2209 = 472 23 35 12 1369 = 372 47 23
85 14 9409 = 972 71 84 13 7225 = 852 97 71

113 16 16129 = 1272 97 112 15 12769 = 1132 127 97
65 18 6241 = 792 47 63 16 4225 = 652 79 47

145 18 25921 = 1612 127 144 17 21025 = 1452 161 127
181 20 39601 = 1992 161 180 19 32761 = 1812 199 161
101 22 14161 = 1192 79 99 20 10201 = 1012 119 79
221 22 58081 = 2412 199 220 21 48841 = 2212 241 199

Note that the two p − q columns are the same. Also z ± y is a square,
but x+ z is never a square. The generator p in the (x+ y)-square triangle
becomes p2 = z in the z-square triangle. The p+q column for the z triangle
becomes (p+ q)2 = x+ y in the (x+ y) triangle.

The nearest to having x + y and z both square for small integers is
(161, 240, 289), with x+ y = 401 = 202 + 1 and z = 172.

Composite triangles can be formed, such as

(15129, 67240, 68921), x+ y = 82369 = 2872, z = 413.

Several triangles were revealed having the same hypotenuse. Here are
some examples with z = 4225 = 652.

1040, 4095, 4225 2535, 3380, 4225
1183, 4056, 4225 2975, 3000, 4225
1625, 3900, 4225 3289, 2652, 4225
2047, 3696, 4225 3713, 2016, 4225
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Problem 228.5 – Square roots
Dick Boardman
Given that

(
√
a−
√
a− 1)n =

√
b−
√
b− 1,

show that for any positive integer n, b is a positive integer if a is a positive
integer.

M500 Mathematics Revision Weekend 2009
The thirty-fifth M500 Society Mathematics Revision Weekend will
be held at

Aston University, Birmingham

over

Friday 11th – Sunday 13th September 2009.

The cost, including accommodation (with en suite facilities) and all meals
from bed and breakfast Friday night to lunch Sunday is £234 (in Aston’s
Lakeside flats) or £278 (Aston Business School), The cost for non-residents
is £115 (includes Saturday and Sunday lunch). M500 members get a dis-
count of £10. For full details and an application form, see the Society’s web
site at www.m500.org.uk, or send a stamped, addressed envelope to

Jeremy Humphries, M500 Weekend 2009.

The Weekend is open to all Open University students, and is designed
to help with revision and exam preparation. We expect to present the
following mathematics-based OU courses, subject to sufficient numbers:

M208, M248, M256, M337, M343, M346, M359, M362, M363,
M366, M373, M381, M820, M821, M823, MS221, MST209,
MST326 and MT365.

Tutorial sessions start at 19.30 on the Friday and finish at 17.00 on the
Sunday.

As usual, on the Saturday evening we have a break from tutorials. Rob
Rolfe will be running a pub quiz with Valuable Prizes, and we plan to
organize a guest lecture on a popular mathematical topic—consult the web
site for details nearer the time.

The last date for receipt of bookings is 20th August 2009.
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