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Chicks, eggs and advertising
J. M. Selig
Some time ago I taught Mathematics in a department of Business. I was
quite surprised that most students were so afraid of Maths that they weren’t
even interested whether or not their enterprise was profitable. Even some
of my colleagues, especially those who taught Marketing, were very shy of
anything to do with Maths. I began to wonder if there were any good ap-
plications of Mathematics to Advertising. A classic problem in probability
is usually phrased in term of chicks and eggs.

My hen lays eggs according to a Poisson distribution with mean λ.
The probability that she lays n eggs tomorrow is p(n) = λne−λ/n!.
The eggs hatch, or not, according to a binomial distribution with p
as the probability of an egg hatching into a chick. What will be the
distribution of chicks?

Instead of eggs and chicks suppose we consider enquiries and orders. Sup-
pose my company make a product that is large and expensive so that cus-
tomers will order either one or none. The adverts my company buys gener-
ate enquiries; these could be phone calls, letters or most probably e-mails.
Assume the enquiries can be modelled by a Poisson distribution. The mean
number of enquiries, λ, is now some measure of the effectiveness of the ad-
vertising. In the enquiries potential customers (also known as ‘punters’)
want to know the cost, delivery arrangement and so forth. On the basis
of this information they may place an order. Whether or not they place
an order can be modelled by a binomial distribution. Clearly the company
would like to know about the distribution of orders.

Another story we could tell about the same underlying problem concerns
internet shopping. Companies spend money advertising their websites, but
many people who visit websites may go through most of the process of
ordering items but then leave the site without completing the order. I
have seen figures quoted that something like 70 per cent of visitors to some
websites bail before completing their order.

One more story with the same model might be to do with the spread
of a virus in a population. An infected individual might meet n susceptible
people in a day. The probability that a susceptible person then becomes in-
fected will obey a binomial distribution. If we only consider the early stages
of an epidemic then we could assume that n obeys a Poisson distribution
and that susceptible people will likely meet no or only one infected person in
a day. This type of model might be useful to understand the reproduction
number, R, for the disease.
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The problem, however we state it, concerns the compounding of a Pois-
son distribution with a binomial distribution; see [1] for example. To get k
orders we might have k enquiries and they all turn into orders, or we could
have k + 1 enquiries but only k turn into orders, and so on. So if we write
ρ(k) as the probability of getting k orders, then

ρ(k) =

∞∑
i=k

λi

i!
e−λ

(
i

k

)
pkqi−k

where q = (1 − p), the probability the enquiry fails to turn into an order.
To sum the series it is convenient to make a change of index variable so
that the sum runs from 0 to ∞. Let j = i− k, so that i = k + j. Now the
probability can be written

ρ(k) =

∞∑
j=0

λk+j

(k + j)!
e−λ

(
k + j

k

)
pkqj .

Taking out the constants and expanding the binomial coefficient gives

ρ(k) =
(λp)k

k!
e−λ

∞∑
j=0

(λq)j

j!
=

(λp)k

k!
e−λeλq.

Remembering that q = 1− p gives

ρ(k) =
(λp)k

k!
e−(λp).

This is a Poisson distribution again, but now with mean λp.

With different advertising we may be able to increase λ, but this isn’t
necessarily a good thing. More enquiries from people who are not really
interested in the product and are not going to place an order are not useful
to the company; they will be referred to as ‘time wasters’. Really, we would
like to increase p; this can be done by more targeted advertising, but this
would probably decrease λ. That is, we would expect targeting of our
advertising to generate fewer enquiries but with a higher chance that each
will turn into an order. Clearly, it is the product λp that we should attempt
to increase for more orders. This could be a risky strategy. The variance of
the Poisson distribution is the same as its mean, so increasing λp will also
increase the variance.

These ideas can be pushed a little further by relaxing the assumption
that customers only buy one or no items. To keep things simple, though,
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we assume that customers buy a discrete number of the same item or spend
integer multiples of some basic amount. Let’s use the variable k now to
count the number of items ordered. We can assume that the probability
that k = 0 is about 70 per cent, but what distribution should we use for k?
I don’t have a good answer for this; really I should go and find some data
to see what the distribution looks like. For the purposes of this article I will
just assume the spending for an individual punter is distributed according
to a geometric distribution. So the probability of ordering k items is given
by the probability mass function,

g(k) = qpk, where q = 1− p,

and from the data g(0) = q ≈ 0.7. Next, suppose that we have persuaded,
by advertising, n punters to visit our website. What is the distribution giv-
ing the probability that they will collectively buy κ items? This convolution
can be found by multiplying the generating functions for the individual geo-
metric distributions. The generating function for the geometric distribution
is

G(z) =

∞∑
k=0

qpkzk = q(1− pz)−1

since this is the sum of a geometric series. For n punters, the generating
function of the distribution is the nth power of the above,

Gn(z) = qn(1− pz)−n.

