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Sums of powers of digits
Tony Forbes
For positive integers k and n, define the function Dk(n) by

Dk(n) =
∑

d, d runs through the digits of n

dk.

So, for example, D6(43210) = 46 + 36 + 26 + 1 = 4890.

Naturally one gets excited whenever Dk(n) = n, apart, of course, from
the trivial case n = 1. On the other hand, G. H. Hardy’s enthusiasm is
more subdued. In A Mathematician’s Apology he quotes 153 = 1 + 53 + 33,
370 = 33 + 73, 371 = 33 + 73 + 1 and 407 = 43 + 73 as the only solutions of
D3(n) = n ≥ 2 and then goes on to question the mathematical significance
of these discoveries. Hardy says, ‘These are odd facts, very suitable for
puzzle columns and likely to amuse amateurs, but there is nothing in them
which appeals much to a mathematician. The proofs are neither difficult
nor interesting—merely a little tiresome.’ To continue with our amateurish
amusement, here are two examples of a more substantial nature.

32164049651 = 311 + 211 + 1 + 611 + 411 + 411 + 911 + 611 + 511 + 1,

564240140138 = 513 + 613 + 413 + 213 + 413 + 1 + 413 + 1 + 313 + 813.

Exercise for reader: Find another n such that D11(n) = n.

If n also has exactly k digits, it is called (amongst quite a lot of other
things) a Pluperfect Digital Invariant, or, if that’s too long for the mind to
cope with, you can shorten it to PPDI. It is known that there are precisely
88 of them, which you can see at https://www.deimel.org/rec_math/DI_
3.htm. Moreover, the number of digits in a PPDI must belong to

N = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 16, 17, 19, 20, 21, 23, 24, 25, 27, 29,

31, 32, 33, 34, 35, 37, 38, 39}.

Hence the second example given above doesn’t count because it has twelve
digits, not thirteen.

Let us ignore this deviation and concentrate on numbers that satisfy

Dk(n) = n, where k ≥ 1 and n ≥ 2 are integers, (∗)

and with no further restrictions. I see that in M500 163 I refer to them as
Recurring Digital Invariants of order k and cycle length 1, abbreviated to

https://www.deimel.org/rec_math/DI_3.htm
https://www.deimel.org/rec_math/DI_3.htm
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RDI(k, 1). OEIS [https://oeis.org/A003321] calls them Perfect Digital
Invariants, PDI. I find this slightly confusing because I have seen at least
one source where the term PDI is reserved for n which satisfy (∗) but are
not PPDIs. Perhaps I can resolve the ambiguity by calling them Perfect But
Not Necessarily Pluperfect Digital Invariants, or PBNNPPDI, but I won’t.
In any case we might need to specify the exponent somewhere; so if the
exponent is k, it seems sensible to adopt the notation PDI(k).

Clearly, when k = 1, the only solutions of (∗) are 2, 3, . . . , 9, and when
k = 2 there are no solutions at all. For a complete list of the what is claimed
to be the smallest PDI(k) for k ≤ 109, see https://oeis.org/A003321/

b003321.txt. And here are a couple more.

k d n

44 43 6810209536021751861114918348460992955509943
85 83 11611093878700807521863745322326039143695779961208 [1]

573941316709607456134088705946891

[1] Older readers might remember this one from M500 163.

My interest in these things is not they exist, for, as Hardy says, ‘Blah
blah . . . ’ (see above), but how one goes about finding them.

One useful observation is that the order of the digits doesn’t really
matter. Denote by nS the number you get by sorting the digits of n. Thus,
for example, 74000252S = 22457. Now define the function Sk(n) by Dk(n)S,
and let us call a number that satisfies Sk(n) = nS = n a PSDI(k) (with the
sortedness being indicated by the letter S). We have seen that 153 is a
PDI(3), but if we sort the digits, then 135 is a PSDI(3). It is clear (if it
is not, then perhaps you should prove it; see Problem 293.6 on page 20)
that n is a PSDI(k) if and only if Dk(n) is a PDI(k). The point is (I think)
that it might be much easier to find PSDI(k)s, and once we have found a
PSDI(k) we can readily convert it to a PDI(k) if it isn’t already one.

In M500 163 I offered a very simple algorithm for finding PDIs. Here
it is again, this time modified for PSDIs.

Choose an exponent k and a starting number, n0 with its digits sorted.

Generate a sequence n0, n1, . . . , where ni+1 = Sk(ni), stopping when
it goes into a loop.

If the loop has length 1, report a PSDI(k).

