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Who discovered Snell’s law?
Alan Davies

1 Introduction

As a tutor at one of the 1980 M101 Summer Schools, I presented the Friday
morning lecture The mathematics of rainbows. It was written by John
Mason and he based it on the book by Carl Boyer (1959). When I got home
I bought a copy of the book and wrote a lecture/workshop on rainbows,
which I have developed continuously and presented many times to a wide
variety of audiences over the past forty years. While reading Boyer’s book
I was a little surprised to find out that there were other contributions to
the understanding of the law of refraction that I had learned at school.
However, to me it was still Snell’s law. Sometime later my wife and I
presented a series of workshops in schools in south west France. When I
showed the slide giving Snell’s law in the usual form

sin i/ sin r = k (1)

I was very surprised at the reaction “non! ce n’est pas vrai, c’est la loi de
Descartes”. So, to avoid an international incident, I used the French version
for the remaining workshops. That sparked an interest to find out more and
on seeing the article in Physics World (Kwan et al. 2002) I started to look
further.

2 Early thoughts on refraction

The use of highly polished curved mirrors, to focus sunlight to form fire,
has been known for at least three thousand years. By the fifth century
BC the Greeks had a knowledge of burning glasses as rudimentary lenses,
again to focus sunlight to form fire. However, the phenomenon of refraction
remained unconsidered for some centuries.

A good place to start is with Euclid (c.325BC–c.265BC). He is, of course,
best known for his work on geometry, which he presented in his treatise
Elements. He wrote a text, Optics, in which he described light as moving
in a straight line but made no mention of refraction. Ptolemy (c.85–c.165)
built on Euclid’s ideas and produced a text on optics in which he describes
the processes of reflection and refraction. He seems to understand that both
reflection and refraction take place in the plane containing the incident ray
and the normal, the dashed line in Figure 1. He demonstrates the law of
reflection using a goniometer, a copper disc with graduations, to measure
the incident and reflected angles simultaneously. For refraction he describes
an experiment in which a coin is placed at the bottom of a baptistir, a type
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of bowl. He then explains that the observer’s eye is placed in such a position
that the coin can’t be seen. Water is poured gently into the vessel until the
coin just becomes visible. This experiment is easy to do at home with a
large mug and often causes surprise for those who haven’t seen it before.
He then goes on to describe a quantitative method using the goniometer
of his reflection experiment to measure the incident and refracted angles.
Ptolemy obtained the values shown in Table 1. He also published values of
air/glass and water/glass. Very good descriptions of Ptolemy’s experiments
can be found in Pederson (1993) and in Callie Lane’s essay (2018), where
she provides some very helpful diagrams. The numerical values in Table 1

Table 1: Ptolemy’s incident and refracted angles for air/water

n 1 2 3 4 5 6 7 8
in (◦) 10 20 30 40 50 60 70 80
rn (◦) 8 15.5 22.5 29 35 40.5 45.5 50

were used subsequently up until a mathematical law was developed in the
seventeenth century.

It is often said that the Greeks didn’t do experiments but, according to
Feynman et al. (2011), Ptolemy couldn’t have obtained these values without
performing many observations. The values are not the result of careful
measurement for each angle but are interpolations from a few measurements.
It is not difficult to see from the second difference values (−0.5) in the table
that Ptolemy’s experimental results imply a quadratic relation and Godet
(2013) writes it in the form

rn = nr1 − 0.5
n (n− 1)

2
(2)

from which we can write r as a quadratic function of i as

r = ai− bi2

with a = 0.1r1 + 0.025 and b = 0.0025.

Ptolemy would not have written the rule in this form because such
algebraic representation was still some time away. However, he did believe
that there was a relationship between i and r and that his table showed
this relation numerically. Also, since the result is dependent on the value
of r1, errors here will be felt in all values. Using the correct sine law yields
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a value r1 ≈ 7.5 and Ptolemy’s value is out by about seven percent but
the others are remarkably accurate with an average error of less than two
percent. The earliest trigonometric ideas were developed some two hundred
years before Ptolemy and he would have known them but he didn’t relate
them to refraction. Ptolemy was aware that refraction occurred when light
passed from a rare medium into a dense medium and vice versa but he had
no concept of a physical parameter such as the refractive index.