The probability that the n punters collectively order κ items is then the co-
efficient of zκ in the series expansion of Gn(z). Using the binomial theorem
to expand the bracket gives

Gn(z) = qn(1− pz)−n = qn
∞∑
κ=0

(
κ+ n− 1

κ

)
(pz)κ.

So we can see that the probability that n punters order κ items is distributed
according to a negative binomial distribution, with probability mass func-
tion,

nb(n, κ) =

(
κ+ n− 1

κ

)
qnpκ.

As before, the probability that the advertising lays n punters is assumed
to follow a Poisson distribution. The probability that we get orders for κ
items is then the compound,
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Figure 1: Probability of getting orders for 0 to 10 items. In each case
q = 0.7, the value of λ varies from λ = 5 to λ = 20.

f(κ) =

∞∑
n=0

nb(n, κ)p(n)

=

∞∑
n=0

λne−λ

n!

(
κ+ n− 1

κ

)
qnpκ = e−λpκ

∞∑
n=0

(
κ+ n− 1

κ

)
(λq)n

n!
.

I have no idea how to evaluate this infinite sum, but luckily Mathematica
does; the result is

∞∑
n=0

(
κ+ n− 1

κ

)
(λq)n

n!
= (λq) 1F1(κ+ 1; 2; (λq)).

The function 1F1(a; b;x) is the confluent hypergeometric function, also
called Kummer’s hypergeometric function; see the Wikipedia article for
more details, [3]. The probability that we get orders for κ items is thus

f(κ) = e−λλqpκ 1F1(κ+ 1; 2; (λq)).

Most probability distributions have a name so that we can refer to them
simply. I haven’t been able to find this distribution in the literature but I
can’t imagine it is ‘unknown’.

When κ is an integer the confluent hypergeometric function is, in fact,
an elementary function. The first few are

1F1(1; 2;x) =
1

x
(ex − 1),

1F1(2; 2;x) = ex,

1F1(3; 2;x) =
1

2
(x+ 2)ex,

1F1(4; 2;x) =
1

6
(x2 + 6x+ 6)ex,

1F1(5; 2;x) =
1

24
(x3 + 12x2 + 36x+ 24)ex,
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and so forth. Figure 1 shows the probabilities of getting orders for 0 to 10
items when q = 0.7 and λ = 5, 10, 15 and 20.

To compute the mean and variance of the distribution we can use some
generating function tricks. It is useful to find the generating function of the
distribution f(κ). That is, we seek

F (z) =

∞∑
κ=0

f(κ)zκ.

Returning to the definition of f(κ) as an infinite sum gives

F (z) =

∞∑
κ=0

∞∑
n=0

p(n)nb(n, κ)zκ.

Substituting for the Poisson and negative binomial distributions gives

F (z) = e−λ
∞∑
κ=0

∞∑
n=0

(qλ)n

n!

(
κ+ n− 1

κ

)
(pz)κ.

Assuming we can swap the order of summation and perform the sum over
κ first we get

F (z) = e−λ
∞∑
n=0

(qλ)n

n!
(1− pz)−n.

Finally the generating function for f(κ) is

F (z) = e−λe(
qλ

1−pz ).

The mean and variance of the distribution are now easy to compute:

mean =
dF (1)

dz
=

λp

q

and

variance =
d2F (1)

dz2
+
dF (1)

dz
−
(
dF (1)

dz

)2

=
λp(p+ 1)

q2
.

(Feller [1, Chap. XII] gives some relations for compound distribution which
would simplify these computation a little.)

In conclusion, there are several ways these ideas could be extended, al-
though one should first check that the notions explored above have some va-
lidity! One could, for example, look at several different advertising channels
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or media: radio, TV, newspapers, internet advertising etc. Each will have
its own characteristics, different probability distributions perhaps. Each
channel has an associated cost. So, we could maximize the effectiveness of
the advertising subject to a fixed budget. There might be non-linear effects
from advertising on several media. If we advertise our product on TV and
newspapers the effect may be better than the sum of advertising in each
separately.

People have been advocating the use of Maths in Marketing since the
1960s, but there doesn’t seem to have been a lot of progress. Most of
the mathematics referred to is just calculating a ratio of two numbers to
produce a performance measure for an advertising campaign. The deepest
application I have come across was a model of Marketing in a duopoly based
Lanchester’s equations, see [2]. These models were originally developed to
model warfare so the idea here is two companies fighting an advertising war
for market share.

This all assumes that the purpose of advertising is to increase sales but
I don’t think this is always the case; sometimes advertising is for ‘brand
management’.
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Problem 296.1 – Divisibility
Tony Forbes
Let m and n be positive integers with m ≥ 4. Show that

(mn)!−m! (n!)m ≡ 0 (mod nm+3),

or find a counter-example.

https://en.wikipedia.org/wiki/Confluent_hypergeometric_function
https://en.wikipedia.org/wiki/Confluent_hypergeometric_function
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Solution 237.4 – Continued fraction
Show that

1

1− 14

5− 24

13− 34

25− . . .

