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Getting dressed again
Robin Marks
In M500 199, ADF asks for a proof that S(a, b) = (a+ b)!/(a!b!) = S(b, a),
where S(a, b) is the number of ways of splicing a sequence of b things into
a sequence of a things.

Suppose we have b objects of type B and a objects of type A. In the
specific example given in M500 199, let {left sock, right sock, left shoe,
right shoe} be a set of type A objects. Let {bra, panties, dress} be a set
of type B objects. If we write A and B to denote the types, we can write
down each ordered sequence of the a+ b objects, for example AAAABBB,
AAABABB.

Altogether there are

(
a+ b

b

)
=

(a+ b)!

a! b!
different sequences of these

objects. Let us define a function P (a, b) as follows:

P (a, b) =


(a+ b)!

a! b!
if a, b ≥ 0,

0 otherwise.

The letter P stands for Pascal; when a ≥ 0 and b ≥ 0 the values of P (a, b)
make up Pascal’s triangle. For example the 1 at the top of the triangle is
P (0, 0).

Assuming a and b are non-negative integers, the expression (a +
b)!/(a! b!) can be broken into two parts as follows:

P (a, b) =
(a+ b)!

a! b!
= (a+ b)

(a+ b− 1))!

a! b!
= a

(a+ b− 1)!

a! b!
+ b

(a+ b− 1)!

a! b!
.

Note that the first term disappears if a = 0 and the second term disappears
if b = 0. If neither term disappears, we get

P (a, b) =
(a+ b− 1)!

(a− 1)! b!
+

(a+ b− 1))!

a! (b− 1)!
= P (a− 1, b) + P (a, b− 1).

For example, when a = 4 and b = 3 we get

P (4, 3) =
7!

4! 3!
= 35 = P (3, 3) + P (4, 2) =

6!

3! 3!
+

6!

4! 2!
= 20 + 15.

Furthermore, P (a − 1, b) and P (a, b − 1) can each in turn be decomposed
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into two parts. The process of decomposition of P (a, b) continues thus:

P (a, b) = P (a− 1, b) + P (a, b− 1)

= P (a− 2, b) + 2P (a− 1, b− 1) + P (a, b− 2)

= P (a− 3, b) + 3P (a− 2, b− 1) + 3P (a− 1, b− 2) + P (a, b− 3)

= P (a− 4, b) + 4P (a− 3, b− 1) + 6P (a− 2, b− 2)

+ 4P (a− 1, b− 3) + P (a, b− 4)

and so on. After a + b decomposition steps we will have an expression
which contains P (a−a, b− b) in one of its terms. We cannot go any further
because P (0, 0) cannot be decomposed. Note that the coefficient of each
term can easily be calculated from the negative numbers appearing inside
the brackets of the function P . For example, the coefficient of P (a−3, b−1)
is P (3, 1) = 4 and the coefficient of P (a− 2, b− 2) is P (2, 2) = 6. Hence the
equations above can be written more succinctly as

P (a, b) =

1∑
k=0

P (k, 1−k)P (a−k, b−(1−k)) =

2∑
k=0

P (k, 2−k)P (a−k, b−(2−k))

and so on. This can be written even more concisely as

P (a, b) =

m∑
k=0

P (k,m− k)P (a− k, b− (m− k)), 0 ≤ m ≤ a+ b. (1)

If we extend the summation limits of (1) a little we can get an attractive
pattern. For example when a = 4 and b = 3 we get the 4 + 3 + 1 = 8 rows
shown below; the top row is generated when m = 0, the bottom row when
m = a+ b.

0 1 0 7 0 21 1 35 0 35 0 21 0 7 0 1
0 1 0 6 1 15 1 20 0 15 0 6 0 1

0 1 1 5 2 10 1 10 0 5 0 1
1 1 3 4 3 6 1 4 0 1

1 0 4 1 6 3 4 3 1 1
1 0 5 0 10 1 10 2 5 1 1 0

1 0 6 0 15 0 20 1 15 1 6 0 1 0
1 0 7 0 21 0 35 0 35 1 21 0 7 0 1 0

Each number in bold should be multiplied by the number on its right, then
each row summed. The positive bold numbers form Pascal’s triangle. The
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positive light-faced numbers form an inverted Pascal’s triangle. From the
top row downwards we get equal sums 35, 15+20, 5+2·10+10, 1+3·4+3·6+4.

To interpret this look, for example, at the numbers on the third row,
5 + 2 · 10 + 10. The first pair of numbers is the number of ways of arranging
AA, P (2, 0), times the number of ways of arranging AABBB, P (2, 3). The
second pair of numbers is the number of ways of arranging AB, P (1, 1),
times the number of ways of arranging AAABB, P (3, 2). The third pair of
numbers is the number of ways of arranging BB, P (0, 2), times the number
of ways of arranging AAAAB, P (4, 1). If we add these up we get the total
number of sequences of any two items together with the other five items;
that is, we get the total number of sequences of all seven items.

We don’t really want those zero values. Each zero occurs when P has a
negative argument. To prevent the first argument in P (a− k, b− (m− k))
being negative, we need k ≤ a. To prevent the second argument being
negative we need k ≤ m− b. We therefore change the summation limits of
(1):

P (a, b) =

a∑
k=m−b

P (k,m− k)P (a− k, b− (m− k)), (2)

provided 0 ≤ m ≤ a + b. This is our general result. To agree with ADF’s
formula, we want the lower limit of the summation to be 1, so we need
1 = m− b; hence m = b+ 1. Substituting b+ 1 for m in (2) we get

P (a, b) =

a∑
k=1

P (k, b+ 1− k)P (a− k, k − 1)

=

a∑
k=1

(
b+ 1

k

)(
a− 1

k − 1

)
=

a∑
k=1

(
a− 1

k − 1

)(
b+ 1

k

)
.

This is the expression for S(b, a) derived by ADF. In summary, we have
shown that

S(b, a) = P (a, b) =
(a+ b)!

a! b!
.