This was good enough to find the entries in the table but probably not
the most efficient way to pick up everything. To do the job properly, you

https://oeis.org/A003321
https://oeis.org/A003321/b003321.txt
https://oeis.org/A003321/b003321.txt
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might want to consult L. E. Deimel, Jr. and M. T. Jones, Finding Pluper-
fect Digital Invariants: Techniques, Results and Observations, J. Recreat.
Math. 14 (1981), 97–108, in which they compute, amongst other things, the
complete list of the 88 PPDIs. They show that, provided k is not too large,
it is computationally feasible to do an exhaustive search for all PDI(k)s,
with k digits. However, there is nothing in their methods that requires the
number of digits to be the same as the exponent. Their techniques could
be extended to look for unrestricted PDI(k)s.

We finish with a problem. Either

(i) show that there exists a PDI(k) > 1 for all sufficiently large k, or

(ii) show that there are infinitely many k for which no PDI(k) > 1 exists.

Solution 288.1 – Matrix powers
Given a1, b1, c1, d1, let M be a 2× 2 matrix defined by

Mn =

[
an bn
cn dn

]
, n = 1, 2, . . . .

Show that bnc1 = b1cn for n = 1, 2, . . . .

Peter Fletcher
If

Mn =

(
an bn
cn dn

)
then clearly

M1 =

(
a1 b1

c1 d1

)
and

Mn+1 =

(
an bn
cn dn

)(
a1 b1

c1 d1

)
so that obviously Mn+1(2, 2) = cnb1 + dnd1.

We can also write

Mn+1 =

(
a1 b1

c1 d1

)(
an bn
cn dn

)
so that

Mn+1(2, 2) = c1bn + d1dn.

Therefore bnc1 = b1cn for n = 1, 2, . . ..
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Solution 288.9 – Chain
A chain of length 2C is suspended between the tops of two ver-
tical poles of height H, 0 ≤ H ≤ C and just grazes the ground
at its centre. How far apart are the poles?

A large company was and possibly still is offering H = C = 40 m,
as a test for job applicants. Presumably, mathematical skills are
irrelevant and one’s employment prospects are determined only
by how long it takes to discover that this special case is trivial.

Chris Pile

a

H

y

x0

C

P

A hanging chain takes the form of a catenary. The equation of the curve is

y = a cosh
x

a
,

where a is the value when x = 0. The length of the curve from the minimum
point to some point P = (x, y) is given by

C =

∫ x

0

√
1 +

(
dy

dt

)2

dt = a sinh
x

a
.

At ground level the top of the pole, P , is H + a above the x-axis; i.e.
a cosh(x/a) = H + a. Therefore

cosh
x

a
=

H + a

a
, sinh

x

a
=

C

a
,

and using cos2(x/a)− sinh2(x/a) = 1,(
H + a

a

)2

−
(
C

a

)2

= 1, and hence a =
C2 −H2

2H
.
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Also cosh(x/a) + sinh(x/a) = ex/a. Hence

ex/a =
H + a

a
+

C

a
=

H + C

a
+ 1.

Therefore x = a ln((H + C)/a + 1), where 2x is the distance between the
poles.

Example: The poles supporting my washing line in the garden are 7′ 6′′

high. Lowering the line until it just touches the ground in the middle, I
measured the length as 44′ 6′′. Therefore

H = 7.5, C = 22.25, a = 29.25, x = 20.52.

Therefore the distance between the poles is 2x = 41 feet plus about half an
inch. This was confirmed to be correct within the expected accuracy of the
experiment.

Problem 293.1 – Ten thousand prisoners
A large jail houses 10000 prisoners. One day the governor decides to have
some fun with them. He sets up 10000 boxes and puts the prisoners’ names
in them, one-to-one. The prisoners are gathered together. They are per-
mitted to discuss a strategy for what follows, but once the game starts
further communication is forbidden. (How the warders perform the almost
impossible task of enforcing this rule is of no concern to us here.)

The game starts. Each prisoner in turn enters the room containing the
boxes and acts as follows.

(1) He chooses a box and opens it.

(2) If his name appears, he leaves the room and the names are returned
to the same boxes ready for the next prisoner (if any).

(3) If his name does not appear, he repeats the procedure from (1), unless
it is the 9950th box he has opened in which case the game stops and
the governor orders some terrible punishment for all the prisoners.

The game comes to a quiet end with no penalty if the 10000th prisoner’s
name appears in a box that he has opened.

What strategy should the prisoners adopt, and what is the probability
of avoiding the terrible fate?
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Solution 287.4 – Two games
The two-player game PickABead uses an even number N of in-
terlocking beads, numbered 1 to N . The first player puts the
beads together in some order to form a necklace. The second
player breaks the necklace in one place, then removes a bead
from one end. The players then alternate removing beads from
an end of their choice, until there are none left. The winning
player is the one with the higher sum of bead numbers. What
strategy can the second player use to ensure that the first player
never wins?

