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Solution 290.2 – Horn
This thing appeared on the front cover of M500 21 . . .

. . . accompanied by its defining formula,

64(z2 + y2) + x4 − 16zx2 + 4x2 − 256 = 0.

What’s its volume?

Ted Gore
We have

64(z2 + y2) + x4 − 16zx2 + 4x2 − 256 = 0

⇒ 64

(
z − x2

8

)2

+ 64y2 = 256− 4x2

⇒
(
z − x2

8

)2

+ y2 =
64− x2

16
.

This is the equation of an ellipse which is a section through the horn at x.

The semi-major and semi-minor axes are both

√
64− x2

4
so that the

area of the ellipse is
π(64− x2)

16
. The area becomes zero when x = 8 so that

the volume of half the horn is

π

16

∫ 8

0

(64− x2) dx =
64π

3

and the volume of the horn is
128π

3
≈ 134.04.
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A rational approach to teaching irrationality

Ben Mestel

Back in those halcyon days when I was still a young and enthusiastic math-
ematics lecturer, I taught level-1 classes in the foundations of mathematics.
I don’t mean Zermelo–Fraenkel set theory, the axiom of choice and all that
jazz, but rather the standard introduction to pure mathematics: integers,
rational, real and complex numbers, sets and relations, types of proof etc.
And one of the first things we covered was the irrationality of

√
2, the

positive square root of 2.

This proof (by contradiction) is quite well known. Suppose, for a con-
tradiction, that

√
2 is rational. Then there are integers r, s > 0 with no

common factors greater than 1 (because we divide them all out), such that
r/s =

√
2. Then r2 = 2s2 and r2 is even. But that means that r must be

even because the square of an odd number is odd. So we can write r = 2t,
where t is a positive integer. Then 4t2 = r2 = 2s2 so, dividing by 2, we get
s2 = 2t2 and s2 is even and so again s must be even and so has a factor
2. Hence we conclude that r and s have a common factor 2, which is a
contradiction because r and s have no common factors greater than 1 by
assumption.

For a budding mathematician, fresh at university, this isn’t the easiest
argument to understand, as became obvious when we received the solutions
to the first exercise sheet, in which students were asked to prove the irra-
tionality of

√
3. A few students started their proofs as follows: Suppose, for

a contradiction, that
√

3 is rational. Then there are integers r, s > 0 with r
and s, with no common factors greater than 1, such that r/s =

√
3. Then

r2 = 3s2 and so r2 is odd . . . Ouch !

Of course, if all we want to do is find an example of an irrational num-
ber, then a much better choice is the positive number log2 3. Because if
this is rational, then log2 3 = r/s for positive integers r and s, then, by
definition, 3 = 2log2 3 = 2r/s so that 3s = 2r, which is impossible for sev-
eral reasons, the most obvious being that 3 divides the left-hand side but
doesn’t divide the right-hand side. More generally, we can consider logm n.
Indeed, rationality of logm n is readily seen to be equivalent to the condition
mr = ns for positive integers r and s, so a necessary (but, of course, not
sufficient) condition for rationality is that m and n have a common set of
prime divisors.

Returning to
√

2, I was convinced then, and am still now, that the so-
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lution to the student misconception was not to prove that
√

2 is irrational,
but instead to prove the more general result that, as we shall explain below,
any rational algebraic integer is necessarily an integer. From this result we
can show, in one fell swoop, that

√
2,
√

3,
√

5,
√

6, . . . are all irrational (but
happily not

√
4), and so demonstrate the power of generalization. Regret-

tably, I was unable to persuade my colleagues, even though several of them
were researchers in algebraic number theory.

So, how does it go?

An algebraic number is a number x, real or complex, that is a root of a
polynomial with integer coefficients, that is,

akx
k + ak−1x

k−1 + · · ·+ a1x+ a0 = 0, (1)

where the degree k ≥ 1 and ak, ak−1, . . . , a0 are all integers. Examples of
algebraic numbers are integers, rational numbers, surds such as

√
2, i, roots

of unity, but not transcendental numbers such as π and e. Now an algebraic
number x is an algebraic integer if it is the root of a monic polynomial, that
is one for which ak = 1, so that

xk + ak−1x
k−1 + · · ·+ a1x+ a0 = 0. (2)

It is important to note that ak−1, ak−2, . . . , a0 must be integers, not rational
numbers.