=
π2

6
.

The number underneath n4 is 2n2 + 2n+ 1.

Peter Fletcher
The first few approximations are:

1

1−
1

5

=
5

4
= 1 +

1

22
,

1

1−
1

5−
16

13

=
49

36
= 1 +

1

22
+

1

32
,

1

1−
1

5−
16

13−
81

25

=
205

144
= 1 +

1

22
+

1

32
+

1

42
,

from which it is apparent that for each subsequent n, we add 1/(n+ 1)2 to
the previous sum and the result follows.

Problem 296.2 – Sums of n numbers
Tony Forbes
Given integers a, b, c, 0 ≤ a < b < c, and n ≥ 1, find a general formula for
S(a, b, c;n), the set of integers that can be expressed as a sum of n elements
of {a, b, c}. For example,

S(2, 14, 32; 17) = {34, 40, 46, . . . , 544} \ {40, 52, 502, 520, 532, 538};

i.e. nearly all numbers from 17 · 2 to 17 · 32 that are congruent to 4 (mod
6). For those who have Mathematica, S(a, b, c;n) is the set of numbers j
such that IntegerPartitions[j, {n}, {a, b, c}] is not empty.
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Solution 291.1 – Treasure
There is some valuable stuff buried on an island and to your
delight you have obtained precise instructions for digging it up.

Locate a tall wooden post. From there, not far away
you will see two tall stone pillars, one made of marble
and the other of sandstone. Go to the wooden post,
walk to the marble pillar, turn right, walk the same
distance again and mark the spot. Go to the wooden
post, walk to the sandstone pillar, turn left, walk the
same distance again and mark the spot. The treasure
is mid-way between the two marked spots.

You arrive at the island and find the stone structures, but alas!
the wooden post has disappeared without trace. However, you
had the foresight to bring a replacement with you. You erect
your wooden post somewhere on the island, follow the instruc-
tions and successfully acquire the treasure. How is this possible?

Peter Fletcher
Let the wooden post W be at (0, 0), the marble pillar M at (m1,m2) and
the sandstone pillar S at (s1, s2); let also the first marked spot P be at
(p1, p2) and the second one Q at (q1, q2), so that the treasure is at X given

by (x1, x2) =

(
(p1 + q1)/2, (p2 + q2)/2

)
. The diagram below illustrates the

situation.
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In this diagram, the triangles with hypotenuses WM and MP are con-
gruent, as are those with hypotenuses WS and SQ. Therefore we can write
down

(p1, p2) = (m1 +m2,m2 −m1),

(q1, q2) = (s1 − s2, s1 + s2)

and

(x1, x2) =

(
(m1 +m2 + s1 − s2)/2, (m2 −m1 + s1 + s2)/2

)
.

As long as we keep S in the same position relative to M , X will then always
be is the same position relative to both M and S.

Example

Let M be at (1, 2) and S be at (−4, 1). Then X is at (−1,−1).

Note that to get from M to S, we go 5 west and 1 south and to get
from M to X, we go 2 west and 3 south.

Now let W be such that M is at (57,−35) and S is at (57−5,−35−1) =
(52,−36). Then X is at (55,−38) = (57− 2,−35− 3).

Ted Gore
The point reached by walking to the marble pillar and turning right is A,
as in the picture on the next page. The point reached by walking to the
sandstone pillar and turning left is B. The distance between the two stone
pillars is r. Let

WM = MA = p and WS = SB = q.

Let M be the origin and let the line MS be along the x-axis. Then A
is the point (p cosα, p sinα) and B is the point (r − q cosβ, q sinβ).

Let X be the mid point between A and B. So that X is the point(
p cosα+ r − q cosβ

2
,
p sinα+ q sinβ

2

)
.

From 4WMS, we have that p cosα = q cosβ and p sinα+q sinβ = r. Then
X is the point ( r2 ,

r
2 ), which depends only on r and not on the position of

W .
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SM

W

A

B

X

Α

Α

Β

Β

Tony Forbes
This looks like a case where complex numbers might find useful employment.
A right turn corresponds to multiplying by −i, and a left turn corresponds
to multiplying by i. Referring to the picture, above, we have

A = M + (M −W )(−i), B = S + (S −W ) i.

Therefore
A+B

2
=

S +M

2
+

(S −M)i

2
,

which is independent of W .