A second game HighBead is identical to PickABead, except that
each player must always remove the end bead with the higher
number. What is the minimum N (M , say) such that, by suit-
able construction of the necklace, the first player can always win.
Is there a simple way of devising a winning construction for any
N ≥ M , ideally one that gives the highest possible winning
margin?

Roger Thompson
In M500 290, I gave a solution to the PickABead problem, but hadn’t made
much progress with HighBead. I have now found a crude, but very simple
algorithm for ensuring that the first player always wins for N > 26.

Let K = 0.8
√

(N), rounded down to the nearest integer. Construct a
necklace made up of the pairs

{N,N/2}, {N − 1, N/2− 1}, {N − 2, N/2− 2}, . . . , {N/2 + K + 1,K + 1}.

Now insert {A,A + N/2}, (A = 1, 2, . . . ,K) between these pairs, starting
at the left hand end, and approximately evenly spaced. For example, for
N = 28 (for which K = 4), this gives the necklace

1,15,28,14,27,13,2,16,26,12,25,11,24,10,3,17,23,9,22,8,4,18,21,7,20,6,19,5

with the inserts shown in bold. The highest score that the second player
can get is 197, breaking the necklace just before 24 or 10, giving the first
player a score of 209. For N > 400, the first player’s score is at least twice
the second player’s.

I have not found a way to generate a definitively optimal solution. The
following table shows the best obtained by using an evolutionary algorithm,
namely swapping pairs at random, continuing further if this produces an
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equal or lower highest score, and backtracking if no improvement appears
after many trials. The figures in brackets show the number of different break
points that give the score shown. In all cases, the best necklaces show the
same pattern as above, namely single pairs {a, b}(a < b) inserted into longer
sequences of pairs {ai, bi}(ai > bi).

N Score N Score N Score N Score

10 28(3) 12 37(8) 14 49(2) 16 61(8)
18 76(2) 20 91(8) 22 109(2) 24 127(8)
26 145(8) 28 166(2) 30 187(12) 32 210(8)
34 234(8) 36 260(12) 38 287(8) 40 315(2)
42 343(14) 44 372(4) 46 403(2) 48 435(16)
50 469(8) 52 504(14) 54 540(14) 56 576(4)
58 614(12) 60 654(10) 62 695(2) 64 737(18)
66 779(4) 68 823(4) 70 867(12) 72 913(16)
74 960(16) 76 1008(14) 78 1057(8) 80 1109(8)
82 1159(4) 84 1212(14) 86 1267(2) 88 1321(8)
90 1376(10) 92 1434(2) 94 1493(4) 96 1551(16)
98 1612(4) 100 1674(16)

Problem 293.2 – Graphs with integer eigenvalues
Tony Forbes
For i = 1, 2, . . . , define a graph Gi as follows.

Let ni = (i − 1)2 + 1. The vertices of Gi are 1, 2, . . . , ni. For the
edges, write down the pairs {a, b}, 1 ≤ a < b ≤ ni in lexicographical
order and remove the last i(i − 1)/2 items from the list. The remaining
ni(ni − 1)/2− i(i− 1)/2 pairs form the edges of Gi.

Prove that the adjacency matrix of Gi has integer eigenvalues, or find
a counter-example. For the first few, we have the following.

i ni edges eigenvalues

1 1 0 0
2 2 0 0, 0
3 5 7 3,−2,−1, 0, 0
4 10 39 8,−3,−1,−1,−1,−1,−1, 0, 0, 0
5 17 126 15,−4,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1, 0, 0, 0, 0
6 26 310 24,−5,−1 nineteen times, 0, 0, 0, 0, 0
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Solution 241.5 – Diagonal elements
Let a, b, c and d be integers. Draw up an ∞×∞ table with a,
b, c and d in the top left corner, as shown.

a c . . .
b d . . .

. . . . . . . . .

Then fill the rest of the table according to the rules: (i) if three
consecutive rows in the same column contain x, y and z in that
order, then z = x + y; (ii) if three consecutive columns in the
same row contain x, y and z in that order, then z = x + y.
Obtain a formula for the diagonal elements of the table.

In particular, if a = b = c = 0 and d = 1, you should get the
squares of the Fibonacci numbers: 0, 1, 1, 4, 9, 25, 64, 169, 441,
1156, 3025, 7921, . . . .

Peter Fletcher
Either by brute force or by using Maple, we can find the first ten diagonals
of the table as follows.

n nth term
0 a
1 d
2 a + (b + c) + d
3 a + 2(b + c) + 4d
4 4a + 6(b + c) + 9d
5 9a + 15(b + c) + 25d
6 25a + 40(b + c) + 64d
7 64a + 104(b + c) + 169d
8 169a + 273(b + c) + 441d
9 441a + 714(b + c) + 1156d

The coefficients of a may be written

1, 0, 1, 1, 22, 32, 52, 82, 132, 212,

and those of (b + c) may be written

0, 0, 1, 2, 2 · 3, 3 · 5, 5 · 8, 8 · 13, 13 · 21, 21 · 34.