The Islamic scholar Abu Said Ibn Sahl (940–1000) published On the
burning instruments in which he developed what we would recognise as the
sine law. He followed Ptolemy’s optical ideas, together with the theory of
conics, to show that parallel light beams are focused on a burning point by
a hyperboloidal lens. He obtained a constant geometrical ratio, which we
would now see immediately as the ratio of sines; see equation (1). Ibn Sahl
didn’t provide any experimental data. According to Godet (2013), he was
interested only in the theory of burning glasses and probably did not realise
that this constant ratio is a general law and that the constant is a physical
parameter which we know as the refractive index. During this Golden Age
of Islamic science Ibn al-Haytham (c.965–c.1040), also known as Alhazen,
was a leading mathematician and astronomer who, some four hundred years
before the Renaissance, proposed the scientific method of systematic obser-
vation, measurement and experiment together with the formulation, testing
and modification of hypotheses. He translated Ibn Sahl’s work but missed
the important law. He also translated Ptolemy’s work and thus perpetuated
the wrong law for another six hundred years.

3 Into the 17th century

All the usual suspects: Johannes Kepler (1571–1630), René Descartes
(1596–1650), Christiaan Huygens (1629–1695) and Isaac Newton (1643–
1727) had something to say about refraction. Let’s start with Kepler: he
developed the formula

i− r = µi sec r,

where µ is a constant. How he came to this complicated result is not clear,
however for small angles it approximates to the sine law if µ = 1 − 1/k.
Worse still, the formula is not symmetric in i and r as it should be since the
path of a ray of light between two points should be the same whichever of
them is the source. Kepler’s main interest was in the development of lenses
and he refers to the burning point as a fireplace leading us, from Latin, to the
word focus. Descartes, in his 1637 Dioptrique, described the sine law which
he developed from some physical mechanical processes using a conservation
of momentum approach. He imagined that light behaves like small particles
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which experience a force when reaching the boundary of the two media.
His argument is very difficult to accept, especially as he believed that light
travelled instantaneously, i.e. at infinite speed, and that it increased speed
on entering a denser medium! Newton also had the erroneous view that
light travelled faster in denser materials; however his main interest was in
the decomposition of white light into its constituent colours and not in the
description of refraction per se. He favoured a particle theory of light and
explained light phenomena in terms of mechanical processes. By the mid
1660s he was clearly familiar with the sine law. In 1678 Huygens stated his
principle of light as a wave: every point on a wavefront is itself the source
of a secondary wave. He used this principle to obtain the sine law in 1673.

Now we come to two lesser-known characters. Firstly we have the Dutch
astronomer and mathematician Willebrord Snellius (1580–1626) who, in
1621, developed the eponymous sine law using a geometrical argument (Lane
2018). However, he didn’t publish it and it remained unpublished until after
his death. Secondly we have the English mathematician and astronomer
Thomas Harriot (1560–1621), whose unpublished work of 1602 shows that
he too had the sine law.

At this stage there was no concept of the refractive index. Newton
looked for a characteristic property of a body called the refractive power in
a thin layer near the surface of the medium. He then classified materials
according to the ratio of the refractive power to the density. This refractive
power is related to the refractive index but is not the same thing. The
refractive index, as shown in equation (1), is given in terms of the speeds of
light, vi for the incident ray and vr for the refracted ray, as

k = vi/vr. (3)

However, that was not known at the time. The constant in the law was just
that: a constant and different observers had different ways of expressing it.
For example, Newton wrote it as the ratio of two integers, others wrote it
as a fraction with a fixed numerator and others with a fixed denominator,
usually 1. There was no indication that the light speed had anything to do
with refraction. It had to wait until Huygens’s wave approach for the speed
of light to be associated with refraction.

Nevertheless, we can now attempt to answer the question posed in the
title of this article. Contenders for discovery of the law, in chronological
order:
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� Ibn Sahl c.984

� Harriot 1602

� Snell 1621

� Descartes 1637

I leave it to the reader to judge. In France it will always be ‘la loi de
Descartes’ and elsewhere ‘Snell’s law’ although, perhaps, in the UK we
should call it ‘Harriot’s law’. Whichever we choose we shall have an exam-
ple of Stigler’s law of eponymy (Stigler 1980), which states ‘No scientific
discovery is named after its original discoverer’. Snell’s law is not alone
here, the Wikipedia page (2020) lists some one hundred and twenty such
incorrectly attributed laws, including that of Stigler.

There were two schools of thought concerning the nature of light. New-
ton, and others, believed that light was a beam of particles and this led to
the explanation of refraction in geometrical terms. However, others such
as Huygens believed in the wave nature of light. In his 1678 Traité de la
lumière Huygens proposed that every point reached by a light disturbance
becomes itself the source of a wave and this became known as Huygens’s
Principle. Using this principle he was able to show that refraction can be
explained by treating light as a wave and thus relating the physical process
to the property of light itself. The fact that the incident and refracted rays
lie in the same plane also follows from Huygens’s analysis of light as a wave.