Now we swap a and b in (1):

P (b, a) =

b∑
k=m−a

P (k,m− k)P (b− k, a− (m− k)), (3)

provided 0 ≤ m ≤ a + b. We want the lower limit of the summation to be
1, so we need 1 = m− a; hence m = a+ 1. Substituting a+ 1 for m in (3)
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we get

P (b, a) =

b∑
k=1

P (k, a+ 1− k)P (b− k, k − 1)

=

a∑
k=1

(
a+ 1

k

)(
b− 1

k − 1

)
=

a∑
k=1

(
b− 1

k − 1

)(
a+ 1

k

)
,

the expression for S(a, b) derived by ADF. This completes our task;

S(b, a) = P (a, b) =
(a+ b)!

a! b!
= P (b, a) = S(a, b),

as required.

Now let us look at original problem in which there were eight items.
Suppose we have c objects of type C, b objects of type B, and a objects
of type A. Altogether there are (a + b + c)!/(a! b! c!) different sequences of
these objects. Let us define a function P (a, b, c) as follows:

P (a, b, c) =


(a+ b+ c)!

a! b! c!
if a, b, c ≥ 0,

0 otherwise.

When a ≥ 0, b ≥ 0 and c ≥ 0, the values of P (a, b, c) make up ‘Pascal’s tetra-
hedron’. For example, the 1 at the top of the tetrahedron is P (0, 0, 0). Also,
eight levels further down at the base of the tetrahedron, we find P (4, 3, 1) =
P (4, 1, 3) = P (3, 4, 1) = P (3, 1, 4) = P (1, 4, 3) = P (1, 3, 4) = 280.

We can decompose P (a, b, c) =
(a+ b+ c)!

a! b! c!
into three parts:

P (a, b, c) =
(a+ b+ c− 1)!

(a− 1)! b! c!
+

(a+ b+ c− 1)!

a! (b− 1)! c!
+

(a+ b+ c− 1)!

a! b! (c− 1)!

= P (a− 1, b, c) + P (a, b− 1, c) + P (a, b, c− 1).

Continuing this process by decomposing each term into three parts:
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P (a, b, c) = P (a− 1, b, c) + P (a, b− 1, c) + P (a, b, c− 1)

= P (a− 2, b, c) + 2P (a− 1, b− 1, c) + P (a, b− 2, c)

+ 2P (a, b− 1, c− 1) + P (a, b, c− 2) + 2P (a− 1, b, c− 1)

= 6P (a− 1, b− 1, c− 1) + P (a− 3, b, c) + 3P (a− 2, b− 1, c)

+ 3P (a− 1, b− 2, c) + P (a, b− 3, c) + 3P (a, b− 2, c− 1)

+ 3P (a, b− 1, c− 2) + P (a, b, c− 3) + 3P (a− 1, b, c− 2)

+ 3P (a− 2, b, c− 1)

and so on for further decompositions, until we get an expression which
contains P (0, 0, 0). This is the 1 at the summit of Pascal’s pyramid, which
cannot be decomposed further.

Again the coefficient of each term can easily be calculated from the
negative numbers appearing inside the brackets of the function P . For
example, the coefficient of P (a − 1, b − 1, c − 1) is 6 = P (1, 1, 1). The
coefficient of P (a, b− 1, c− 2) is 3 = P (0, 1, 2). Hence the equations above
can be written more succinctly as

P (a, b, c) =

1∑
k=0

1∑
j=0

P (j, k, 1− j − k)P (a− j, b− k, c− (1− k))

=

2∑
k=0

2∑
j=0

P (j, k, 2− j − k)P (a− j, b− k, c− (2− k))

and so on. This can be written even more concisely as

P (a, b, c) =

m∑
k=0

m∑
j=0

P (j, k,m− j − k)P (a− j, b− k, c− (m− j − k)) (4)

for 0 ≤ m ≤ a+ b+ c.

If we alter the summation limits of (4) a little we can get an attractive
pattern. For example when a = 3, b = 2 and c = 1 we get the 3+2+1+1 = 7
horizontal groups of numbers shown on the next page; the top group is
generated when m = 0, the bottom when m = a+ b+ c.
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1

1 1
1

1 2 1
2 2

1

1 3 3 1

3 6 3
3 3

1

1 4 6 4 1

4 12 12 4

6 12 6
4 4

1

1 5 10 10 5 1

5 20 30 20 5

10 30 30 10

10 20 10
5 5

1

1 6 15 20 15 6 1

6 30 60 60 30 6

15 60 90 60 15

20 60 60 20

15 30 15
6

1

11
1

121
22

1

1331

363
33

1

14641

412124

6126
44

1

15101051

52030205

10303010

102010
55

1

1615201561

6306060306

1560906015

20606020

153015
66
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Pairs of adjacent numbers (bold on the left and light on the right)
should be multiplied, then summed in each group. If there is only a single
number rather than a pair, the unseen number is a zero. The bold numbers
form Pascal’s tetrahedron. The light numbers form an inverted Pascal’s
tetrahedron. From the top group of numbers downwards we have equal
sums 60, 10+20+30, 12+2 ·6+2 ·4+2 ·12+4, 3+3 ·3+3 ·6+6 ·3+3 ·3+3.

To interpret this look, for example, at the numbers in the fourth group,
3+3 ·3+3 ·6+6 ·3+3 ·3+3. The first pair of numbers gives the number of
ways of arranging AAA, P (3, 0, 0), times the number of ways of arranging
BBC, P (0, 2, 1). The second pair of numbers is the number of ways of
arranging AAC, P (2, 0, 1), times the number of ways of arranging ABB,
P (1, 2, 0). The third pair of numbers is the number of ways of arranging
AAB, P (2, 1, 0), times the number of ways of arranging ABC, P (1, 1, 1),
and so on. If we add these up we get the total number of sequences of any
three items together with the other three items; that is, we get the total
number of sequences of all six items.