The coefficients of d are the same as those of a, except that they are offset
by one place to the left and the last one is 342.
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The presence of Fibonacci numbers is clear. If F0 = 0, F1 = 1 and
Fn = Fn−1 + Fn−2 for n ≥ 2, then the first 10 Fibonacci numbers, F0 to
F9, are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34. Then clearly we can write diagonal n,
the (n + 1)th diagonal (with a being the first one, 0), for n ≥ 1, as

F 2
n−1a + Fn−1Fn(b + c) + F 2

nd.

To show that this works, the 3rd diagonal, with n = 2, is

F 2
1 a + F1F2(b + c) + F 2

2 d = a + (b + c) + d

and the 10th, with n = 9, is

F 2
8 a + F8F9(b + c) + F 2

9 = 212a + 21 · 34(b + c) + 342d

= 441a + 714(b + c) + 1156d.

If a = b = c = 0 and d = 1, then obviously we have a sequence of squares of
Fibonacci numbers: the coefficients of d are 0, 1, 1, 4, 9, 25, 64, 169, 441,
1156, . . . .

Problem 293.3 – Binomial coefficients cubed
Let Aj,k denote the coefficient of xjyk in

(
1 + y(1 + x)2(1 + xy)

)n
. Show

that

An,n =

n∑
k=0

(
n

k

)3

.

This came from a book of test papers for university scholarship candidates,
and whilst I was setting it up for M500 my eyes drifted to another problem
on the same page. It looked interesting; so I put it in M500 as Problem
293.5 on page 18.

Problem 293.4 – Triangular numbers
Let Tn = n(n + 1)/2, the nth triangular number. Show that

(Tn − Tn−1)2 = Tn + Tn−1 = n2

and hence that
∑N
n=1 n

3 = T 2
N .
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Solution 273.1 – Hair
When you visit your hairdresser within 30 days of your previous
appointment the cost is £30. Thereafter she adds a premium
of 30 d5/4 pence, where d is the number of further days you
delay your next appointment. For example, if you leave it for 42
days, the cost will be £36.70035. . . , which we assume she will
round to £36.70. Obviously, in her view the surcharge is justified
as compensation for additional work created by excessive hair
growth.

If you get your hair cut at regular finite intervals to maintain
a neat and tidy appearance at minimum cost, how often should
you go?

Peter Fletcher
The daily cost of haircuts in pence is

f(d) =
3000 + 30d5/4

30 + d

where d ≥ 0. We want to minimize f(d), which we can do by solving
f ′(d) = 0.

f ′(d) =
(30 + d) · 30 · 5

4d
1/4 −

(
3000 + 30d5/4

)
(30 + d)2

=
30

4

(
(30 + d) · 5d1/4 − 4

(
100 + d5/4

)
(30 + d)2

)

=
15

2

(
d5/4 + 150d1/4 − 400

(30 + d)2

)
.

Now f ′(d) = 0 also when

g(d) = d5/4 + 150d1/4 − 400 = 0.

We can solve this equation using Newton’s method, for which we shall need

g′(d) =
5

4
d1/4 +

150

4
d−3/4 =

5

4

(
d1/4 + 30d−3/4

)
.

Then

dn+1 = dn −
g (dn)

g′ (dn)
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and starting from d1 = 30,

d2 = 26.3659210234,

d3 = 26.4243906216,

d4 = 26.4244089016,

d5 = 26.4244089016.

The hairdresser will deal in whole days only: if we round d down and round
f to the nearest penny, we find f(26) = 85. However, we also get 85 for any
d between 20 and 35.

What this means is that the daily cost of a haircut is 85p if the interval
between haircuts is anything between 30 + 20 = 50 and 30 + 35 = 65 days.

The hairdresser would presumably not work on Sundays, so a haircut
every 56 or 63 days would satisfy the requirements of regularity and mini-
mum cost.

Solution 217.4 – n2

Where n is a positive integer, prove that (n+ 1)n−1 is divisible
by n2.

Peter Fletcher
We have

(1 + n)n =

n∑
k=0

(
n

k

)
nk.

Now since

n∑
k=1

(
n

k

)
nk =

(
n

1

)
n +

n∑
k=2

(
n

k

)
nk = n2 +

n∑
k=2

(
n

k

)
nk

is clearly divisible by n2, it follows that

(1 + n)n − 1 =

(
n

0

)
+

n∑
k=1

(
n

k

)
nk − 1 =

n∑
k=1

(
n

k

)
nk

is also divisible by n2.
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Solution 289.4 – Squares
Find all solutions in positive integers d and n of

n2 ≡ n (mod 10d).