A mathematical development of the sine law was first given by Pierre de
Fermat (1607–1665). His Principle of least time, proposed in 1662, states
that light travels between two points in such a way that it takes the mini-
mum time. Strictly speaking it says that the time taken is stationary with
respect to variations in the path but minimum time is sufficient for us here.
Suppose that light travels from the point A, with speed v1 in a rare medium,
to the point B, with speed v2 in a dense medium, see Figure 1. Also, that
it crosses the interface at the point P with coordinates (x, b).

The time, T , to travel from A to B is given by

T =
1

v1

√
a2 + x2 +

1

v2

√
b2 + (d− x)

2
.

So that
dT

dx
=

1

v1

x√
a2 + x2

− 1

v2

(d− x)√
b2 + (d− x)

2
.
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Figure 1: Light traveling from point A to point B with speeds v1 and v2 in
the rare and dense medium respectively

For minimum time we require dT/dx = 0 from which it follows that

1

v1

x√
a2 + x2

=
1

v2

(d− x)√
b2 + (d− x)

2

and hence that
sin i

sin r
=

v1
v2

(4)

and so establishing the sine law.

For the specific establishment of a physical parameter associated with
the refraction properties of materials we have to wait until the nineteenth
century.

4 Beyond the 17th century

The main impetus in optics was the development of better and better lenses.
A major problem was chromatic aberration in which different colours are fo-
cused at different points. John Dolland (1706–1761) was one of the earliest
to make an achromatic lens in 1757 which he made by combining crown and
flint glass lenses. This combination of different materials made it very im-
portant to be able to understand the optical properties of different materials
as opposed to simply using the ratio of two sines.
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Thomas Young (1773–1829), in a series of lectures in 1807, introduced
the concept of the refractive index and the parameter would be a particular
characteristic property of each transparent material. He also stated that at
the interface between two materials the combined index of refraction would
be the quotient of the two respective indices. Independently, Joseph von
Fraunhofer (1787–1826), in 1814, developed the same idea and introduced
the symbol n. If two different materials have indices n1 and n2 then the
parameter k in equation (1), the index of refraction, is given by

k =
n1
n2
. (5)

This idea of Young and Fraunhofer was important because it gave each
medium its own refractive property rather than treating pairs of connected
media as single entities.

We define the refractive index of a medium as

n =
c

v
, (6)

where c is the speed of light in vacuum and v is the speed of light in the
medium. Equation (5) then yields the refractive index at the interface of
two materials in terms of the ratio, v1/v2, of the velocities.

The refractive index given by equation (5) allows us to write Snell’s law
in a symmetric form. Consider the set-up in Figure 1. The law should be
the same for light travel from B to A as it is from A to B. If, in Figure 1,
we write θ1 for i and θ2 for r then equations (1) and (5) yield

n1 sin (θ1) = n2 sin (θ2) (7)

and the law shows the correct symmetry between incident and refracted ray.
Indeed, in equation (7) it doesn’t matter which is the incident angle and
which is the refracted angle.

With the refractive index given by equation (6) we can write it in terms
of the electromagnetic properties of the material. In 1861, James Clerk
Maxwell (1831–1879) published his eponymous equations from which he
deduced that the speed of light in a vacuum was related to the electrical
permittivity, ε0, and the magnetic permeability, µ0, by the equation

c = (ε0µ0)
−1/2

. (8)

Now we can use equations (6) and (8) to relate the refractive index to the
properties of a material, in which light speed is v and whose permittivity
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and permeability are ε and µ respectively, as

n =
(εµ)

−1/2

(ε0µ0)
−1/2

and this is usually written in terms of the relative permittivity and perme-
ability as

n = (εrµr)
−1/2

, (9)

where εr = ε/ε0 and µr = µ/µ0.

That’s as far as we shall go here. However, equation (9) is the start-
ing point for the modern development of refractive optics beginning in the
twentieth century. The equation allows for the possibility of a negative
refractive index. Also, we mentioned earlier that colours are refracted at
different angles. This is, of course, true for the electromagnetic spectrum
in general and from the wave nature we can relate the refractive index to
frequency and for some materials it is convenient to write the wave nature
in complex form and hence have a complex refractive index. The study of
such materials is currently an important area of research.
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Solution 294.9 – Mod 240
Show that (P 2 −Q2)

√
PQ ≡ 0 (mod 240) if P −Q is even and

PQ is a square.