Chris Pile
Forget the wooden post and save yourself some walking! Go to the sandstone
pillar and walk halfway towards the marble pillar. Turn right and walk the
same distance. You are now at the treasure site.
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Alan Davies
Suppose the stone pillars, S1 and S2, are distance d apart. If P is the wooden
post and we walk to S1, turn right and walk the same distance we arrive
at the point A. Similarly following the instructions with regard to S2 we
arrive at the point B. Suppose that the midpoint of AB is T. Also, M and
N are the perpendiculars from A and P respectively to the line S1S2 with
PN = a and NS1 = b. For details, see Figure 1.

Figure 1: Two stone pillars, S1 and S2, and the wooden post, P.

It is clear that ∠NS1P = ∠MAS1 and hence that triangles NS1P and
MAS1 are congruent. It follows that S1M = a and MA = b.

Hence, with origin at S1 and x-axis along S1S2, the coordinates of A are
(a, b). Similarly the coordinates of B are (d− a, d− b).

If T is the mid-point of AB then the coordinates of T are
(
1
2d,

1
2d
)
.

In Figure 1 we have placed P between S1 and S2.

If P is to the left of S1 or to the right of S2 the argument follows in a
very similar manner to find, again, the coordinates of T as

(
1
2d,

1
2d
)
.

That is, the position of T depends only on the distance between S1 and
S2 and is independent of the position of the post, P.

So, we can place the post anywhere we like and always end up with the
treasure.

Keith Brown

We regret to inform you that M500 Society member Keith Brown died on
1st September 2020. Our sympathy goes to his widow, Patricia.
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Solution 231.4 – Four tans
Prove that

tan 70◦ = tan 20◦ + 2 tan 40◦ + 4 tan 10◦.

Peter Fletcher
We begin by noting that

tan(20◦) = cot(70◦), tan(10◦) = cot(80◦), cot(140◦) = − cot(40◦),

cot(140◦) =
1− tan2(70◦)

2 tan(70◦)
and cot(80◦) =

1− tan2(40◦)

2 tan(40◦)
.

This means that we can write

tan(70◦)− tan(20◦) = tan(70◦)− cot(70◦)

= tan(70◦)− 1

tan(70◦)

=
tan2(70◦)− 1

tan(70◦)

= − 2

(
1− tan2(70◦)

2 tan(70◦)

)
= − 2 cot(140◦) = 2 cot(40◦).

Now subtracting 2 tan(40◦) from both sides,

tan(70◦)− tan(20◦)− 2 tan(40◦) = 2 cot(40◦)− 2 tan(40◦)

= 2

(
1− tan2(40◦)

tan(40◦)

)
= 4 cot(80◦) = 4 tan(10◦).

Therefore

tan(70◦) = tan(20◦) + 2 tan(40◦) + 4 tan(10◦).

Lastly, I should own up to finding this solution in Stack Exchange: https:
//math.stackexchange.com/questions/1861288/.

https://math.stackexchange.com/questions/1861288/
https://math.stackexchange.com/questions/1861288/
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Tony Forbes
Here’s an alternative if you find yourself confused and bewildered by all
those complicated trigonometric identities. Let

Z =
z14 − 1

z14 + 1
− z4 − 1

z4 + 1
− 2

z8 − 1

z8 + 1
− 4

z2 − 1

z2 + 1
.

To combine the denominators, note that z14 + 1 is divisible by z2 + 1, write
Z = A/B, where

B = (z14 + 1)(z4 + 1)(z8 + 1),

and use your favourite symbolic mathematics software to compute

A = −2(z−1)(z+ 1)(z4− z2 + 1)(3z8 + 2z6 + 4z4 + 2z2 + 3)(z12− z6 + 1).

Now let z = eπi/18. Then B 6= 0 since zn = −1 only if n is an odd multiple
of 18. However, in the expression for A there is a factor

z12 − z6 + 1 = e2πi/3 − eπi/3 + 1 = e2πi/3 + e4πi/3 + 1,

and this is zero since it is the sum of the cube roots of 1. Hence Z = 0. But

tan 70◦ − tan 20◦ − 2 tan 40◦ − 4 tan 10◦ = Z/i.

Problem 296.3 – Elliptic curve
Let a be a positive real number. Then the elliptic curve y2 = x(x2 − a2)
has two components, an unbounded curve that passes through (a, 0) and a
closed ‘bubble’ that passes through (0, 0) and (−a, 0). What area does the
bubble enclose?

Problem 296.4 – Cubic curve
Let a be a positive real number. Then the cubic curve y2 = x(x− a)2/(3a)
has a loop that passes through (0, 0) and (a, 0). What is its length and what
area does it enclose?

Unlike in Problem 296.3, above, the curve is not elliptic. Curiously,
the denominator 3a in the definition of the curve has some significance.
Remove it, and the loop length of the curve y2 = x(x− a)2 becomes much
more difficult to compute. You are welcome to try!
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Physical proof of the midpoint triangle theorem
Sebastian Hayes
The following physics based proof (?) of the mid-point triangular theorem
is inspired by The Mathematical Mechanic by Mark Levi (see my review on
page 17).