Or, if you prefer, find all numbers which are the last d digits of
their squares.

Ted Gore
Let n2 = a10d + n, so that n(n− 1) = a10d. It’s not easy to find solutions
manually so I used a computer program to generate some solutions by find-
ing pairs n and n− 1 such that n(n− 1) is divisible by 10d. The following
tables give results for odd n and even n respectively.

d n a

1 5 2
2 25 6
3 625 390
5 90625 82128
6 890625 793212
7 2890625 835571
8 12890625 1661682

d n a

1 6 3
2 76 57
3 376 141
4 9376 8790
6 109376 11963
7 7109376 5054322
8 87109376 75880433

Example: Taking n even, for d = 7 we get n2 = 50543227109376.

Each row in the odd table can be used to generate the next row. I give
two examples.

In the row for d = 5 take the least significant digit of a and affix it to
the front of the n value. This gives the n value for d = 6.

In the row for d = 3 the least significant digit of a is a zero, so take the
last two digits and affix them to the front of the n value. This gives the n
value for d = 5.

Let k = 1 for d = 5 and 2 for d = 3. Then nd+k = (ad mod 10k)10d+nd.
A slightly more complicated result applies for even n. Thus k is set as before
and nd+k = [10k − (ad mod 10k)]10d + nd.

We need a proof that the rules will always generate another valid num-
ber. Let N be generated from n by the rules above and let a = b10k + c,
where c = a mod 10k.

Taking the odd case we have N = c10d + n so that N2 = c2102d + n2 +
2nc102. Taking n2 = (b10k + c)10d + n we arrive at

N2 = [c2102d + 2nc10d + b10d+k] + N.
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The part in square brackets has at least d + k trailing zeros which will not
effect the d + k digits of N .

For the even case, let f = 10k − c. Then N = f10d + n and after some
manipulation we get

N2 = [f2102d + 2(n− 1)f10d + (b + 1)10d+k] + N.

Once again the part in square brackets has sufficient trailing zeros to avoid
affecting the digits of N .

Solution 289.3 – Continued fractions
Prove the following continued fraction formulæ:

e + 1

e− 1
= [2; 6, 10, 14, 18, . . . ],

e2 + 1

e2 − 1
= [1; 3, 5, 7, 9, . . . ].

Is there a nice expression that has continued fraction [1; 2, 3, 4,
. . . ]?

Peter Fletcher
We have

e + 1

e− 1
≈ 2.163 953 413 739 =

2 163 953 413 739

1 000 000 000 000
.

Wikipedia (https://en.wikipedia.org/wiki/Continued_fraction)
gives a straightforward tabular method of finding continuous fractions,
which we can follow:

Step Real number Integer part Fractional part Note Reciprocal

1
2 163 953 413 739

1 000 000 000 000
2

163 953 413 739

1 000 000 000 000

1 000 000 000 000

163 953 413 739

2
1 000 000 000 000

163 953 413 739
6

99 293 556 595

1 000 000 000 000
(i)

1 000 000 000 000

99 293 556 595

3
1 000 000 000 000

99 293 556 595
10

71 146 953 461

1 000 000 000 000
(ii)

1 000 000 000 000

71 146 953 461

4
1 000 000 000 000

71 146 953 461
14

55 415 606 069

1 000 000 000 000
(iii)

1 000 000 000 000

55 415 606 069

5
1 000 000 000 000

55 415 606 069
18

45 458 146 842

1 000 000 000 000
(iv)

1 000 000 000 000

45 458 146 842

https://en.wikipedia.org/wiki/Continued_fraction
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Notes: (i)
1 000 000 000 000

163 953 413 739
= 6.099 293 556 595;

(ii)
1 000 000 000 000

99 293 556 595
= 10.071 146 953 461;

(iii)
1 000 000 000 000

71 146 953 461
= 14.055 415 606 069;

(iv)
1 000 000 000 000

55 415 606 069
= 18.045 458 146 842.

The last fraction in the above table evaluates to

1 000 000 000 000

45 458 146 842
= 21.998 257 066 566,

but per Maple,

e + 1

e− 1
= [2; 6, 10, 14, 18, 22, 26, . . . , 106, 110, 114, . . .],

suggesting that the sequence might continue ad infinitum.

Similarly,

e2 + 1

e2 − 1
≈ 1.313 035 285 499 =

1 313 035 285 499

1 000 000 000 000
.