Ted Gore
We have 240n = (P 2 − Q2)

√
PQ = (P − Q)(P + Q)

√
PQ, where P − Q,

P +Q are both even and PQ is a square.

Let P −Q = 2a, let P +Q = 2b and let
√
PQ = c. Then P = a+ b and

Q = b− a, so that PQ = c2 = b2 − a2.

Thus c, a and b are the sides of a right-angled triangle with b as the
hypotenuse. Since every Pythagorean triple has at least one component
divisible by 3, one by 4 and one by 5 it is always the case that 2a2bc is
divisible by 240. The table gives solutions for c from 3 to 10.

c a b n

3 4 5 1
4 3 5 1
5 12 13 1
6 8 10 8
7 24 25 70
8 6 10 2
9 12 15 27
10 24 26 104

Problem 297.1 – Matrix square root
Reinhardt Messerschmidt
Suppose n ∈ {2, 3, 4, . . . } and α, β are real numbers such that α − β ≥ 0
and α + (n − 1)β ≥ 0. Let M be the n × n matrix whose diagonal entries
are all α and whose other entries are all β. Find a square root for M , i.e. a
matrix S such that S2 = M .

Problem 297.2 – Two trigonometric integrals
Tony Forbes
Evaluate ∫

sin7 x

cos5 x
dx and

∫
sin5 x

cos7 x
dx.

In the opinion of me exactly one of these is not easy.
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Solution 292.6 – Tracks

This is like Problem 257.4 – Tracks (which was answered by
Reinhardt Messerschmidt in M500 259) but the final question
is different. Your MP3 player has tracks, T0, T1, . . . , Tn of
lengths t0, t1, . . . , tn respectively. The device selects tracks
at random and plays them in full. The probability of track
Ti getting selected is proportional to ti. What is the expected
minimum playing time to hear each track at least once?

Reinhardt Messerschmidt

General case

Assume that the device stops at the moment when each track has been
played in full at least once. Let

(i) E be the expected total playing time;

(ii) pi = ti/(t0 + t1 + · · ·+ tn), i.e. pi is the probability that Ti is selected;

(iii) Ai = {0, 1, . . . , n} − {i};

(iv) Aij = {k ∈ Ai : k < j}.

Consider the following event:

(i) Ti is the last track that is played;

(ii) m tracks are played in total before Ti, i.e. m ≥ n;

(iii) for each j ∈ Ai, track Tj is played mj times before Ti, i.e. mj ≥ 1 and∑
j∈Ai

mj = m.

If this event occurs, then the total playing time is

ti +
∑
j∈Ai

mjtj .

The probability of the event is[ ∏
j∈Ai

(
m−

∑
k∈Aij

mk

mj

)
pj

mj

]
pi.
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It follows that

E =

n∑
i=0

Ei;

where

Ei =

∞∑
m=n

∑
(mj)j∈Ai
mj≥1∑

j∈Ai
mj =m

[
ti +

∑
j∈Ai

mjtj

][ ∏
j∈Ai

(
m−

∑
k∈Aij

mk

mj

)
pj

mj

]
pi.

It is not clear if this expression can be simplified. We will look at some
special cases.

Generalized geometric series

We will use the following formula repeatedly: if r is a positive integer and
a, b, p are real numbers with |p| < 1, then

∞∑
m=r

(a+ bm)pm = a

∞∑
m=r

pm + b

∞∑
m=r

m∑
k=1

pm

= a

∞∑
m=r

pm + b

( r−1∑
k=1

∞∑
m=r

pm +

∞∑
k=r

∞∑
m=k

pm
)

=
apr

1− p
+ b

( r−1∑
k=1

pr

1− p
+
∞∑
k=r

pk

1− p

)
=

apr

1− p
+
b(r − 1)pr

1− p
+

bpr

(1− p)2
. (∗)

Two tracks

Suppose that the device has two tracks. Without loss of generality, assume
that t1 = 1; and let t = t0. In this case,

E0 =

∞∑
m=1

(t+m)

(
1

t+ 1

)m(
t

t+ 1

)

and

E1 =

∞∑
m=1

(1 +mt)

(
t

t+ 1

)m(
1

t+ 1

)
.
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By (∗),
∞∑

m=1

t

(
1

t+ 1

)m(
t

t+ 1

)
=

t2

t+ 1

∞∑
m=1

(
1

t+ 1

)m

=
t2

t+ 1

(
1

t+ 1

)(
t+ 1

t

)
=

t

t+ 1
;

and

∞∑
m=1

m

(
1

t+ 1

)m(
t

t+ 1

)
=

t

t+ 1

(
1

t+ 1

)(
t+ 1

t

)2

=
1

t
;

therefore

E0 =
t

t+ 1
+

1

t
.