Examples of algebraic integers are any ordinary integer, i =
√
−1 and,

more generally the Gaussian integers {m + in : m,n ∈ Z}. To see this,
consider the Gaussian integer z = m + in. Then z satisfies the quadratic
equation

z2 − 2mz + (m2 + n2) = 0, (3)

as some straightforward algebra will show. This is equation (2) with k = 2,
a1 = −2m and a0 = m2 + n2, both of which are integers, because m and
n are. Other examples of algebraic integers are

√
2 and, surprisingly, the

golden ratio (
√

5 + 1)/2 (it is a root of the monic polynomial x2 − x − 1).
However, neither 1/2 nor

√
5/2 are algebraic integers, as can be proved with

a bit of work.1

So, what is the result that I wanted my colleagues to present to our
level-1 students?

1To show that a number is not an algebraic integer we have to show that it is not
the zero of any monic polynomial with integer coefficients. Since there are (countably)
infinitely many of them, we can’t check them all, but nevertheless it can be shown (using
Theorem 1 and its corollaries) that neither 1/2 nor

√
5/2 is an algebraic integer although

both are algebraic numbers.
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Theorem 1 Every rational algebraic integer is an integer.

This theorem is simple to state but is quite profound. It says that any
algebraic integer that is also a rational number must also be an integer,
so that, for example, 1/2 is not an algebraic integer although it is a ratio-
nal number and hence an algebraic number. The theorem is not a priori
obvious, because, as we have remarked, numbers such as (

√
5 + 1)/2 are

algebraic integers even though
√

5/2 and 1/2 are not.

The proof of the theorem is conceptually no harder than the proof that√
2 is irrational, although it is more involved. It goes like this.

Proof Let x be an algebraic integer which is also a rational number. Then
we may find integers r and s with no common factors such that s ≥ 1 and
x = r/s. To show that x is an integer, we need to show that s = 1. So,
to obtain a contradiction, we suppose that s > 1. Now, being an algebraic
integer, x satisfies a monic polynomial equation

xk + ak−1x
k−1 + · · ·+ a1x+ a0 = 0, (4)

where k ≥ 1 and each coefficient ak−1, . . . , a0 is an integer. Note that the
coefficient of xk is 1 since x is an algebraic integer. Substituting x = r/s, it
follows that (r

s

)k
+ ak−1

(r
s

)k−1
+ · · ·+ a1

(r
s

)
+ a0 = 0, (5)

so, clearing fractions by multiplying by sk, we have the integer equation

rk + ak−1r
k−1s+ · · ·+ a1rs

k−1 + a0s
k = 0, (6)

which, on rearranging, gives

rk = − ak−1rk−1s− · · · − a1rsk−1 − a0sk. (7)

Now, we are assuming the integer s is greater than 1, so s has at least
one prime factor p > 1. Then p divides s and hence every positive power of
s. Then from equation (7), we see that p divides the right-hand side of the
equation because p divides every term on the right-hand side. Hence p also
divides the left-hand side of the equation and so p divides rk. Because p is
a prime number, we conclude that p divides r. But that means the prime
p > 1 divides both r and s, which is impossible because r and s have no
common factors greater than 1. From this contradiction, we deduce that
s = 1 and so x = r/s = r, an integer. �
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As an immediate corollary we can prove that all square roots of integers
that are not integers themselves are irrational.

Corollary 1 Let m be a positive integer that is not a perfect square and let
x be a square root of m, i.e., x2 = m. Then x is irrational.

Proof Suppose x is a rational number. Then, since x satisfies the equation
x2 −m = 0, x is an algebraic integer. From Theorem 1, we deduce that x
is an integer. But since m = x2 we then have m a perfect square, which is
a contradiction. We deduce that x is not a rational number. �

Corollary 2 Let n > 1 be a positive integer and let m be a positive integer
that is not a perfect nth power, and let x be a real nth root of m, i.e.,
xn = m. Then x is irrational.

We leave the proof as an exercise for the reader.

The beauty of Theorem 1 is that it reduces the irrationality question to
the solution of Diophantine (i.e. integer) equations in number theory. And,
as we know, there are many number-theoretic problems that are simple to
state but are hard to solve.

One example is Brocard’s problem, which is to find positive integers m
and n which satisfy the equation m2 = n! + 1. At the time of writing, there
are only three known solutions, namely (m,n) = (5, 4), (11, 5) and (71, 7),
and it is believed there are no others. So the problem of finding all positive
integers n for which

√
n! + 1 is rational is still open.

On the other hand, this third corollary is established:

Corollary 3 Let n > 2 be a positive integer, let y and z be positive integers,
and let x be a real nth root of yn + zn. Then x is irrational.

Wiles-ing away my time happily when I should have been doing other work,
I have discovered a truly marvellous proof of this, which the margin on this
page is too narrow to contain.