Let us alter the summation limits in (4) so that the arguments of
P (j, k,m− j − k) are always non-negative. We need m− j − k ≥ 0; hence
m− k ≥ j. This gives

P (a, b, c) =

m∑
k=0

m−k∑
j=0

P (j, k,m− j − k)P (a− j, b− k, c− (m− j − k)), (5)

0 ≤ m ≤ a + b + c. To check this, we choose a = 4, b = 3, c = 1, as in
ADF’s example, and m = 2 for example. This gives

P (4, 3, 1) =

2∑
k=0

2−k∑
j=0

P (j, k, 2− j − k)P (4− j, 3− k, 1− (2− j − k))

= P (0, 0, 2)P (4, 3,−1) + P (1, 0, 1)P (3, 3, 0)

+ P (2, 0, 0)P (2, 3, 1) + P (0, 1, 1)P (4, 2, 0)

+ P (1, 1, 0)P (3, 2, 1) + P (0, 2, 0)P (4, 1, 1)

= 280.

This is the result found by ADF.

If we had a further group of items, we would need to define a function
P (a, b, c, d) = (a + b + c + d)!/(a! b! c! d!) for a, b, c, d ≥ 0, P (a, b, c, d) = 0
otherwise. Then P (a, b, c, d) for different values of a, b, c, d can be arranged
in a 4-dimensional ‘Pascal’s simplex’.
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Differentiation over non-commutative algebras
Dennis Morris
Let us differentiate y = x2 from first principles without assuming multi-
plicative commutativity. This expression is meaningful because, even in
non-commutative algebra, x · x = x · x;

y + δy = (x+ δx)2

= (x+ δx) · (x+ δx)

= x · x+ x · δx+ δx · x+ δx · δx
= x2 + x · δx+ δx · x+ δx · δx.

Ignoring the higher-order term, this leads to

δy = x · δx+ δx · x.

We now need to divide by δx. However, division is not defined over any
algebra. What is defined, and we call division, is multiplication by the
inverse. In our case, multiplication is not commutative, and we can either
post-multiply by the inverse of δx or we can pre-multiply by it. Let us do
both.

Post multiplication:

δy · 1

δx
= x · δx · 1

δx
+ δx · x · 1

δx
.

By the definition of inverse,

δx · 1

δx
= 1 =

1

δx
· δx,

where we use 1 to denote the multiplicative identity. So

δy · 1

δx
= x+ δx · x · 1

δx
.

Now, what δx ·x ·1/δx actually means depends upon the particular rules
of multiplication within our non-commutative algebra. For demonstration
purposes, we pick the frequently found rule: a · b = −b · a. In this case we
have

δx · x · 1

δx
= − x · δx · 1

δx
= − x,

leading to

δy · 1

δx
= x− x = 0.



M500 205 Page 9

Pre-multiplication:

1

δx
· δy =

1

δx
· x · δx+

1

δx
· δx · x.

So
1

δx
· δy =

1

δx
· x · δx+ x.

For demonstration purposes, we continue with the rule a · b = −b · a, giving

1

δx
· δy = x− x = 0.

In this demonstration case,
1

δx
·δy = δy · 1

δx
, but it need not be that way.

The multiplication rules might be more complicated (matrices for example)
or the functions might be more complicated. In the case of the quaternions,

which form a non-commutative algebra, in general
1

δx
· δy 6= δy · 1

δx
.

Problem 205.1 – Sphere in a cone

Given a finite cone of fixed height 1 m and apex angle α, a
sphere is inserted as far as possible into its open end. What is
the maximum volume of that part of the sphere which is inside
the cone?

The maximum must exist. Clearly, the volume tends to
zero as the sphere’s volume tends to either zero or infinity.
The answer may be of interest to people who eat ice-cream.

&%
'$

α

Problem 205.2 – Ants
Let k and n, 1 ≤ k < n, be a fixed integers. There are n ants,
A0, A1, . . . , An−1, situated at the vertices of a regular n-gon of side 1 m,
arranged in anticlockwise order. At time 0 the ants start walking at
speed 1 m/s, ant Ai always heading in the direction of ant Ai+k mod n,
i = 0, 1, . . . , n− 1. When do they meet?

Problem 205.3 – Reciprocals
Show that if 1 ≤ m < n, the following expression cannot be an integer:

1

m
+

1

m+ 1
+

1

m+ 2
+ · · ·+ 1

n
.
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Scepticism in mathematics
Sebastian Hayes
Dick Boardman (Letters, M500 197, p. 27) expresses surprise that I am
‘unhappy about being a sceptical non-believing mathematician’ since this is
‘an excellent thing to be’. I have found it a very inconvenient thing to be.
I have already recounted the anecdote of the Oxford mathematician who
declined to meet me socially after discovering my views on infinity and,
quite frankly, I don’t think I would have been welcome at the M500 Winter
Workshop on the transfinite if I’d raised questions of actuality.

Obviously I have no problems, social, physical or otherwise, with text-
book solutions to problems in statics which assume pulleys to be frictionless
and cords to be made of silk. Why not? Because in such cases the dis-
crepancy between the simplified mathematical model and reality is openly
avowed and is moreover quantifiable: we can work out within what sort of
limits the mathematical solution will be valid. Even here, however, there
is danger—there are plenty of people, perhaps, God forbid, even some en-
gineering students, who believe that the pull of gravity on a body only
operates at the (strictly non-existent) point we baptize the centre of mass.
(A molecule situated at this point is not subject to any greater pull from
the Earth than any other molecule composing the body.)

The situation is more serious when we come to calculus. As I have
repeatedly pointed out in this magazine calculus does not, and cannot,
faithfully represent the true state of affairs in the real world since no known
physical processes are actually continuous. But such is the prestige of cal-
culus that the implication is that it’s somehow the real world that is in the
wrong—and this of course is precisely what mathematical Platonism is frank
enough to state. I do not know how many times I have come across in books
and newspapers the ‘argument’ that ‘modern mathematics shows that it is
possible for a body to pass through an “infinite” number of positions in a
finite lapse of time.’ This is not even mathematically true: all that analysis
shows is that certain indefinitely extendable series have a finite limit.