Using the same tabular method again:

Step Real number Integer part Fractional part Note Reciprocal

1
1 313 035 285 499

1 000 000 000 000
1

313 035 285 499

1 000 000 000 000

1 000 000 000 000

313 035 285 499

2
1 000 000 000 000

313 035 285 499
3

194 528 049 469

1 000 000 000 000
(v)

1 000 000 000 000

194 528 049 469

3
1 000 000 000 000

194 528 049 469
5

140 646 825 636

1 000 000 000 000
(vi)

1 000 000 000 000

140 646 825 636

4
1 000 000 000 000

140 646 825 636
7

110 007 605 775

1 000 000 000 000
(vii)

1 000 000 000 000

110 007 605 775

5
1 000 000 000 000

110 007 605 775
9

90 280 557 922

1 000 000 000 000
(viii)

1 000 000 000 000

90 280 557 922

Notes (v)
1 000 000 000 000

313 035 285 499
= 3.194 528 049 469;



M500 293 Page 15

(vi)
1 000 000 000 000

194 528 049 469
= 5.140 646 825 636;

(vii)
1 000 000 000 000

140 646 825 636
= 7.110 007 605 775;

(viii)
1 000 000 000 000

110 007 605 775
= 9.090 280 557 922.

The last fraction in the above table evaluates to

1 000 000 000 000

90 280 557 922
= 11.076 581 968 667

and per Maple,

e2 + 1

e2 − 1
= [1; 3, 5, 7, 9, 11, 13, . . . , 53, 55, 57, . . .]

again suggesting that the sequence might continue ad infinitum.

For the continuous sum, [1; 2, 3, 4, . . .], if we start at 8 + 1/9, we find

8 +
1

9
=

73

9
; 7 +

9

73
=

520

73
; 6 +

73

520
=

3 193

520
; 5 +

520

3 193
=

16 485

3 193
;

4 +
3 193

16 485
=

69 133

16 485
; 3 +

16 485

69 133
=

223 884

69 133
; 2 +

691 33

223 884
=

516 901

223 884
;

and

1 +
223 884

516 901
=

740 785

516 901
≈ 1.433 127 426 722.

There is no obvious ‘nice’ expression which evaluates to this number, but
one website that knows otherwise is ‘The On-line Encyclopedia of Integer
Sequences’ https://oeis.org/A060997: apparently

I0(2)

I1(2)
=

∞∑
n=0

1

n!n!

∞∑
n=0

n

n!n!

=
1

[0; 1, 2, 3, . . .]
= [1; 2, 3, 4, . . .],

where Iα(x) is the modified Bessel function of the first kind, e.g. http:

//mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.

html.

https://oeis.org/A060997
http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html
http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html
http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html
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Letters

The Brachistochrone Problem
Dear Eddie,

Many thanks for M500 291. Interesting article on the Brachistochrone
Problem. Do you think that Bernoulli recognised Newton’s authorship of
the anonymous solution by his mathematical method, the style of his Latin,
or (a dead giveaway, really) the fact that the letter came from England and
there was only one man in England at that time who could have solved the
problem?

Bernoulli didn’t say ‘The lion is known by his footprint’. He said tan-
quam ex ungue leonem, ‘as if a lion [could be recognised] from its claw’.
This was not an original phrase, as it had already been used by Laevinius
Torrentius in 1587 to refer to identifying an author by his style. But it’s a
lot older than that, and Greek rather than Latin, The
lyric poet Alcaeus of Mytilene (c. 625–20 – c. 580 BC) used it to claim that
the famous Greek sculptor Phidias, on being shown a lion’s claw, could
make a statue of a lion perfectly in proportion to it.

Much later, in the early 19th century, ex ungue leonem became a catch-
phrase of the new science of comparative anatomy after Cuvier identified a
fossil found in a gypsum mine in Montmartre as an early opossum simply by
looking at its jawbone, then scraped away the gypsum to reveal two pelvic
bones peculiar to marsupials to prove his assertion.

Ralph Hancock

Jeremy,

I was a ‘B Student’ (B0xxxxxx) in 1972.

The M500 entry by Sebastian Hayes immediately reminded me of the
first experiment for the first TMA we had on S100 in which we had to
verify Galileo’s Circle Chord Theorem by rolling and timing a ball down a
flat surface. So we were rolling it down the chord of a circle, as opposed to
swinging it through the arc of a circle on the end of a pendulum.

I discovered over the years since then that very few people seem to have
heard of Galileo’s Circle Chord Theorem, which I would sum up as follows.

A weight constrained (on a pendulum) to falling down the arc
of a circle, does not keep constant time as the amplitude of the
swing changes, but a weight constrained to fall down any chord
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of a circle would keep constant time irrespective of the length of
the chord.