Problem 294.1 – Quartic
Show that tan2(πt/16), t = 1, 3, 5, 7, are the roots of

x4 − 28x3 + 70x2 − 28x+ 1 = 0.
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Solution 256.4 – Two septics
Two equations to solve. Like the octics in M500 254 and the
bisextics in M500 256 they have only a few terms. As usual,
exact expressions for the seven roots are required in each case:

x7 + 7x4 + 16 = 0, x7 + x6 + 3x5 + 3 = 0.

Finding these things can be quite fun, too. At M500 we would
be interested if you discover a 3- or 4-term equation of high
degree that admits an exact solution but does not split into
small polynomials with integer coefficients.

Peter Fletcher
The first septic

In Maple, we can use the factor function to find that

x7 + 7x4 + 16 = (x+ 2)(x6 − 2x5 + 4x4 − x3 + 2x2 − 4x+ 8)

so the first root is obviously −2.

If we now use the factor function with the complex option on the
sextic, we find its roots as

r2 = −0.8061 . . .− (0.8583 . . .)i,

r3 = −0.8061 . . .+ (0.8583 . . .)i,

r4 = 0.8459 . . .− (1.6905 . . .)i,

r5 = 0.8459 . . .+ (1.6905 . . .)i,

r6 = 0.9601 . . .− (0.8322 . . .)i,

r7 = 0.9601 . . .+ (0.8322 . . .)i,

but we want the exact roots. By trial and error, we find that

z1 = (x− r2)(x− r5)(x− r6)

= x3 − x2 + 1.5x− (1.3228 . . .)ix+ 1 + (2.6457 . . .)i,

z2 = (x− r3)(x− r4)(x− r7)

= x3 − x2 + 1.5x+ (1.3228 . . .)ix+ 1− (2.6457 . . .)i.

Using 50 digits, we found that it was obvious that, ignoring signs, the
imaginary parts of the constant terms are each exactly twice the imaginary
parts of the coefficients of x.

What this means is that we can write

z1 = x3 − x2 +

(
3

2
− ai

)
x+ (1 + 2ai)
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z2 = x3 − x2 +

(
3

2
+ ai

)
x+ (1− 2ai).

Then

z1z2 = x6 − 2x5 + 4x4 − x3 +

(
a2 +

1

4

)
x2 + (3− 4a2)x+ (1 + 4a2).

Equating coefficients,

a2 +
1

4
= 2, 3− 4a2 = − 4, 1 + 4a2 = 8.

Solving the first of these gives a = ±
√

7/2, which does satisfy the other two
equations.

Then taking the positive root (it does not matter which we take),

z1 = x3 − x2 +

(
3

2
− i

√
7

2

)
x+

(
1 + i
√

7
)
,

z2 = x3 − x2 +

(
3

2
+ i

√
7

2

)
x+

(
1− i

√
7
)
.

Now solving these two cubics in Maple gives, after x1 = −2,

x2 =
w+

6
−
(
7 + 3i

√
7
)

3w+
+

1

3
,

x3 =
w−
6
−
(
7− 3i

√
7
)

3w−
+

1

3
,

x4 = −
(
1− i

√
3
)
w+

12
+

7− 3
√

21 + i
(
7
√

3 + 3
√

7
)

6w+
+

1

3
,

x5 = −
(
1 + i

√
3
)
w−

12
+

7− 3
√

21− i
(
7
√

3 + 3
√

7
)

6w−
+

1

3
,

x6 = −
(
1 + i

√
3
)
w+

12
+

7 + 3
√

21− i
(
7
√

3− 3
√

7
)

6w+
+

1

3
,

x7 = −
(
1− i

√
3
)
w−

12
+

7 + 3
√

21 + i
(
7
√

3− 3
√

7
)

6w−
+

1

3
,
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where

w+ =

(
−154 + 90i

√
7 + 6

√
−1134− 714i

√
7

)1/3

,

w− =

(
−154− 90i

√
7 + 6

√
−1134 + 714i

√
7

)1/3

.

We have changed the labelling of the roots above as we cannot guarantee
that they are in the same order as the decimal representations. We do the
same with the second septic’s roots.