Similarly,

E1 =
t

t+ 1
+ t2;

therefore

E =
t2 + (t+ 1) + t2 + t3(t+ 1)

t(t+ 1)
=

t4 + t3 + 2t2 + t+ 1

t(t+ 1)
.

For tracks of equal length, i.e. t = 1, we have E = 3. The function E
achieves a minimum of 2.7419 at t = 0.6928 (with rounding to four decimal
places). The asymptotic behaviour of E is

E ∼ t2 as t −→∞, E ∼ t−1 as t −→ 0;

by which we mean

lim
t→∞

(E/t2) = 1, lim
t→0

(E/t−1) = 1.

Three tracks, two of the same length

Suppose that the device has three tracks, with two of the same length.
Without loss of generality, assume that t1 = t2 = 1; and let t = t0. In this
case,

E0 =

∞∑
m=2

m−1∑
m1=1

(t+m1 + (m−m1))

(
m

m1

)(
1

t+ 2

)m1
(

1

t+ 2

)m−m1
(

t

t+ 2

)
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and

E1 =

∞∑
m=2

m−1∑
m0=1

(1 +m0t+ (m−m0))

(
m

m0

)(
t

t+ 2

)m0
(

1

t+ 2

)m−m0
(

1

t+ 2

)
.

By symmetry, E2 = E1. The inner sums in the expressions for E0, E1, E2

can be simplified using the binomial theorem. The outer series can then be
simplified using (∗). The algebra involved in adding up the results is very
messy; using a symbolic computer algebra system is recommended. The
final answer is

E =
3t5 + 9t4 + 12t3 + 22t2 + 12t+ 8

2t(t+ 1)(t+ 2)
.

For tracks of equal length, we have E = 5 1
2 . The function E achieves a

minimum of 5.2627 at t = 0.7632. The asymptotic behaviour of E is

E ∼ 3
2 t

2 as t −→∞, E ∼ 2t−1 as t −→ 0.

Ted Gore
It is useful to think of the process as a series of n + 1 stages. Each stage
consists of several tracks (possibly 0) which have been played previously
and ends with a track being played for the first time.

We can think of the selection of previously played tracks as a series of
failures (the selected track has already been played) followed by a success.
Such a process follows a geometric distribution: (1− p)k−1p, where p is the
probability of a success. For each stage, the expected value of the number
of failures before a success is 1/p− 1.

Let R be the run time of the whole album. For each stage i let Pi be
the run time of the tracks that have been played at least once and Qi the
time of the tracks yet to be played. The probability of a success is Qi/R
and the expected number of repeat tracks played is R/Qi − 1 = Pi/Qi.

We use Reinhardt Messerschmidt’s answer to problem 257.4 to calculate,
at each stage, the playing time of each replay of a previously played track.

For each track j that has already been played at least once we have that
the proportion of playing time for that track is T 2

j /P
∗, where

P ∗ =
∑
j

T 2
j .
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And the estimated playing time for each repeated track is
∑

j T
3
j /P

∗. Then
for stage i the total time taken for repeated tracks is

Ui =
Pi

Qi
·
∑
j

T 3
j

P ∗
.

Let the total time of stages 0 to N be Xs, where we include the time
for each track being played for the first time. Then

Xs = R+

N∑
i=1

Ui.

Now Xs is the calculated running time of the album, with repeats, for
a particular permutation s of the track times and there will be (N + 1)!
permutations.

The average playing time for a given combination of track times is there-
fore

∑
Xs
/(N + 1)!.

In order to check the validity of the calculation, I wrote a program that
simulates the process laid down in the question many times while randomly
changing the permutation of the given track times in order to arrive at
an average. A second part of the program performs the calculation for
comparison. This second part includes the assumption that the order in
which each track is played for the first time is the order of the relevant
permutation.

Using randomly generated track times that average 3.5 (the average
length of pop songs according to the internet) with N = 4, I ran the program
10 times with the following results.

Average time by simulation = 42.37.

Average time by calculation = 41.51.

We can get some idea of the spread of times depending on the particular
permutation

Average calculated time for a permutation with times arranged in
strictly ascending order = 37.94.

Average calculated time for a permutation with times arranged in
strictly descending order= 48.19.