Unfortunately, when hitting the sharp angle at the bottom, it would lose
energy and would not roll up the other way very satisfactorily, so a long
pendulum with a relatively short swing is probably the best approximation
to a chord in a practical clock.

Colin Davies

Solution 245.4 – GCSE question
Compute

n∑
k=1

1√
k +
√
k − 1

and

n∑
k=1

(−1)k√
k −
√
k − 1

.

Peter Fletcher
The first sum is

S1 =

n∑
k=1

1√
k +
√
k − 1

=

n∑
k=1

√
k −
√
k − 1(√

k +
√
k − 1

)(√
k −
√
k − 1

)
=

n∑
k=1

(√
k −
√
k − 1

)
and similarly the second sum is

S2 =

n∑
k=1

(−1)k√
k −
√
k − 1

=

n∑
k=1

(−1)k
(√

k +
√
k − 1

)
.

Writing out the first few and last two terms in S1, we get

1− 0,
√

2− 1,
√

3−
√

2, . . . ,
√
n− 1−

√
n− 2,

√
n−
√
n− 1.

Adding these terms together, it is clear that most cancel out and we are left
with S1 =

√
n.

Doing the same with S2, we find

−1− 0,
√

2 + 1, −
√

3−
√

2, . . . , ±
√
n− 1±

√
n− 2, ∓

√
n∓
√
n− 1.

We can see that most terms cancel again, but this time the last two terms
depend on whether n is odd or even.

If n is odd, S2 = −
√
n and if n is even, S2 =

√
n.
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Solution 284.1 – Squares

Show that if a positive integer N can be expressed as N =
a2 + kb2 = c2 + kd2 with a, b, c, d, k integers, a 6= c and k ≥ 2,
then N must be composite.

Peter Fletcher

Since
a2 + kb2 = c2 + kd2

it follows that

k
(
b2 − d2

)
= c2 − a2 and k =

c2 − a2

b2 − d2
.

Therefore

N = a2 +

(
c2 − a2

b2 − d2

)
b2 =

a2
(
b2 − d2

)
+ b2

(
c2 − a2

)
b2 − d2

=
b2c2 − a2d2

b2 − d2
=

(bc− ad)(bc + ad)

(b− d)(b + d)

and N is composite.

Problem 293.5 – Equilateral triangle

An equilateral triangle is inscribed in the ellipse

b2x2 + a2y2 = a2b2.

If its vertices are at (x1, y1), (x2, y2), (x3, y3) and its centroid is at (x, y),
show that

3xy = x1y1 + x2y2 + x3y3.

This is quoted from Mathematical Problem Papers, 3rd edition, compiled
and arranged by the Rev. E. M. Radford, M.A. (Cambridge, 1923). There
is something here that I (TF) possibly don’t understand. If you choose to
submit a solution, perhaps you can explain why the ellipse is there.
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A trillion swatches
Jeremy Humphries
I was listening to an episode of ‘Behind the Scenes’ on BBC Radio 4 re-
cently (4 Dec 2019 actually), which was about the fashion industry, particu-
larly concerning the undesirable environmental and social impact of cheap,
throwaway clothes. They were interviewing a fashion designer and company
executive, Amy Powney, who resists making clothes that damage people di-
rectly (slave-like labour, etc.) or indirectly (compromising the ability of the
planet to support human life). So good for her, and may her efforts make
an impact of the desirable kind.

However, I was given pause by something she said in the interview.
“You have to go to Premiere Vision, that happens twice a year in Paris. I
can only describe it as an aeroplane hangar. And I wouldn’t even like to
guess how many swatches are in that room—it’s in the trillions.”

Can this be true? I began to wonder how much space a trillion (1012) of
something needs. I looked round the M500 office for a suitable candidate and
spotted a ream of A4 paper. That’s 500 sheets, and it’s a pack measuring
roughly 20 × 30 × 5 in centimetres. So it’s 3000 cc, which means 6 cc per
sheet. A trillion sheets is therefore 6 trillion cc. Since a cubic metre is a
million cc, we see that a trillion sheets of A4 paper will take up 6 million
cubic metres.

That would be a cube of side 182 metres, or 200 yards, packed solid.
I don’t really know what a fabric swatch in this context looks like, but I
don’t doubt that it’s more voluminous than a piece of A4 paper.

If the fabric swatch had the volume of, say, only two sheets of A4 pa-
per, which is likely an underestimate, then you could just about stack a
trillion of them—12 million cubic metres—inside the largest building in the
world. That’s the Boeing factory at Everett, Washington, which weighs in,
or rather volumes in, at a bit over 13 million cubic metres. But of course
if you wanted to give the folks space to examine the merchandise, and do
their deals, and take refreshment and so on, you would need a building the
size of many Boeing factories to facilitate that. You’d still struggle at 100
times the Boeing factory size, I reckon. And if they had such a structure in
Paris, then the Guinness World Records people would have noticed it.