The second septic

In Maple, we can use the factor function to find that

x7 + x6 + 3x5 + 3 = (x+ 1)(x6 + 3x4 − 3x3 + 3x2 − 3x+ 3)

so the first root is obviously −1. If we now use the factor function with
the complex option on the sextic, we find its roots as

r2 = −0.4958 . . .− (1.5852 . . .)i,

r3 = −0.4958 . . .+ (1.5852 . . .)i,

r4 = −0.2869 . . .− (1.0853 . . .)i,

r5 = −0.2869 . . .+ (1.0853 . . .)i,

r6 = 0.7828 . . .− (0.4999 . . .)i,

r7 = 0.7828 . . .+ (0.4999 . . .)i,

but we want the exact roots. By trial and error, we find that

z1 = (x− r2)(x− r5)(x− r7)

= x3 + 1.5x− (0.8660 . . .)ix− 1.5− (0.8660 . . .)i,

z2 = (x− r3)(x− r4)(x− r6)

= x3 + 1.5x+ (0.8660 . . .)ix− 1.5 + (0.8660 . . .)i,

which we can also write as

z1 = x3 +

(
3

2
− ai

)
x−

(
3

2
+ ai

)
,

z2 = x3 +

(
3

2
+ ai

)
x−

(
3

2
− ai

)
.

Then

z1z2 = x6 + 3x4 − 3x3 +

(
9

4
+ a2

)
x2 −

(
9

2
− 2a2

)
x+

(
9

4
+ a2

)
.
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Equating coefficients,

9

4
+ a2 = 3,

9

2
− 2a2 = − 3,

9

4
+ a2 = 3.

Solving the first of these gives a = ±
√

3/2, which does satisfy the other two
equations.

Then taking the positive square root (it does not matter which we take),

z1 = x3 +

(
3

2
− i

√
3

2

)
x−

(
3

2
+ i

√
3

2

)
,

z2 = x3 +

(
3

2
+ i

√
3

2

)
x−

(
3

2
− i

√
3

2

)
.

Now solving these two cubics in Maple gives, after x1 = −1,

x2 =
w+

6
−
(
3− i

√
3
)

w+
,

x3 =
w−
6
−
(
3 + i

√
3
)

w−
,

x4 = −
(
1− i

√
3
)
w+

12
+

(
3 + i

√
3
)

w+
,

x5 = −
(
1 + i

√
3
)
w−

12
+

(
3− i

√
3
)

w−
,

x6 = −
(
1 + i

√
3
)
w+

12
− 2i
√

3

w+
,

x7 = −
(
1− i

√
3
)
w−

12
+

2i
√

3

w−
,

where

w+ =

(
162 + 54i

√
3 + 18

√
54 + 38i

√
3

)1/3

,

w− =

(
162− 54i

√
3 + 18

√
54− 38i

√
3

)1/3

.
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Cycles
Ted Gore
In Cycling sequences, [M500 292, 11], Tommy Moorhouse defines a sequence
of integers as follows. Choose two relatively prime integersm > 1 and n > m
and a ‘seed’ integer a0. Set

ak =

{
ak−1 +m if n does not divide ak−1,
ak−1/n otherwise.

Here we examine the question at the end of the article. Do all such sequences
end in a cycle?

Definition A block is a sequence of consecutive results conforming to
the function that starts with a given value and ends with a multiple of n.

Let x be the first value in the block.

Let k be the number of steps required to get to the final value which is
the first multiple of n in the sequence. Since m and n are co-prime there
will always be such a value.

Let yn be the final value in the block. Then x+ km = yn.

The y of one block becomes the starting value of the next block. If
y = x then the next block is a repeat of this one and therefore cyclic.

If y 6= x then each subsequent block will have a different starting value
to its predecessor. Eventually, however, there is an upper limit to the value
of y, which means that eventually there will be a block with the same
starting value as a previous block. In this case, a group of blocks form a
cyclic process. A proof follows.

The greatest number of steps required to get from x to yn is (n − 1).

So that yn 6 x+ (n− 1)m, which can be rearranged as y 6 m+
(x−m)

n
.

When x > m this results in y being closer to m than x was.

If x = m, then y = m. If x < m, then y < m and therefore, for all
subsequent blocks, x < m.

Examples

If x = m, then y = m and there is only one repeated block. The triplet
(m,n, a0) = (3, 11, 3) gives block [3 6 9 12 15 18 21 24 27 30 33].

If x < m, there are two or more blocks that taken together form a cycle.
Triplet (3, 11, 1) gives [1 4 7 10 13 16 19 22] [2 5 8 11].

If x > m, there are one or more ‘introductory’ blocks followed by a
repeating group of blocks. Since an ‘introductory’ block may be a fragment
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of a repeating block, it can also be the start of a cycle.

Triplet (3,11,5) gives [5 8 11] [1 4 7 10 13 16 19 22] [2 5 8 11].

Triplet (5,7,1) gives four blocks [1 6 11 16 21] [3 8 13 18 23 28] [4 9 14]
[2 7], which form a repeating group.

Triplet (3,11,500) shows how large starting values are reduced. It has
three ‘introductory’ blocks of which the third is a fragment of a repeating
block: [500 503 506] [46 49 52 55] [5 8 11] [1 4 7 10 13 16 19 22] [2 5 8 11].