Of course, in the bulk of modern mathematics there is no problem about
a possible discrepancy between the simplifying mathematical treatment and
the underlying reality because there simply is no underlying reality, not even
in theory. This would be quite acceptable if what we had before us really
was just a mass of ‘meaningless marks on paper manipulated according to
fixed rules’ (Hilbert): higher mathematics would then be a superior sort of
embroidery and we would at least know where we were. But in practice not
even the most outlandish branches of modern mathematics manage to get
along without numerical and geometrical notions which they subsequently
negate, trample underfoot and contemptuously cast aside. The Banach-
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Tarski two sphere theorem, for example, asserts that it is possible to dissect
a sphere in such a way that the fragments can be reassembled to form two
spheres each the size of the original one. This theorem has been proved.

The great classical figures Newton, Leibnitz, Descartes et al. were all re-
alists and were at once mathematicians, observational scientists and philoso-
phers, since the approaches of all these three are necessary if we want to
determine what’s real and what isn’t. What we need today is a mathe-
matics which is humble enough to recognize its origins in the outside world
and, conversely, a physics which dares to attack head on ‘philosophic’ issues
beyond its specific remit. The unspoken message in science courses—and
OU ones are no exception—is: ‘If the student can get out the right answers,
who cares about the underlying rationale?’ There is, it is true, a fair bit
of semi-philosophical speculation in areas such as cosmology but while the
mathematical level here is incredibly high (too high) the philosophical level
is low—I found the best-selling A Short History of Time vague, trivial and
dull. And when you do get scientists, such as David Bohm and Rupert
Sheldrake, tackling competently issues of importance they are simply ig-
nored because they are outside the mainstream and to boot not sufficiently
mathematical.

I believe some sort of ‘return to basics’ is in order. As an example
of how a feature of ‘elementary’ mathematics reaches into physics, meta-
physics and maybe even technology, take unique prime factorization. To
judge from most books on number theory this is a purely technical is-
sue of no great import outside mathematics (except perhaps for devising
codes). This is quite wrong, however—unique prime factorization is about
the most basic and important physical law we have. I have seriously won-
dered whether there could be a universe where multiple prime factorization
was the norm, or at least permissible. It would be a very strange place
indeed. It would be a world where, having a certain amount of tennis balls,
say ���������������, I put them into bins

⋃⋃⋃
with equal

quantities in each bin. I now tip the whole lot out onto the floor. In both
this world and the multiple prime factorization world I could bin up the
tennis balls differently by placing ��� tennis balls into each of

⋃⋃⋃⋃⋃
bins. But in the multiple prime factorization world I would be able to bin
up the same original mass of tennis balls using a different amount of bins
i.e. neither

⋃⋃⋃
nor

⋃⋃⋃⋃⋃
. Is this conceivable? I’m not sure. In

such a world aggregates would not have specific numerical properties such
as ‘baggableness’ fixed in advance, or not all of them would. They would
acquire these numerical properties when placed in certain numerical situa-
tions, but lose them in others, just as massive bodies behave differently on
the Earth and on the Moon.
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Alternatively, if we reject this, we have reached a pretty amazing conclu-
sion, namely that features such as unique prime factorization are invariant
throughout universes which in other respects may be quite different phys-
ically from ours, with different values for g and so on. This doesn’t make
unique prime factorization transcendent—it remains a physical law—but it
does make it far more basic than all the other physical laws we’re familiar
with, gravity, Boyle’s Law, &c., &c. No wonder Pythagoras worshipped
numbers.

Still, maybe one should take scepticism as far as this. The world around
us exhibits an astonishingly high degree of what one might call ‘numerical
rationality’, I don’t think anyone would quarrel with that. There is the in-
triguing question of where this rationality came from in the first place since
by all accounts there is no intelligent Being running the show—but let’s
leave that issue aside for the moment. What has occurred to me is that this
numerical rationality might be to some degree malleable much in the way
that the number (sic) of protons in an atom is malleable (isotopes). After
all, lots of people today view the universe as in some sense a giant computer
and it is possible to interfere with the workings of a computer. This line of
thought is worrying though: it is perhaps not wholly inconceivable that an
‘anti-rationality virus’ could be invented, inflicting chosen physical targets
with dysfunctional incoherence. It would be a very deadly sort of virus,
the numerico/rational equivalent of AIDS. At this very moment a group
of clean-shaven curly-haired Harvard number theorists are perhaps sitting
round a table discussing the development of a ‘rationality bomb’ with Don-
ald Rumsfeld and Dick Cheney. I can’t say I like the sound of that too
much.

Erratum. In my article ‘The Fibonacci series and the golden section’ [M500

201, p. 12], the passage at the bottom of the page just before the diagram should

have read ‘During month n, the ratio of the productive pairs (marked in black)

to the unproductive pairs is very nearly equal to the ratio of the total number of

pairs to the productive pairs’, and not ‘. . . is equal to . . . ’. — SH

Numerical coincidences
ADF
Is there is anything other than coincidence at work in the following assort-
ment of near-integer expressions?

exp
(
(5/2)−2/5

)
= 1.9999953 . . . 163/ log 163 = 31.9999987 . . .

log log(55)! = 10.000042 . . . log 41958! = 404666.99999918 . . .

log(21
√

10 + 82) = 4.999964 . . . π exp(−π2/214) = 2.9999938 . . .
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Solution 201.1 – Continued fraction

Show that tan θ =
2

cot
θ

2
− 2

cot
θ

4
− 2

cot
θ

8
− . . .

.

Basil Thompson
Use the tangent double-angle formula,

tan θ =
2

cot θ/2− tan θ/2
,

recursively expanding the expression tan(θ/2n) in the denominator.