These spreads suggest a refinement to the calculation. They indicate
that the more probable the permutation is to arise, the greater is the time
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it takes. We apply Reinhardt’s result to the Xs values of all permutations
giving a final average calculated time of 42.54. The average difference be-
tween the simulated time and calculated time without this refinement was
0.86 minutes; with the refinement 0.17.

Taking the permutation providing the shortest time for each run, the
average is 33.11 and the longest time is 54.22. The permutation giving the
least time tended to correlate more highly with the ascending order and the
highest with the descending.

Re: Problem 276.6 – Alphabetic sum

Compute

24∑
n=1

n∑
i=1

(
(X −A)1−i(X −B)2−i . . . (X − Z)26−i

)24−n
.

It looks as if this problem should have some kind of hypothesis concerning
the nature of the variables A, B, . . . , Z. Well, in fact there originally were
conditions but I (TF) deliberately omitted them in order to invite readers
to study the problem generally. Such analysis would be very interesting.
Ideally—but admittedly it would be somewhat demanding—one should plot
the expression as a function of A, B, . . . , Z and look at the graph.

With no assumptions Mathematica gives up and returns the answer
Indeterminate because it does not assign a value to 00. However, if you
force 00 = 1, a sensible choice if you consider the problem to be set in the
domain of discrete mathematics, then Mathematica returns 24, presum-
ably by treating the variables as general and assuming that A, B, . . . , W ,
Y , Z 6= X.

On the other hand, if you are working with matrices, then Mathemat-
ica is quite happy with [0]0: MatrixPower[{{0}},0] = {{1}}.

While we are on the subject: . . .

Re: Problem 288.3 – Digit powers
Show that n = 1 and n = 3435 are the only instances of∑

d, d runs through the digits of n d
d = n. Or find another.

. . . One or two readers discovered n = 438579088 somewhere in the popular
mathematical literature. Unfortunately it doesn’t work because the dd sum
is 438579089. Recall that in arithmetic an empty sum is 0, but an empty
product such as 00 =

∏0
j=1 0 or 0! =

∏0
j=1 j is equal to 1.
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Solution 294.1 – Quartic
Show that tan2(πt/16), t = 1, 3, 5, 7, are the roots of

x4 − 28x3 + 70x2 − 28x+ 1 = 0.

Stuart Walmsley
To simplify notation let tt = tan(πt/16), ct = cos(πt/16), st = sin(πt/16).
Then it is required to show that

t8k − 28t6k + 70t4k − 28t2k + 1 = 0, k = 1, 3, 5, 7.

Using tk = sk/ck (and reversing the order) this is replaced by

c8k − 28c6ks
2
k + 70c4ks

4
k − 28c2ks

6
k + s8k = 0.

Using
(c2k + s2k)4 = c8k + 4c6ks

2
k + 6c4ks

4
k + 4c2ks

6
k + s8k = 1

this becomes
1− 32c6ks

2
k + 64c4ks

4
k − 32c2ks

6
k = 0

and hence
1− 32c2ks

2
k(c4k − 2c2ks

2
k + s4k) = 0,

which can be factored

1− 32c2ks
2
k(c2k − s2k)2 = 0.

Then using c2k = c2k − s2k and s2k = 2cksk this becomes 1 − 8s22kc
2
2k = 0.

And since s4k = 2c2ks2k, we have 1− 2s24k = 0; so that s24k = 1/2.

To summarize, if tan 2θ is a root of

x4 − 28x3 + 70x2 − 28x+ 1 = 0,

then sin2 4θ = 1/2. This equation is satisfied when

4θ = π/4, 3π/4, 5π/4, 7π/4

and
θ = π/16, 3π/16, 5π/16, 7π/16

which proves the required result.
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Peter Fletcher
If we substitute x = sec2(θ)−1 in the given quartic and tidy up the resulting
expression, we obtain

128 cos8(θ)− 256 cos6(θ) + 160 cos4(θ)− 32 cos2(θ) + 1

cos8(θ)
.

We could now use de Moivre’s identity to write this equation in terms of
cosines of multiple angles, but it’s much easier to simply put each of the
four powers of cos(θ) into Wolfram Alpha and click the ‘=’. Plugging the
four sums so-obtained into the numerator of the above equation turns it
into

cos(8θ)

cos8(θ)
.

Now putting θ = πt/16 in the numerator makes it cos(πt/2): so now if
t = 1, 3, 5, 7, in each case we get the cosine of an odd multiple of π/2,
which is zero. It is obvious that the denominator in these four cases is not
zero.

Therefore, what we have shown is that tan2(πt/16), t = 1, 3, 5, 7, are
indeed the four roots of the given quartic.