Gravitational light
Colin Aldridge
I refer to the gravitational energy device, one of the exhibits of the mu-
seum at Woolsthorpe Manor House, Isaac Newton’s birthplace, and which
I described in M500 292, page 10, especially with regard to the generation,
by a falling 10 kg mass, of electricity sufficient to light two LEDs thereby
providing just about adequate illumination to read by.

We want to find out how much
energy is released when the weight
drops through 1 metre. The relevant
formula is J = mgh, where J is the
energy, m is the mass of the weight,
and h is the height. So in this case
J = (10 kg) × (9.8 m/s2) × (1 m),
which without recourse to a calcu-
lator gives 98 joules.

The weight takes half an hour,
or 1800 seconds, to drop; so at 100
per cent efficiency that is a power
output of 98/1800 = 0.054 joules per
second. Happily we have chosen the
right units since a watt is a joule per
second.

I doubt that the mechanism is
80 per cent efficient; so we cannot
get 0.04 watts out of the system and
therefore the lights are either 2×0.01
watt LEDs or one 0.01 and one 0.02
watt LEDs.



Page 12 M500 294

Solution 278.4 – Polynomial integration
(i) Find a polynomial Q(x, y) of degree 2 in x and y such that
for any quadratic P (x),∫ 1

−1
P (x)Q(x, y) dx = P (y). (1)

(ii) Find a polynomial Q(x, y) of degree 1 in x and y such that
(1) holds for any linear function P (x). Hint: Do (ii) first.

Peter Fletcher
We take the hint and do Part (ii) first.

Let P1(x) = ax + b and Q1(x, y) = cx + ey + f with the subscripts
indicating the degree of each polynomial. Then∫ 1

−1
P1(x)Q1(x, y)dx =

∫ 1

−1
(ax+ b)(cx+ ey + f)dx

=

∫ 1

−1

(
acx2 + aexy + (af + bc)x+ bey + bf

)
dx

=

[
acx3

3
+ bexy + bfx

]1
−1

=
2ac

3
+ 2bey + 2bf.

We want

a = 2be and b =
2ac

3
+ 2bf ;

so

e =
a

2b
and f =

b− 2ac/3

2b
;

but we can choose c = 0 so that

f =
1

2
and Q1(x, y) =

ay + b

2b
,

i.e. Q1(x, y) is a function of y only.

This suggests that Q2(x, y) in Part (i) may also be a function of y only.
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Let P2(x) = ax2 + bx+ c and Q2(x, y) = ey2 + fy + g so that∫ 1

−1
P2(x)Q2(x, y)dx =

∫ 1

−1
(ax2 + bx+ c)(ey2 + fy + g)dx

=

∫ 1

−1

(
(ey2 + fy + g)ax2

+ (ey2 + fy + g)bx+ (ey2 + fy + g)c
)
dx

=

[
(ey2 + fy + g)ax3

3
+ (ey2 + fy + g)cx

]1
−1

=
2(ey2 + fy + g)a

3
+ 2(ey2 + fy + g)c

= 2e
(a

3
+ c
)
y2 + 2f

(a
3

+ c
)
y + 2g

(a
3

+ c
)
.

We want

a = 2e
(a

3
+ c
)

so that e =
a

2
(a

3
+ c
) ;

b = 2f
(a

3
+ c
)

so that f =
b

2
(a

3
+ c
) ;

and

c = 2g
(a

3
+ c
)

so that g =
c

2
(a

3
+ c
) .

Therefore

Q2(x, y) =
ay2 + by + c

2
(a

3
+ c
) .

230− 220× 0.5 = ? Believe it or not, the answer is 5!

—Sent by Jeremy Humphries
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Problem 294.2 – Columns
Roger Thompson
Initially, columns 1, 2, 3, . . . are all empty. For the integers X = 1, 2, 3,
. . . , add X to the appropriate column according to the following rules.

1. Starting at C = 1, add X to column C if this has less than two entries,
or no two different entries in C add up to X.

2. If X could not be added, move on to the next column.

For example, after 1 to 9 have been added, the columns look like this.

Column 1 2 3
1 3 8
2 5 9
4 6
7

Which column is 314159261234568 in?

Richard Kenneth Guy
Tony Forbes
I was sad to learn that Richard Guy died on 9th March 2020 at the age
of 103. He graduated at Cambridge in 1938, served in the Royal Air Force
during the Second World War, and in 1965 emigrated with his wife Nancy
to Canada. He took up a permanent position at the University of Calgary,
where he remained for the rest of his life. There is more at https://
calgaryherald.remembering.ca/obituary/richard-guy-1078841321.