This is an interesting continued fraction. It can be terminated at any n
by replacing the nth denominator with cot(θ/2n)−tan(θ/2n), or it can con-
tinue to infinity. There are an infinite number of finite continued fractions
and one infinite continued fraction. Unique? Well, no. We also have

sin θ =
2 tan θ/2

1 + tan2 θ/2
, tanh θ =

2 tanh θ/2

1 + tanh2 θ/2
and sinh θ =

2 tanh θ/2

1− tanh2 θ/2
,

which can be expressed as continued fractions in the same way as tan θ. But
cos θ and cosh θ are not so easy. Thus

cos θ =
cot θ/2

cot θ/2 + tan θ/2
− tan θ/2

cot θ/2 + tan θ/2
,

cosh θ =
coth θ/2

coth θ/2− tanh θ/2
+

tanh θ/2

coth θ/2− tanh θ/2

and the denominators are expanded as previously.

ADF — We also had contributions from Jim James, Sebastian Hayes,
Peter Fletcher, David Porter, John Spencer and John Bull. However, Sebas-
tian thinks that we have all brushed aside the difficult part. What happens
at odd multiples of 1

2π? Bearing in mind that tan θ → ±∞ as θ tends to
an odd multiple of 1

2π from below or above, is it obvious that the continued
fraction behaves in the same way? Observe, for example, that if you put
θ = 25

2 π and calculate the first few convergents, you get approximately

−2,−0.34314, 1.71106,−0.15411,−1.67990,−0.32063, 0.92187, 11.547,

427.87, 67757, 43958814, 114711068940, 1198977341053386, . . . .
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Solution 201.2 – Sine series
Prove that

θ = (sin θ)(cos θ) +

∞∑
n=1

2n sin
θ

2n−1
sin2 θ

2n
.

Jim James
For all α, β ∈ R,

sinα sin2 β =
sinα(1− cos 2β)

2
=

2 sinα− sin(α− 2β)− sin(α+ 2β)

4
.

So when α = θ/2n−1, β = θ/2n, we have

∞∑
n=1

2n sin
θ

2n−1
sin2 θ

2n
=

∞∑
n=1

2n

4

(
2 sin

θ

2n−1
− sin

θ

2n−2

)

=

∞∑
n=1

(
2n−1 sin

θ

2n−1
− 2n−2 sin

θ

2n−2

)
.

The first few terms of this summation are as follows:

n = 1: sin θ − (sin 2θ)/2
n = 2: 2 sin(θ/2) − sin θ
n = 3: 4 sin(θ/4) − 2 sin(θ/2)
n = 4: 8 sin(θ/8) − 4 sin(θ/4) etc.

The right-hand side of the given expression then reduces to

sin θ cos θ + lim
n→∞

(
2n−1 sin

θ

2n−1

)
− sin 2θ

2
= lim

n→∞
2n−1 sin

θ

2n−1

= θ lim
n→∞

2n−1

θ
sin

θ

2n−1

= θ,

as required.

Solved in a similar manner by Basil Thompson, Steve Moon, David
Porter and John Bull.
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The incompleteness of the hyperbolic Euler relations
and the completion thereof

Dennis Morris
The Euler relations for the hyperbolic trigonometric functions are usually
given as

coshχ =
eχ + e−χ

2
, sinhχ =

eχ − e−χ

2
.

We consider

er̂χ = 1 + r̂χ+
r̂2χ2

2!
+
r̂3χ3

3!
+ . . . ,

where r̂ =
√

+1 6= ±1. This leads to er̂χ = coshχ+ r̂ sinhχ. Similarly,

e−r̂χ = 1− r̂χ+
r̂2χ2

2!
− r̂3χ3

3!
+ . . .

leads to e−r̂χ = coshχ− r̂ sinhχ. Combining these results gives

coshχ =
er̂χ + e−r̂χ

2
, sinhχ =

er̂χ − e−r̂χ

2
.

In the case that we allow r̂ =
√

+1 = ±1, these reduce to the usually given
versions.

Marks
ADF
Browsing through old M500s, as I often do, I notice that one can easily
extend the marking scheme described by Ron Potkin in M500 194, p. 28.
This where a maths teacher gives her students an exam with 100 true-or-
false questions; Arthur gets 100 correct, Ford gets 50 correct, Marvin gets
100 wrong. But the teacher awards full marks to Marvin as well as Arthur,
and 0 to Ford (who obviously guessed).

The generalization is clear. Award +1 for each correct answer and −1
for each incorrect answer. Then take the absolute value of their sum.

Assuming the examination consists of questions with true/false answers,
candidates who rely on pure guesswork and candidates who know most of
the answers get treated appropriately. But the scheme also automatically
rewards those persons who, as I did once, ignore the clear instructions to
indicate the correct options, and mark what they perceive to be the wrong
answers instead. Isn’t this fair?
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Solution 202.5 – Interesting equality
Find interesting equalities like(

1 +
1

7

)(
1 +

1

11

)(
1 +

1

19

)
=

4

3

√(
1− 1

72

)(
1− 1

112

)(
1− 1

192

)
.

Ian Adamson
The right-hand side of the equality is some rational fraction (greater than
unity) multiplied by a rational square root; so the problem is necessarily
and sufficiently that of finding products of the form (x2 − 1)(y2 − 1) . . .
which are integer squares.

Clearly and trivially x = y is a solution; so let us seek x < y < z < . . . .

One way of finding a few solutions is to list m2 − 1 for m > 1 and note
its prime divisors, writing [q1, q2, . . . ], where qi ≡ ai (mod 2), m2 − 1 is
some product of the form pa11 p

a2
2 . . . and pn is the nth prime. It is thus

straightforward to find pairs, triads, etc. by inspection: seeing that every
column totals a multiple of 2.

For example, 62 − 1 = [0, 0, 1, 1], 82 − 1 = [0, 0, 0, 1], 92 − 1 = [0, 0, 1];
so (6, 8, 9) is a solution. Once we have two solutions we find a larger from
their union and intersection.

Some solutions are (2, 7), (3, 17), (2, 3, 5), (2, 4, 9), (6, 8, 9), (2, 3, 4, 9, 17)
and (2, 3, 5, 6, 8, 9). I have made no attempt to find them all.

ADF
Also we received this from Mick Bromilow:

Try 3 and 17 with the factor 3/2; or 5, 7 and 17 with a factor,
again, 3/2. I suspect there are many.