We conclude therefore that while there may be a lot of fabric swatches
at Premiere Vision in Paris, Ms Powney’s guess of ‘trillions’ is more than
somewhat on the optimistic side.
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Problem 293.6 – Sums of powers of digits
Let n be a positive integer. Let nS denote the number you get by sorting
the decimal digits of n, and for positive integers n, k, define

Dk(n) =
∑

d, d runs through the digits of n

dk.

Show that for any positive integers n and k,

n = nS = (Dk(n))S if and only if Dk(Dk(n)) = Dk(n).

Or find a counter-example.

For instance, 93084S = 3489 and you can easily verify that D5(93084) =
93084. To check the claim in this particular case, we have

3489 = 3489S = (D5(3489))S,

and this is consistent with

D5(D5(3489)) = D5(3489) = 93084.

A billion kilowatts
Tony Forbes
Jeremy’s trillion swatches (page 19) reminded me to enquire a little more
closely into High Hopes, performed by Doris Day.†

The song is concerned with the activities of an ant and a ram, both
intent on causing trouble. The ant tries to relocate a rubber tree and the
ram wants to destroy a hydroelectric power station by punching a hole in
the dam. Eventually the ram is successful and, as Doris sings, Oops there
goes a billion kilowatt dam!

A billion kilowatt dam? Assuming 90 per cent efficiency, dropping

1000000000000 J

0.9× (108 m)×
(
9.81 m/s2

) ≈ 1050000 tonnes

of water through 108 meters will generate a trillion joules. For a billion
kilowatts, you would want to do that every second. Maybe you can set this
up by damming the Zambezi at the top of Victoria Falls (height 108 m) and
siting the turbines at the bottom. Unfortunately it won’t work; 1.05 mil-
lion tonnes per second is more than 960 times the river’s average flow rate
[https://en.wikipedia.org/wiki/Victoria_Falls]. Any other sugges-
tions?

†You can hear it during the credits at the end of Antz.

https://en.wikipedia.org/wiki/Victoria_Falls
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Problem 293.7 – Numbers that do not contain E
Let E(N) denote the number of positive integers n ≤ N such that n does not
have the letter E in its usual English representation. For example, E(10) = 3
(the relevant numbers being TWO, FOUR, SIX), and hopefully you will
verify that E(100) = E(1000) = 19, E(10000) = 79 and E(100000) = 399.

Compute lim infN→∞E(N)/N and lim supN→∞E(N)/N .

You can of course try this with other letters. With F, for example, there
appears to be a nice pattern: F (10) = 8, F (100) = 64, F (1000) = 512,
F (10000) = 4096 and F (100000) = 32768. And for the letter Z, the pattern
is even nicer.

Problem 293.8 – Roots
Let a, b, c, d denote the roots of the quartic x4−x3−4x2+4x+1. Determine
the quartic that has roots a2 − 2, b2 − 2, c2 − 2, d2 − 2.

Problem 293.9 – Sin 105 degrees
What (if anything) is wrong with this argument? We have

sin 45◦ =
1√
2

and sin 60◦ =

√
3

2
.

Hence

sin 105◦ = sin 45◦ + sin 60◦ =
1√
2

+

√
3

2
=

1 +
√

3

2
√

2
.

Things you can’t buy in shops – III
Following on from the lists that we printed in M500 278 and M500 289, here
are a few more useful, everyday items you might consider enquiring about
when your peaceful browsing in a shop is interrupted by an enthusiastic
salesperson:
Lavatory paper, soap, hand sanitizer, pasta, detergent, breakfast cereal, canned fish,
cough medicine, canned grapefruit, other canned fruit, Spam, corned beef, other canned meat,
aspirin, nappies, vitamin pills, bottled water, bread, butter, jam, honey, marmalade, eggs,
lemon curd, flour, peanut butter, washing powder, rice, curry sauce, pasta sauce, sunflower oil,
tomato ketchup, noodles, potatoes, ginger, raspberries, strawberries, blackberries, sausages,
organic carrots, olive oil, tomato puree, fresh pork chops, packet soup, canned soup, fresh
chicken, duck, table salt, cooking salt, antibacterial wipes, chickpeas, canned chicken curry,
lemon juice, sugar, tea, potato crisps, yeast, facial tissues, paracetamol, nuts, kitchen tissues,
baked beans, canned vegetables, a clinical thermometer, tampons, hair shampoo, mustard
powder, lavatory cleaner, long-life milk, dried beans, lentils, baby food, disinfectant, olives,
floor cleaner, diet coke, bleach, pet food, diet supplements, and last but not least, a Covid-19
antibody test kit.
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