He was well known throughout the number-theoretic community for his
highly influential book Unsolved Problems in Number Theory. I bought the
second edition soon after it was published in 1994, and about a decade
later I was at a mathematics conference, where I noticed that the third
edition was on offer at quite a generous discount. I agonized about buying
it, weighing the advantages (new results) against the disadvantages (dupli-
cation, personal wealth reduction). The deciding factor was a conversation
with Richard, who was also at the conference. We both agreed that I would
buy the book iff he autographed it.

I also remember him making a $20.00 bet with John Conway (with
whom he co-authored The Book of Numbers) that a new completely fac-
torized Fermat number would appear before his 100th birthday. Alas! It
didn’t happen, the bet was lost, and it is still the case that the only numbers
22

n

+ 1 for which all the prime factors are known have n ≤ 11.

https://calgaryherald.remembering.ca/obituary/richard-guy-1078841321
https://calgaryherald.remembering.ca/obituary/richard-guy-1078841321
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Erdős
Mike Grannell
Most mathematicians do not fit the popular stereotype of being highly ec-
centric and absent minded, but a few do, and one of these was Paul Erdős.
This is a story told to me by a colleague from an American University in the
Deep South, who had better be nameless—let’s call him Fred. Erdős was
accustomed to roam the world with a few personal items in a suitcase, and
arrive at a Mathematics Department at a random University, unannounced.

Such was his fame and ability that he was invariably welcomed and
invited to stay and join in some collaborative research. So it happened at
the University of X, where Fred was a Maths Professor, and Fred offered
to host Erdős at his house. One night, Fred in bed with his wife, woke up
and became dimly aware that someone was moving around in his bedroom.
He switched on the bedside light to see Erdős advancing towards the bed.
Erdős reached the bed, bent over Fred who was still half asleep, and said,
“Take a positive integer n . . . .”

Actually Erdős was quite fortunate, since this was Deep South USA,
and Fred had an arsenal of guns for dealing with intruders. At the end
of two weeks, Erdős moved on elsewhere and Fred and his wife were quite
relieved, but the story had a sequel. A few months later at a conference
attended by Fred and by Erdős, a young mathematician (let’s call him Joe)
asked Fred to introduce him to Erdős. So Fred went up to Erdős with Joe
in tow and said, “Hello Paul, can I introduce my colleague, Joe.” Erdős
replied politely to Joe and then turned to Fred and asked, “And who are
you?”

Problem 294.3 – Even and odd
Suppose 28 ≤ a < b and a ≡ b ≡ 0 (mod 28). Let S be the set of integers
in the range [a, b] that are congruent to a modulo 3 but not divisible by 4
or 7. For example, if a = 28 and b = 56, then S = {31, 34, 37, 43, 46, 55}.
Show that S contains twice as many odd integers as even integers, or find
a counter-example.

Problem 294.4 – Mod 9
Two three-digit numbers, a and b, are chosen at random. What’s the prob-
ability of them being anagrams of each other given that a ≡ b (mod 9)?
Does the answer explain why I (TF) get the impression that this sort of
thing happens quite often?
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Solution 173.1 – Binomial coefficients squared
Show that

n∑
r=0

(−1)r
(
n

r

)2

=

 0 if n is odd

(−1)n/2
(
n

n/2

)
if n is even.

Henry Ricardo
We have

n∑
r=0

(−1)r
(
n

r

)2

=

n∑
r=0

(−1)r
(
n

r

)(
n

n− r

)
,

which is the coefficient of xn in

(1− x2)n = (1− x)n(1 + x)n =

n∑
r=0

(−1)r
(
n

r

)
xr ·

n∑
r=0

(
n

r

)
xr.

If n is even, let n = 2m and y = x2. Then the coefficient of ym in (1− y)2m

is (−1)m
(
n
m

)
= (−1)n/2

(
n

n/2

)
. However, (1 − x2)n has only terms of even

degree, so if n is odd, then clearly the coefficient of xn is 0.

TF — There is (at least) one other binomial power where Mathematica
gives a simple sum, i.e. one that does not involve a non-simplifiable hyper-
geometric function. We formally state it as M500 Problem 294.5, below.

Problem 294.5 – Binomial coefficients cubed
Tony Forbes
Show that

n∑
r=0

(−1)r
(
n

r

)3

=

 0 if n is odd

(−1)n/2
(3n/2)!

((n/2)!)3
if n is even.

Notice that if you replace the three threes by twos, you recover the
formula in Problem 173.1, above. So one might be tempted to conjecture
that for n divisible by 4, we have

n∑
r=0

(−1)r
(
n

r

)m

=
(mn/2)!