In fact, a simple computer search reveals similar equalities in great
abundance—far too many to maintain a high level of interest. Thus it ap-
pears that Mick is suspiciously correct; so we shall now make the problem
more difficult.

As Ken Greatrix suggests (page 22), rearrange the original equality
to get (

7 + 1

7− 1

)(
11 + 1

11− 1

)(
19 + 1

19− 1

)
=

(
4

3

)2

.
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Now generalize to(
p1 + 1

p1 − 1

)(
p2 + 1

p2 − 1

)
. . .

(
pn + 1

pn − 1

)
= αk, (1)

where p1, p2, . . . , pn are distinct primes, α is a rational number and k is an
integer greater than 1. Defining

P(S) =

n∏
p∈S

(
p+ 1

p− 1

)
,

we can write (1) more succinctly as

P({p1, p2, . . . , pn}) = αk.

For instance, with ten primes and k = 9 we have this expression:

P({3, 7, 13, 19, 31, 41, 97, 199, 769, 4801}) =

(
7

6

)9

.

We ask: Is it possible to find a more interesting equality either by
increasing the exponent or by reducing the number of primes?

Big Bang by Simon Singh (Fourth Estate)

Eddie Kent
You will know that Simon Singh wrote Fermat’s Last Theorem and The Code
Book, both best sellers. On each occasion he came to Aston University to
talk to us about the book, and incidentally to sell copies of it.

He has now written Big Bang, and very generously agreed to come again.
Big Bang is on sale at the moment at £20, but a paperback published by
Harper Perennial at around £8 is due out. In any case Simon will be bringing
some copies to Aston for those who can wait till September.

I shall be writing a review of Big Bang soon, but at the moment I am
only a few of the 532 pages in (with glossary, bibliography and index). I
can tell you that he starts with a few creation myths, then quickly gets on
to the scientific method, in the course of which he tells you how to measure
the distance to the moon from your back garden.

Every concept is explained simply and clearly, as is to be expected from
Simon. He is a most excellent communicator. I sincerely urge that however
you go about it, you must not go to your grave without owning a copy of
Big Bang; The Most Important Discovery of All Time and Why You Need
to Know About it. Because you do.
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196 revisited
Tony Forbes
Recall that problem where you start with a positive integer p, reverse its
digits (in base 10) to get q, replace p with p + q, and repeat the process,
stopping as soon as you reach a palindrome. For example, 155→ 155+551 =
706 → 1313 → 4444. Does the process always terminate? A possible
counter-example is p = 196 [M500 184, p. 9].

Anyway, I thought it would be interesting (even if others might disagree
[M500 184, p. 29]) to find large palindromes generated from small numbers.
So here is a short list. Since the probability of a randomly chosen 2n- or
(2n + 1)-digit number being a palindrome is 10−n, I am puzzled by the
great abundance of these things when n ≥ 29. Perhaps the mechanics of
the algorithm explains why.

palindrome start p steps

12255565428923632982456555221 1007393 53
17799249759963236995794299771 1903598 50
17845459878403630487895454871 10103975 48
38679663242684448624236697683 10049507 48
71466863998170607189936866417 1005351 53
88893202367475057476320239888 10801962 49

367799789656565565656987997763 10059868 52
498477367689884488986763774894 10089190 64
568725498585487784585894527865 10405948 53

1353155379587366637859735513531 1048955 63
1553203524599124219954253023551 10079918 54
6644122189497552557949812214466 10019261 55
8834453324841674761484233544388 147996 58

14758724578598888889587542785741 1003569 65
15521561387579888897578316512551 1998999 75
18966336852467966976425863366981 1007953 60
89188006744991277219944760088198 1010968 58

116722569855118949811558965227611 1006086 60
682049569465550121055564965940286 150296 64

46563056797844547874544879765036564 1008595 69
68875656879708979697980797865657886 10305983 66

14674443960143265333356234106934447641 1007601 80
35695487976778433588533487767978459653 10905963 71
68586378655656964999946965655687368586 7008899 82

796589884324966945646549669423488985697 1000689 78
555458774083726674580862268085476627380477854555 9008299 96
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Higher and higher mathematics
Bob Newman
I remember reading in an undergraduate mathematical magazine called
Eureka an article, purportedly reprinted from the Proceedings of the Lao-
tian Philosophical Society, which proved many remarkable things, taking
as its starting point the ‘well-known result’ that ‘any quasitropic hedroid
is diatonically sub-similar to itself.’ Many earnest students read it all the
way through without giving the slightest sign of either incomprehension or
amusement. The article was, of course, complete gobbledygook from begin-
ning to end, as is this poem.

This result’s a real beauty, far too picturesque for prose.
I can put it in plain English—leave your text books on the shelf.

It’s a theorem of importance greater than you might suppose:
Any quasitropic hedroid is sub-similar to itself.

There’s an Element of Euclid’s that was ranked quite unimportant
Till the great Jacobi thought a new condition to impose.

If you find this unexciting, I assure you that you oughtn’t—
This result’s a real beauty, far too picturesque for prose.

It was Gauss who christened hedroids, and defined their permutations,
Proved them stunted but well-ordered—as I later did myself.

Tarted up Jacobi’s theory by diffracting both equations.
I can put it in plain English—leave your text books on the shelf.

Then MacLaurin squared the matrices and saw what they would yield.
How he thought of splining transcendental subgroups, heaven knows!

But he proved that every couple has its moment in a field.
It’s a theorem of importance greater than you might suppose.

You see, Euclid’s epimorphism’s a set of measure zero,
Both imaginary and real, though this may harm your mental health!

Whence this wonderful result of Lobachevski—he’s my hero—
Any quasitropic hedroid is sub-similar to itself.

It’s an epoch-making breakthrough; it’s the new Pons Asinorum.
Of ingenious applications you will find there is a wealth.

Here’s a sure-fire opening line for any scientific forum:
‘Any quasitropic hedroid is sub-similar to itself !’
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Under the skin
Colin Davies
My article ‘Under the skin’ in M500 197 drew a number of comments from
M500 readers, but since then an article has appeared in the magazine Nature
[1]. The questions I originally posed were as follows.