Solution 187.2 – 29
Find all solutions in integers n, a0, a1, . . . , an and b of

29

n∑
k=0

ak10k = 10

n∑
k=0

ak10k + b(10n+2 + 1),

where n ≥ 1, 1 ≤ an, b ≤ 9 and 0 ≤ a0, a1, . . . , an−1 ≤ 9.

Peter Fletcher
It is not clear why the title of this problem is ‘29’ and not ‘19’ since the
given equation is exactly the same as

19

n∑
k=0

ak10k = b(10n+2 + 1).

If we divide both sides of this equation by 19, it becomes a search for
expressions of the form

10n+2 + 1

19
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that evaluate to integers.

By trying n = 1, 2, . . . 43, it quickly becomes apparent that when n+ 2
is an odd multiple of 9, 10n+2 + 1 is then divisible by 19.

If we put n = 7 so n + 2 = 9 in the top equation and solve for a0, we
find that

a0 = 52 631 579b− a1101 − a2102 − a3103 − a4104 − a5105 − a6106 − a7107,

which is true with the given conditions only if b = 1, and a0, a1 . . . , a7 are
the digits of 52 631 579 in reverse order.

With n = 25 so n+ 2 = 27, we again have b = 1 and a0, a1, . . . , a25 etc.
are the digits of

52 631 578 947 368 421 052 631 579

in reverse order.

Some subsequent integer values of (10n+2 + 1)/19 are:

52 631 578 947 368 421 052 631 578 947 368 421 052 631 579 with n+ 2 = 45;

52 631 578 947 368 421 052 631 578 947 368 421 052 631 578 947 368 421 052 631
579 with n+ 2 = 63;

52 631 578 947 368 421 052 631 578 947 368 421 052 631 578 947 368 421 052 631
578 947 368 421 052 631 579 with n+ 2 = 81;

52 631 578 947 368 421 052 631 578 947 368 421 052 631 578 947 368 421 052 631
578 947 368 421 052 631 578 947 368 421 052 631 579 with n+ 2 = 99.

We conclude that b is always 1, a0 = 9, and n + 2 = 18m + 9 or
n = 18m + 7 for integer m; and, from close study of the above numbers,
that once n is big enough such that the following are no longer zero,

a1 = a18q+1 = 7

a2 = a18q+2 = 5

a3 = a18q+3 = 1

a4 = a18q+4 = 3

a5 = a18q+5 = 6

a6 = a18q+6 = 2

a7 = a18q+7 = 5

a8 = a18q+8 = 0

a9 = a18q+9 = 1

a10 = a18q+10 = 2

a11 = a18q+11 = 4

a12 = a18q+12 = 8

a13 = a18q+13 = 6

a14 = a18q+14 = 3

a15 = a18q+15 = 7

a16 = a18q+16 = 4

a17 = a18q+17 = 9

a18 = a18q+18 = 8

where q = 0, 1, 2, . . ..
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Solution 288.6 – Icosahedron in a cylinder
What is the smallest radius of a cylinder into which you can
insert a regular icosahedron with edge length 1?

Chris Pile
The regular icosahedron has 20 equilateral triangular faces and 12 vertices.
Each of the vertices can be viewed as the summit of a pentagonal pyramid.
The diagram (1) on page 21 is looking down on vertex P with the base of the
pyramid ABCDE. The point O is directly below P in the place ABCDE.

The internal angles of the pentagon, each 3π/5, are trisected by lines
between alternate vertices such as AC, BD, BE, AD, EC (forming a pen-
tagram). Isosceles triangles ADC (etc.) and DTC (etc.) are similar, where
T is the intersection of BD and AC. Therefore AC/DC = DT/TC, and

AT = DT = DC = AB = 1,
1 + TC

1
=

1

TC
, TC2 + TC − 1 = 0.

Therefore TC = τ − 1, where

τ = (
√

5 + 1)/2.

Therefore AC (etc.) = τ . If M is the mid-point of BC, then

CM

OC
= sin

π

5
and

CM

CT
= cos

π

5
.

Let OC = r, the radius of the circle through the vertices in the plane
ABCDE. Then

CM

OC
=

1

2r
and

CM

CT
=

τ

2
.

Therefore
1

4r2
= 1− τ2

4
=

4− τ2

4
, r2 =

1

4− τ2
,

using sin2(π/5) = 1− cos2(π/5). Hence

r =
1√

4− τ2
= 0.8506508084.