((n/2)!)m
.

But this appears to be not true unless m = 0, 2 or 3 (or n = 0).
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Problem 294.6 – Graph smash
Tommy Moorhouse
This puzzle involves graphs. We will use fairly standard terminology as set
out in the reference for example. A graph is a set of vertices, some of which
are connected by edges. Multiple edges and edges starting and finishing at
the same vertex are not allowed, and an edge starts and finishes at distinct
vertices but has no other vertices attached to it. A graph is said to be
connected if it cannot be drawn as two or more separate components with
no edges connecting the components. If a graph is not connected it is said
to be disconnected. The complement G of a graph G is the graph having
the same vertices as G, with edges connecting two vertices of G only where
G has no edge connecting those same vertices.

We will define the ‘smash product’ G ∨ H between two graphs G and
H as follows. Draw the graphs side by side and connect every vertex of G
to every vertex of H, making no other changes. This is G ∨ H. We also
define G + H to be the disconnected graph consisting of G and H (drawn
separately).

Show that
(G ∨H) ∨W ' G ∨ (H ∨W ),

where A ' B means A and B are isomorphic.

Show that

G ∨H ' G+H. (1)

As an example, show that Kn∨Km ' Kn+m where Kn is the graph with
n vertices, all connected to one another. You could use the isomorphism
(1) and the fact (prove this) that Kn ' Nn where Nn is the graph with n
vertices and no edges.

Not every graph can be written as the smash product of two other
nonempty graphs. For example the cyclic graph Cn cannot be so expressed
for n > 4 (try it out). Find a criterion for a graph J to be expressible as
G ∨ H for nonempty G and H if and only if J has some simple property
(hint – think about J).

Reference Richard J. Trudeau, Introduction to Graph Theory, Dover, 1993.

Chemist: What’s that in CO(NH2)2?
Mathematician: It’s like a field but with the postulates weakened a bit.

— Sent by JRH
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WW1 artillery slide rule
Chris Pile
Last year my neighbour was clearing out his garage prior to moving house
and he invited people to sort through, and take whatever they liked from,
a box of old tools, etc. before it was consigned to the skip. I picked out a
slim leather case containing, what turned out to be, a WW1 artillery slide
rule, stamped ‘ASTON & MANDER LTD. LONDON 1915.’

The fixed, outer, scales are marked in inches from 0 to 15, subdivided
into eights of an inch. The central, sliding, scale protrudes by three inches
and is marked in a 3-cycle log scale from 1 to 1000, each cycle being slightly
more than 47/8 inches. This scale is marked ‘MINUTES IN APEX ANGLE

/ BATTERY RANGE IN YARDS.’ The subdivisions on each cycle are 1/2 yd
from 1 to 10, 1 yd from 10 to 150 and 10 yds from 100 to 1000. The last
three inches are blank. On the linear scale there are two ‘dots’ at just over
51/2 inches and just under 101/2 inches (i.e. 1 log scale apart). Similarly, on
the log scale there are two ‘dots’ at 11.4 yds and 114 yds. On the reverse,
the log scale is on top, fixed, marked ‘YARDS’ and the sliding scale is n
inches from 0 to 18 subdivided into eighths. The thumb screw on the cursor
window locks the cursor and both scales.
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The log scale equates the apex angle in minutes to the range in yards
for values from 1 to 1000. Assuming a simple parabolic trajectory with a
shallow angle, such that Ky = x2 (see diagram), let the range be R and the
apex angle be A. Then

K
dy

dx
= 2x;

therefore at F ,
dy

dx
= tanA and x =

R

2
.

Hence K tanA = R. Taking a mid value (on the log scale) of 30′ and 30
yards, K tan (1/2)◦ = 30. Therefore K ≈ 3437.7. This value of K defines
the parabola approximately from 1′ and 1 yd (K = 3437.75) to 1◦ and 60
yds (K = 3437.4). At 1000 yds and 16.67◦, K = 3340.

O

F
A

x

y

R�2 R�2

Ky=x2

T

Explanations please! What is the slide rule intended to calculate? What
is the linear inch scale for, and the significance of the ‘dots’? What is the
practical use of extending the scale through very small values to 1 yard and
1 minute of angle? Does the value of K relate to any specific characteristic
(e.g. muzzle velocity)?

Problem 294.7 – Triangles
Tony Forbes
You and your opponent take it in turn to select an edge of the complete
graph K4. An edge cannot be selected by both players. You go first. The
winner is the first person to have selected three edges that form a triangle.
A draw results either by mutual agreement or if a player dies.