‘Problem. Given three points, A, B, and C in the plane, find
the point X for which the sum of the distances XA+XB+XC
is minimized.’ (Levi, The Mathematical Mechanic, p. 6)

A B

C

X

Start by drilling three holes at points A, B and C in a wooden board
supported horizontally by trestles. Tie the three strings (or, better, silk
cords) together and slip them each through a different hole. Attach equal
weights WA, WB and WC underneath the board. The point X where the
three strings are joined together is free to move about across the board.

The work done by way of hole A is WA×AX (since the weight WA has
been hauled up from its original position by a height equal to the length of
AX).

The work done by way of hole B is WB×BX (since the weight WB has
been hauled up from its original position by a height equal to the length of
BX).

The work done by way of hole C is WC ×CX (since the weight WC has
been hauled up from its original position by a height equal to the length of
CX).

The total work done on the system of three weights when taking them
from their original freely hanging positions is

(WA ×AX) + (WB ×BX) + (WC × CX).

Now let WA = WB = WC = 1 newton, so that the total work done is
AX +BX + CX newton-metres (or joules).
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The system attains equilibrium when X, point where the three strings
meet, settles into its final position. The configuration is thus the one where
the potential energy of the system as a whole is at a minimum. The forces
operating at X are the tensions in the strings, namely TA, TB , and TC and
they must cancel once the system as a whole is at rest.

A CY

X

Θ Φ

Therefore, resolving along AC, we have TA sin θ = TC sinφ.

But TA = TB since we have equalized the weights hanging below A and
C. Therefore θ = φ (since both angles are less than π/2).

Resolving along CB, we have TC sinφ = TB sin γ and so φ = γ. Resolv-
ing along AB, we have TA sin θ = TB sin γ and so θ = φ = γ. Thus, we have
six equal angles meeting at X and adding to 2π or 360◦. Each angle is thus
60◦ and the strings at X are separated by 120◦.

Also 4AXY = 4CXY (XY common, two angles equal counting right
angle AYX = CY X). Therefore, AX = CX = BX and X is the centre
of a circle whose circumference passes through A, C and B. Moreover, the
quantity AX +BX +CX is the least possible since the potential energy of
the system is a minimum (because it is in equilibrium).

We have thus shown, via a mechan-
ical argument, that the point inside a
(scalene) triangle that minimizes the
distances to the three points of the tri-
angle is the centre of a circle whose cir-
cumference passes through the points.
Levi puts it more succinctly since he
adds a second diagram, right, but I
wanted to derive the result from first
principles without even assuming the
triangle of forces. 1

2
3

120°
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Levi summarizes: ‘We endowed the sum of the distances AX+BX+CX
with the physical meaning of potential energy. Now, if this length/energy
is minimal, then the system is in equilibrium. The three forces of tension
acting on X then add up to zero and hence form a triangle (rather than
an open path) if placed head-to-tail. This triangle is equilateral since the
weights are equal and hence the angle between positive directions of these
vectors is 120◦.’ The Mathematical Mechanic

Problem 296.5 – A line and a pole
A vertical pole of height hm is separated by 2 m from the y-axis and has
its base on the (x, y)-plane. A projectile is fired with horizontal velocity
component vm/s from somewhere on the y-axis and just grazes the top of
the pole.

Assuming that gravity, g = 9.80665 m/s2, acts vertically downwards and
that the atmosphere has been removed, show that the projectile lands on
the (x, y)-plane somewhere on a circle with radius hv2/(2g) m.

2m
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The Mathematical Mechanic
by

Mark Levi
Princeton University Press, 2012, ISBN 9780691154565

Sebastian Hayes
Which is more fundamental and more worthy of esteem, physics or mathe-
matics? The ancient Greeks answered emphatically: Mathematics. Incred-
ibly, even Archimedes, who not only founded both statics and hydrostatics
but personally oversaw the defence of his native city, Syracuse, against the
Romans, ‘regarded as ignoble and sordid the business of mechanics and
every sort of art which is directed to use and profit, [placing] his whole am-
bition in those speculations the beauty and subtlety of which is untainted
by any admixture of the common needs of life’ (Plutarch, Life of Marcellus).

Newton, on the other hand, sought to place ‘natural philosophy’ firmly
on an inductive, experimental basis and was himself an indefatigable though
extremely reckless experimentalist—he was lucky not to have lost the sight
of his right eye by probing it with a ‘bodkin’ to test his ideas on vision.
The ‘hands-on’ approach to natural science promoted by the Royal Society
eventually paid huge dividends during the Industrial Revolution since it en-
abled Britain to overtake France, the fabled land of savants and philosophes.
But in the 20th century and our own the mathematicians have so much
taken their revenge that physics is in danger of being entirely swallowed up
by the whale-like Mathematics Department. When a so-called ‘physicist’ –
Tegmark – actually claims that ‘all mathematical structures exist physically
as well; every mathematical structure corresponds to a parallel universe’,
the wheel has turned full circle and we are back to Plato.