(1) If you take two British resident people at random (but exclude obvious
relatives and recent immigrants), how far back in time would you have
to go to be 99 percent certain that they have a common ancestor?

(2) If you are of apparent British ancestry, what is the probability of
having any particular historical person as an ancestor?

(3) How closely is any particular person in Britain likely to be related to
anybody else? (But again excluding close relatives and recent immi-
grants.)

The principal question posed by the Nature article is a variation of (1)
and (2) above. To paraphrase it, they ask: ‘In a population size n, how
many generations back do you find the Most Recent Common Ancestor
(MRCA) of everybody alive today?’

The authors give no mathematical argument in answering this, but sim-
ply state that: ‘For a population size n, assuming random mating, proba-
bilistic analysis [2] has proved that the number of generations back to the
MRCA, Tn, has a distribution that is sharply concentrated around log2 n.’
They then go on to show that if n is the population size and Tn is the
number of generations to MRCA, Tn/ log2 n approaches 1 as n approaches
infinity. From which it follows that in a population of 1 million, the MRCA
would have lived about 20 generations ago (presumably because log2 of 1
million is about 20.)

As the number of one’s ancestors doubles every generation back, this
result does look highly plausible. Using my population table from M500
197, the population of Britain around 20 generations ago was around 3
million, which suggests that our MRCA lived 21 or 22 generations ago,
around 1350. One would expect the most recent CA to live later than a
randomly selected historical person chosen as a CA. This is what I did in
my Q2 result, which shows that one needs to go back about 24 generations
to find near certainty for such a person to be a CA.

This is supported by the Nature article, which then goes on to point out
that ‘as genealogical ancestry is traced back beyond the MRCA, a growing
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percentage of people in earlier generations are revealed to be CAs of the
present-day population.’ ‘Tracing back further, there was a threshold Un
generations ago before which ancestry of the present-day population was an
all or nothing affair. That is, each individual living at least Un generations
ago was either a CA of all today’s humans, or an ancestor of no human alive
today.’ They call that time the IA point.

The authors then infer that Un/(1.77 log2 n) approaches 1 as n ap-
proaches infinity. They do not explain how the figure 1.77 has been derived,
but give reference [2] again.

The bulk of the paper goes on to explain how, by using graph theory
and computer simulations to explore probable human migration over the last
few thousand years, they have calculated the date of the MRCA and the
IA point for everyone alive today. ‘With 5 percent of individuals migrating
out of their home towns, 0.05 percent migrating out of their home country,
the simulations produce a mean MRCA date of 1,415 BC, and an IA date
of 5,353 BC.’ But the authors think that the above assumptions are too
conservative, and have tried the effect of a simulation based on what they
regard as a more plausible set of assumptions. These give results suggesting
a world MRCA date of 55 AD, and an IA date of 2158 BC. They end
their paper: ‘Our findings suggest a remarkable proposition: no matter
the languages we speak or the colour of our skin, we share ancestors who
planted rice on the banks of the Yangtze, who first domesticated horses
on the steppes of the Ukraine, who hunted giant sloths in the forests of
North and South America, and who laboured to build the Great Pyramid
of Khufu.’

[1] Douglas L. T. Rohde, Steve Olsen and Joseph T. Chang, Modelling
the recent common ancestry of all living humans, Nature 431 (30 September
2004),

[2] J. T. Chang, Recent common ancestors of all present-day individuals,
Adv. Appl. Probab. 31 (1999), 1002-1026, 1027-1038.

Answers to What’s next? (i) 1, 2, 3, 4, 5, . . . ; (ii) 1, 3, 5, 7, 9, . . . ; (iii)
192, 384, 768, 1536, 3072, . . . ; (iv) 25, 28, 31, 34, 37, . . . ; (v) 107624,
109573, 132485, 138624, 159406, . . . ; (vi) 60, 61, 67, 71, 73, . . . ; (vii) 88,
142, 228, 367, 590, . . . . Source: Neil Sloane’s On-Line Encyclopedia of
Integer Sequences at www.research.att.com/∼njas/sequences.
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Letters to the Editor

M500 202
Tony,

Here are some comments concerning issue 202

202.2 – Five spheres. Take the five Platonic solids and place a sphere
at each vertex of such radius that these spheres are touching (the radius
of these spheres would be half the length of an edge). The radius of the
circumscribed sphere is available as an ‘off-the-shelf’ calculation, so subtract
half the length of an edge from this radius to give the radius of the enclosed
sphere. Then compare this with unity.

If I might correct Colin Davies (page 17). It’s not exactly a West Indian
song—it was performed by Lance Percival, who also had a hit with Gossip
Calypso sometime in the early 60s. The story is about a young man who
asks his father’s advice about marriage and is told, ‘That girl is your sister
but your mama don’t know’ (on several occasions!). In the end he asks his
mother . . . .

An Elliptic gardening problem (Donald Preece, page 24). It would seem
that the ellipse could be extended symmetrically along each of its axes, and
then the new ellipse completed by guesswork. If you then avoid inviting
mathematicians for tea on the terrace, I’m sure no one would notice.

202.4 – Commas and brackets. (i) If n > 0, then the number of commas
is 2n−1 − 1; (ii) For n ≥ 0, the number of brackets is 2n+1. I worked this
out long-hand, and offer these results without an actual proof—which I am
sure would follow easily.

202.5 – Interesting equality. Take three integers (possibly primes) p, q,
r. By noting that the RHS contains the ‘difference of two squares’, The
given relationship can be transposed and then reduced to

(p+ 1)(q + 1)(r + 1)

(p− 1)(q − 1)(r − 1)
=

A

B
,

where A, B are squares of integers. I have found that (p, q, r) = (3, 5, 7)
gives A = 4, B = 1.

Regards,

Ken Greatrix
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Dates
28 August 888 was the last date expressible entirely with even numbers until
2 February 2000. Or, to put it another way, all the dates in between used
an odd number somewhere.