For example, labelling the vertices of the graph 1, 2, 3, 4, and denoting
edge {x, y} by 10x+ y, the edges selected might go like this:

12, 13; 12, 13; 12, 13; 12, 34; 23, 34; 23, 34; 24, 34; 23, 14;

and you lose because your opponent now has a triangle, {13, 34, 14}.
Show that your opponent can always force a draw. What if K4 is re-

placed by K5? Or K6?
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Letter

Gravitational lamp

Dear Eddie,

Many thanks for M500 292. I was intrigued by the gravitational lamp,
a splendidly medieval idea of something powered by a falling weight (I use
the word ‘weight’ in its everyday sense, so don’t start moaning about it
being a mass). I suppose that the weight, which looks like a bag, is filled
with locally available stones so that only the relatively light mechanism has
to be sent to the places where it’s needed.

For readers of the paper copy, the red loop is the one to the right of the
black loop.

I wonder, though, how easy it is to wind up by pulling the chain. There
must be a lot of frictional loss in this complex mechanical system. Winding
up an old weight-powered clock is quite laborious. It would be interesting
to see whether the generator and storage of one of Trevor Baylis’s hand-
cranked radios, which are much easier to use, would power the same two
LEDs for as long with less effort needed to wind the thing up.

Glad to see, on the same page 10, that there are ‘persons whose business
it is to trisect angles’. I hope they have a union to look after their interests
in this threatened trade.

Best wishes,

Ralph Hancock

Letters
Arrange these letters in a sensible manner.

a a a a a a a a A A A A A A A A b b b b b b b B B B

B B B B c c c c C C C C C C C C C C C C d d d d d D

D D e e e e e e e e e e E E E f f f F F F F F g g g

g g g G G G h h h h H H H H H H i i i i i I I I k K

K l l l l L L L L L m m m m m m M M M M M M n n n n

n n N N N N N N N N N o o o o o O O O p P P P P P P

P P P r r r r r r r r r r r R R R R R R R R s s s s

s s s S S S S S S S S S t t t T T T T T T T T T u u

u u u u U v V W X y Y Y Z Z

Answer in the next issue.
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John Horton Conway
As this issue was going to press we learned of the sudden death on 11 April
2020 at age 82 of group theorist and inventor of Life, John Conway. He was
a victim of the Covid-19 epidemic. You can read more about his fascinating
life and mathematical work at https://www.theguardian.com/science/
2020/apr/23/john-horton-conway-obituary.

Jeremy Humphries
I met John Conway back in the 1970s. The Open University engaged him to
give a Saturday afternoon popular mathematics talk in Cambridge, which
was not far for me to go when I was living in Luton. He talked about all
sorts of stuff—high dimensional sphere packing, Leech lattice, and so on.
Also he reminisced about his mother making tray bakes when he was a boy,
and how he would investigate various ways of cutting them up. He grew
up to invent a few mathematical games involving cake. And something I’ve
always remembered—after the talk he came to explain a point to me as I
sat at the desk, which involved him writing a few lines of words and maths
on my notepaper. Since he was standing facing me, he wrote it all, very
fluently and naturally, joined up writing, upside down and right to left.

A few of us walked back with him across Cambridge from the lecture
venue to his college. We were there, all star struck, and I was puzzled to
note that the general populace took no notice of us. I mean—come on,
Cambridge shoppers—don’t you know who this man is??

Problem 294.8 – Digits and divisors
Tony Forbes
Let b ≥ 2 and let n be a number consisting of b distinct digits when written
in base b. Suppose also that n has the property that bn/bn−rc ≡ 0 (mod r)
for r = 1, 2, . . . , b.

Show that (i) b must be even, or find a counter-example, and (ii) when
b = 14 there is a unique solution:

n = 7838911147538198 = 9C3A5476B812D014.

The (mod r) condition can be rephrased by saying that when you express
n in base b the number consisting of its first r digits is divisible by r.
For example, take b = 6. Then n = 13710 = 1432506 satisfies all of the
conditions. Clearly, 16, 146, 1436 and 1432506 are divisible by 1, 2, 3 and 6
respectively. Also 4 divides 380 = 14326 and 5 divides 2285 = 143256.

As Guardian readers might remember, the case b = 10 featured in Alex
Bellos’s Monday puzzle, where the problem and its unique solution were
attributed to John Conway.

https://www.theguardian.com/science/2020/apr/23/john-horton-conway-obituary
https://www.theguardian.com/science/2020/apr/23/john-horton-conway-obituary
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Front cover 64
(
z4 + y2

)
+ x4 − 16zx2 + 4x2 = 256; compare page 1.

Problem 294.9 – Mod 240
Show that (p2 − q2)

√
pq ≡ 0 (mod 240) if p− q is even and pq is a square.