Enter Mark Levi. Not only does he argue that physical insight can,
and should, be a tool of discovery in mathematics, he illustrates this with a
panoply of ‘physical proofs’ of standard mathematical formulae. The range
and complexity of the problems the author tackles is astounding. We don’t
just get the well-known ‘lifeguard’ ‘proof’ of Snell’s Law but Pappus’s Cen-
troid Theorems, the Euler–Lagrange Equation, the Gauss–Bonnet Formula
and a whole lot more. This is a timely and altogether laudable book that I
hastened to order as soon as I heard of its existence. The approach taken
is very much needed in schools today where the potential Faradays of to-
morrow get put off by the dead weight of interminable formulae and finicky
algebraic proofs.

‘The real lesson’, the author concludes, ‘is that one should not focus
solely on one or the other approach, but rather look at both sides of the
coin. This book is a reaction to the prevalent neglect of the physical aspect
of mathematics.’
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Solution 293.4 – Triangular numbers
Let Tn = n(n+ 1)/2, the nth triangular number. Show that

(Tn − Tn−1)2 = Tn + Tn−1 = n2

and hence that
∑N
n=1 n

3 = T 2
N .

Stuart Walmsley
Given Tn = n(n+ 1)/2 and Tn−1 = n(n− 1)/2, we have

Tn + Tn−1 = n2, Tn − Tn−1 = n.

Hence (Tn − Tn−1)2 = n2 solving the first part of the problem:

(Tn − Tn−1)2 = Tn + Tn−1 = n2.

Further,
T 2
n − T 2

n−1 = (Tn − Tn−1)(Tn + Tn−1) = n · n2

giving
T 2
n − T 2

n−1 = n3. (1)

To prove
∑N
n=1 n

3 = T 2
N , simplify the notation by letting

∑N
n=1 n

3 = FN .
Then using (1),

FN − FN−1 = N3 = T 2
N − T 2

N−1

for all N . Also
F1 = 13 = T 2

1 ;

that is, the result is true for N = 1 and hence FN = T 2
N for all N .

Writing out the first few values explicitly:

1 = 1, 1 + 8 = 9, 1 + 8 + 27 = 36, 1 + 8 + 27 + 64 = 100.

Peter Fletcher
We have

Tn − Tn−1 =
n(n+ 1)

2
− (n− 1)n

2
=

n2 + n− (n2 − n)

2
= n

and

Tn + Tn−1 =
n(n+ 1)

2
+

(n− 1)n

2
=

n2 + n+ (n2 − n)

2
= n2;
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so the first result follows. Clearly

n3 = n · n2 = (Tn − Tn−1)(Tn + Tn−1) = T 2
n − T 2

n−1;

so we can write

N∑
n=1

n3 =

n∑
n=1

(
T 2
n − T 2

n−1
)

= T 2
1 − T 2

0 + T 2
2 − T 2

1 + · · ·+ T 2
N − T 2

N−1

= T 2
N − T 2

0 = T 2
N .

Chris Pile
The first few cases are neatly illustrated by pictures [see the colour version
of M500 for best effect—TF].

T1 = 1

T2 = 3

T3 = 6

T4 = 10

1 22 ´ 2 32 ´ 3 42 ´ 4
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T1 + T2 = 22

T2 - T1 = 2

T2 + T3 = 32

T3 - T2 = 3

T3 + T4 = 42

T4 - T3 = 4

Solution 169.4 – Functional inequality
The function f takes a positive integer, n, as an operand, and
must produce a positive integer result; that is, the function is
undefined unless both n and f(n) are positive integers. If, for
any positive integer, n, it is always true that f(n+1) > f(f(n)),
prove that f(n) = n must follow as a consequence.

Peter Fletcher
The question does not specify that f is linear, so what if f is nonlinear and,
e.g. f(n) = np for p > 1?

Then f(n + 1) = (n + 1)p 6> np
2

= f(f(n)) for n > 1 (try n = 2 and
p = 2) and we can rule out f being quadratic. We can obviously also rule
out any higher powers.

There are no further nonlinear functions that have inputs and outputs
both positive integers, so we are left with f being linear.

What if f(n) = qn for q > 1? Then f(n+ 1) = qn+ q 6> q2n = f(f(n))
for n ≥ 1 (try n = 1 and q = 2).

What if f(n) = n+ r for r ≥ 1? Then f(n+ 1) = n+ 1 + r 6> n+ 2r =
f(f(n)) (try n = 1 and r = 1).