John Reade

ADF writes — After thinking about it for a length of time I am too
embarrassed to own up to, I concluded that they use digits which read the
same upside down on a calculator using the traditional seven-bar display (1
doesn’t count because it flips to the other side). Therefore a third and more
precise answer is that they consist of only calculator-invertible even digits.

Health and safety
Dear Eddie and Tony,

I admire the new health warnings about the dangers of matches, knives
and polluted doughnuts. However, I think there should also have been a
warning about little bits of string (Problem 203.6), citing that well known
study, Belloc, H., Cautionary Tales, London 1896, pp 17–20. Not to men-
tion injuries caused by bouncing snooker balls (Problems 200.5, 203.7) — my
uncle lost all his front teeth playing a game called billiard fives. As for cut-
ting sheet metal into a heptagon (Problem 203.5), where one is exposed to
the hideous dangers of sharp-pointed dividers, finger-crushing vices, lethally
fanged hacksaws and horribly abrasive files, words fail me. Please also note
that before inverting a cup, one should call a safety officer to certify that it
is not full of burning petrol; and octonions should never, never be used in
cooking.

Best wishes,

Ralph Hancock

Problem 205.4 – abc
For integers n, a and b, define

q(n) =
∏
p|n

p prime

p and L(a, b) =
log(a+ b)

log q(ab(a+ b))
.

For example, q(96) = 6 and L(96, 29) = log(125)/ log(2 · 3 · 5 · 29) ≈ 0.713.

Find triples of positive integers (a, b, c) for which c = a+b, gcd(a, b) = 1,
and L(a, b) is as large as possible. Note that without the gcd condition the
task is trivial; for instance, L(2k, 2k) = k + 1.
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What is the next number?
Eddie Kent
This is a problem that keeps surfacing and ought to be laid to rest. In M500
193 (August 2003) Sheldon Attridge mentioned that Wittgenstein poured
scorn on the concept of there being a right answer to the question in the
title or, indeed, to any question. And now in M500 203 Chris Jones asks,
What’s next?

While not being prepared to hunt for sources, I do recollect the example
used in this field by Polya, possibly following Wittgenstein. Find the next
number in the sequence 1, 2, 4, 8, 16, . . . . The answer Polya gave is 31;
something to do with joining dots placed on the circumference of a circle.
But it can be shown that a satisfactory answer is 19.

How would you go about solving a problem of this kind? Suppose you
are given 1, 2, 3, 4, . . . and asked to find the next number. One way might
be to plot them on a graph, letting n be the point (n, n) in the (x, y)-plane.
Clearly the points fall on a straight line so it is logical to continue this line.
Then an easy extrapolation takes you to number 5, which you can call ‘the
next number’. Try some more: 2, 4, 6, 8, . . . leads to 10; −1, −3, −5, −7,
. . . well, you can do that. The method seems to work!

However, let the sequence be 1, 2, 4, 8, 16, . . . . Plotting these on
the graph does not produce a straight line, frustratingly; but you might
realize that taking the base-2 logarithms of the numbers, that is, log2 1 = 0,
log2 2 = 1, log2 4 = 2, log2 8 = 3 and log2 16 = 4, does give numbers in a
straight line. Another easy extrapolation furnishes the number 5 and the
simple calculation 25 produces 32.

But now consider the polynomial

1 +
7

12
x+

11

24
x2 − 1

12
x3 +

1

24
x4.

Evaluate this at x = 0 and 1 + 0 + 0 + 0 + 0 = 1. For x = 1 we get
1 + 7/12 + 11/24− 1/12 + 1/24 = 2. I leave the rest of the calculations for
the interested reader who will find that the sequence produced is thus: 1,
2, 4, 8, 16, 31.

Now 31 is not 32, and since we are looking for the ‘correct’ answer
we have to decide which of the two to accept. Both are good, and follow
from correct mathematics. They are both entirely logical. But for the first,
one has to rely on the unlikely chance of stumbling on a method using
logarithms. Whereas the second is simple and easy to use, and is obtained
by a much more general method.
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However, whatever answer suits our own personal preference, the fact
remains that we have illustrated an important point. There is no ‘correct
answer’, and so Wittgenstein (if it was he) was correct. Since unique cor-
rectness does not apply we might as well pick any number, so long as it can
be justified.

Briefly, here is how it works. You are given p, q, r, . . . and have to find
the next number. Pick your favourite, say 19. Then your sequence is p, q,
r, 19 and you need to validate this. Write down the polynomial

f(x) = ax3 + bx2 + cx+ d

and evaluate it successively at the integers. Then

f(0) = d = p,

f(1) = a+ b+ c+ d = q,

f(2) = 8a+ 4b+ 2c+ d = r,

f(3) = 27a+ 9b+ 3c+ d = 19.

A neat little set of simultaneous equations. All you need to do is solve
them to find values for a, b, c and d and your selection of 19 is completely
vindicated.

Anyone who has wasted time on linear algebra should be able to do the
same thing with very little effort, using successive differences. You merely
need to know that the nth set of differences for an (n− 1)th-degree polyno-
mial are all zero. From here it is all downhill; the essence of mathematics.

ADF — Inspired by the Polya sequence mentioned above, I offer the fol-
lowing. What’s next? (Answers elsewhere in the magazine.)

(i) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, . . .

(ii) 2, 4, 6, 8, 10, 12, 14, 16, 18, . . .

(iii) 1, 2, 4, 8, 16, 32, 64, 128, . . .

(iv) 3, 6, 9, 12, 15, 18, 21, . . .

(v) 1, 10, 100, 1000, 10000, 100000, . . .

(vi) 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, . . .

(vii) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

Hints: (i) the smallest number of terms to represent n as a sum of fourth
powers; (ii) the sum of the (decimal) digits of n plus the product of the digits of
n; (iii) the number of subsets of {1, 2, . . . , n} containing exactly one square; (iv)
bnπc; (v) n and n3 have the same digits; (vi) simple groups; (vii) breeding pairs
of mortal rabbits; s(n) = s(n− 1) + s(n− 2)− s(n− 10).
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