From the above, we can conclude that if f(n) > n then the inequality
cannot be satisfied. We cannot have f(n) < n because f(1) < 1 can only be
true if f(n) ≤ 0, which is not allowed. We are therefore led to the conclusion
that the only way to satisfy the inequality for all n > 0 and f(n) > 0 is if
f(n) = n.
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Solution 294.2 – Columns
Initially, columns 1, 2, 3, . . . are all empty. For the integers
X = 1, 2, 3, . . . , add X to the appropriate column according to
the following rules.

1. Starting at C = 1, add X to column C if this has less than
two entries, or no two different entries in C add up to X.

2. If X could not be added, move on to the next column.

For example, after 1 to 9 are added, the columns look like this.
Column 1 2 3

1 3 8
2 5 9
4 6
7

Which column is 314159261234568 in?

Roger Thompson
Column 14.

Decimal 314159261234568 is 1112012100022222001222111221220 in
ternary. An algorithm for calculating which column X goes in is as fol-
lows.

If X = 2×3N , then X is in column N + 1. In all other cases, express X
in ternary, and proceed as follows, noting that ‘last’ means ‘least significant’.

If the last N digits are 1 followed by N − 1 zeros, then X is in column
N . For instance, if the last digit is 1, then X is in column 1, or if the last
two digits are 10, then X is in column 2.

If the last N digits are 1 followed by M zeros followed by 2 followed by
N −M −2 zeros, then X is in column N . For instance, if the last two digits
are 12, then X is in column 2.

In the remaining cases, add a leading zero to the ternary expression for
X, and set Y = 0. If the last N digits are 2 followed by M zeros followed
by 2 followed by N −M − 2 zeros, and this is true for no larger N , then
Y = N . Ignoring the last Y digits, find the last 0 digit, and remove all
digits before this. The column number for X is the number of digits in the
remaining expression.

Observe that for sufficiently large X, column C contains 2 × 3C−1, to-
gether with 2C−1 distinct integers modulo 3C−1. It is relatively straightfor-
ward to prove the above by induction.
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Solution 169.2 – Chords

If we have a regular pentagon in-
scribed in a circle with unit ra-
dius, show that the product of
the chords from any vertex to
each of the others is equal to 5.
That is

|AB| · |AC| · |AD| · |AE| = 5.

Show that a similar relation
holds for any regular n-gon.

A

B

CD

E

Peter Fletcher
Let ωm = exp(2πim/n), m = 0, 1, . . . , n− 1.

These n complex numbers lie at the vertices of a regular n-gon with the
first vertex at (1, 0). The number we are after is

n−1∏
m=1

|1− ωm|,

the product of the distances between (1, 0) and each of the other vertices in
turn. Consider

n−1∏
m=0

(z − ωm) = zn − 1.

This it true because the ωm are the n roots of unity. If we divide this
equation by z − 1, we get

n−1∏
m=1

(z − ωm) =
zn − 1

z − 1
.

We can recognise the RHS as being the sum of a geometric series with first
term 1 and common ratio z, i.e.

n−1∏
m=1

(z − ωm) =

n−1∑
k=0

zk.
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Now we put z = 1 and find that

n−1∏
m=1

|1− ωm| =

n−1∏
m=1

(1− ωm) =

n−1∑
k=0

1k = n.

I should own up to getting some hints from
https://math.stackexchange.com/questions/835278/

simple-prove-that-product-of-the-diagonals-of-a-polygon-n.

Solution 179.1 – Two cars
Two cars are heading towards one another from 100 miles apart
on a straight road. The first is going 60 m.p.h. and the second
is going 40 m.p.h. A fly starts at the front bumper of the first
car and flies to the second and then back to the first, then back
to the second, etc. Eventually there is a god-awful crash and our
fly is squashed. If the fly can fly 50 m.p.h., how far does he fly
before the smash?

Peter Fletcher
We know immediately from the information in the question that the cars
will crash after 60 minutes. If we assume that the fly’s velocity is 50 m.p.h.
relative to the road, there is a simple answer. The fly travels for 50 miles and
avoids the crash, which happens 10 miles away. There is no back-and-forth
flying.

On the other hand, from the wording of the problem it seems reasonable
that the fly should inherit the speed of whichever bumper it has launched
itself from. Relative to the road its speed will therefore be 110 m.p.h. for
the first car, 90 m.p.h. for the second. This is what we assume in what
follows.

The speed of car 1 is 1 mile per minute (m.p.m.), the speed of car 2 is
40/60 m.p.m. or 2/3 m.p.m., the speed of the fly after launching itself from
car 1 is (60 + 50)/60 m.p.m. or 11/6 m.p.m. and the speed of the fly after
launching itself from car 2 is (40 + 50)/60 m.p.m. or 3/2 m.p.m.

Let the road on which the cars are travelling be labelled the x-axis with
car 1 starting at x = 0 and car 2 starting at x = 100. We shall quote some
fractions to four decimal places.

The time for the fly to fly from car 1 to car 2 is given by

11

6
t1 +

2

3
t1 = 100

https://math.stackexchange.com/questions/835278/simple-prove-that-product-of-the-diagonals-of-a-polygon-n
https://math.stackexchange.com/questions/835278/simple-prove-that-product-of-the-diagonals-of-a-polygon-n
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so that t1 = 2/5 · 100 = 40 minutes.

In the first 40 minutes, car 1 moves to x = 40 and car 2 moves to x =
100− 2/3 · 40 = 73.3333; the fly flies 73.3333 miles (which is also 11/6 · 40).
The distance between car 1 and car 2 is now 73.3333− 40 = 33.3333 miles.

The time for the fly to fly back to car 1 is given by

t2 +
3

2
t2 =

100

3

so that t2 = 2/5 · 100/3 = 13.3333 minutes.

In this 13.3333 minutes, car 1 moves to x = 40 + 13.3333 = 53.3333, car
2 moves to 73.3333− 2/3 · 13.3333 = 64.4444; the fly flies 3/2 · 13.3333 = 20
miles. The distance between car 1 and car 2 is now 64.4444 − 53.3333 =
11.1111 miles.

We are now effectively back at the starting position, but with 100 miles
shortened to 11.1111 miles.

In subsequent flights from car 1 to car 2 and back to car 1, in each
leg the distance between the cars would shorten by a factor of 3. In our
equations for the time for the fly to fly from one car to the other, these
distances are the RHS’s; so each subsequent time would also go down by a
factor of 3. We can summarize these times in the following table.

Time flying car 1 to car 2 Time flying car 2 to car 1

40.0000 min 40.0000/3 = 13.3333 min
13.3333/3 = 4.4444 min 4.4444/3 = 1.4815 min
1.4815/3 = 0.4938 min 0.4938/3 = 0.1646 min
0.1646/3 = 0.0549 min 0.0549/3 = 0.0183 min
0.0183/3 = 0.0061 min 0.0061/3 = 0.0020 min
0.0020/3 = 0.0007 min 0.0007/3 = 0.0002 min

Total 44.9999 min Total 14.9999 min

It is clear that with more decimal places and more times, the two totals
would get closer to 45 minutes and 15 minutes respectively. Therefore the
total distance that the fly flies before being squashed is

11

6
· 45 +

3

2
· 15 = 105 miles.
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Things you can’t buy in shops – IV
Tony Forbes
Following on from the lists that we printed in M500 278, M500 289 and
M500 293, here is another selection of useful items you might want to ask
for if your idle browsing in a shop gets interrupted by a salesperson who
enthusiastically expresses a willingness to provide you with assistance.

1. An electric kettle that doesn’t make a noise.

2. A pocket torch that does not switch itself on when carelessly placed
in one’s pocket.

3. A computer application that automatically sends ‘go away’ (or some-
thing similar) to the originator of any unsolicited message or adver-
tisement that suddenly appears on your screen.

4. A pair of dice that when thrown always shows a sum of either 7 or 11
but not always with the same numbers. I have only ever seen this in
films where, for example, our feisty heroine uses loaded dice to recoup
her errant father’s losses at the craps table by throwing in succession
{1, 6}, {1, 6}, {5, 6}, {2, 5}. But how could loaded dice actually work?
Obviously by some kind of quantum entanglement.

5. An electron microscope (to test yourself and your home for viruses).

6. Bananas that do not contain potassium-40. Surely here is an oppor-
tunity for an enterprising farmer to create a banana plantation where
the trees are fed only with carefully prepared nutrients. A facility for
enriching uranium for atomic bombs can easily be modified to work
with potassium. The harmful K-40 gets removed to leave only the
stable isotopes K-39 and K-41, which would then be used to man-
ufacture suitable plant feed. The main advantage is that the final
product—rather expensive bananas—would not be radioactive.

7. A cloverleaf mains connector for making a power lead for a computer.

The item that has been irritating me most of all is the last one. After
searching on the high street and online I have to conclude that no such thing
exists. The power lead for my computer has a cloverleaf connector at one
end, a standard 3-pin plug at the other end, and 5 m of industrial-strength
cable in between. It weighs 0.43 kg, it is bulky and there is no possibility
of non-destructive disassembly into separate components. The people who
make computer accessories evidently do not understand the basics of power
transmission. The computer uses less than 120 W. Therefore the current
required from the 240 V mains is less than 0.5 A. However, suppliers do not
supply anything rated below 10 A. The obvious solution is to buy a suitable
cable and wire it up myself to make a lightweight, compact power lead.
Unfortunately, unless someone can prove otherwise, that particular option
is, like the stable banana, currently unavailable.
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Front cover Graphical representation of a group divisible design with
block size 5 and type 1023 [https://arxiv.org/abs/2006.15734].
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