The inverted pentagonal pyramid with vertex Q, diametrically opposite P ,
is rotated by π/5 from ABCDE so that the vertices appear as shown,
FGHJK. Thus PQ forms the axis of a cylinder, radius r, into which the
icosahedron can be inserted. All vertices except P and Q touch the inside of
the cylinder; so it appears to be the smallest radius as the other orthogonal
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views have a greater diameter.

The 12 vertices can be chosen to form three mutually orthogonal golden
rectangles with sides τ and 1, APKQ, EBFJ , HGCD. They intersect
at the centre of the icosahedron, S, which is the centre of the sphere that
passes through the vertices—the circumsphere. Its radius is given by R2

V =
R2

E + 1/4, where RE is the radius to a mid-point of an edge;

RE =
τ

2
= 0.8090169944, RV =

√
τ2 + 1

2
= 0.9510565163.

The radius of the sphere which touches the faces is RF; see diagram 3.

R2
F = R2

V −
1

3
, RF = 0.7557613141.

The distance between the opposite faces is 2RF = 1.511522628.

RV

RE

Τ

1

BE

J F

S

Conclusion The radius of the smallest cylinder is

r = 1/
√

4− τ2 = 0.8506508084.

A hoop of radius RE = 0.8090169944 can be fitted around the waist of the
icosahedron touching the edges of the ring of ten equilateral triangles. The
icosahedron can be posted through a letter box of height 1.511522628. The
sphere which encloses the icosahedron has a radius of RV = 0.9510565163.

The icosahedron can be inserted into a cylinder of radius r =
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0.8506508084 centred on the axis PQ. The cylinder, shown by the circle in
the plan view, touches five vertices in the plane ABCDE and the parallel
plane FGHJK. The circle is superimposed on the other two orthogonal
views. In diagram (2) CD is but 4CDK is not parallel to the paper.

H1L Plan

B

G

A

H

E

J

D

K

C

F

P
M

T

r

H2L Front elevation

B

P

E

J

Q

F

S

K

CD

O

RE

3

2

1 H3L Side elevation

S

A

K

B

F

C

G

P

Q

1

1

RE RF

RV
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Solution 13.1
Two circular cylinders of unit radius intersect at right angles.
What is the volume common to both cylinders? If that’s too
easy what volume is common to three cylinders of unit radius
with axes mutually perpendicular?

Peter Fletcher
Let the two cylinders have the x and y axes as centre lines and their cross-
sections have equations y2 + z2 = 1 and x2 + z2 = 1 respectively. From
above, we have

x

y

√
1− z2

where the visible parts are in bold and we have marked in red, the non-
visible edges of two slices parallel to the (x, y)-plane through the volume in
common between the two cylinders. As can be seen, these slices are squares
with sides varying between 2 in the (x, y)-plane and 0 at z = ±1. For
intermediate z, the side length of the square cross-section is 2

√
1− z2.

This can be seen by considering the cross-section through the cylinders
by the plane given by the line y = x and the z-axis, which must be an
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ellipse. If w is the line y = x, then this ellipse has equation

w2

a2
+
z2

b2
= 1 or

w2

2
+ z2 = 1

since the semi-major axis is
√

2 and the semi-minor axis is 1. Solving for w
gives w = ±

√
2(1− z2), which is half the diagonal of a square cross-section

at height ±z. This gives half the side length as
√

1− z2.

Therefore the volume common to two cylinders of radius 1 intersect-
ing at right angles is∫ 1

−1

(
2
√

1− z2
)2

dz = 4

∫ 1

−1

(
1− z2

)
dz = 4

[
z − z3

3

]1
−1

=
16

3
.

With three cylinders intersecting at right-angles, we have a central cube
that needs to fit inside a cylinder of radius 1. Considering a face of this
cube, the distance corner to corner is 2, so its side length is clearly

√
2 and

its volume is 2
√

2.

Each face of this cube will have a ‘cap’, the intersection of two cylinders
inside the third, but outside the central cube. Thus we want the same
integrand as before, but the half the side length of the cube as lower limit:∫ 1

√
2/2

(
2
√

1− z2
)2

dz = 4

[
z − z3

3

]1
√
2/2

=
8− 5

√
2

3
.

Therefore the volume common to three cylinders of radius 1 intersecting at
right angles is

2
√

2 + 6

(
8− 5

√
2

3

)
= 8(2−

√
2).

For inspiration with the above, Wolfram’s page on the Steinmetz solid (the
volumes of two of which we found above) was very helpful:
https://mathworld.wolfram.com/SteinmetzSolid.html

See also: Problem 189.3 – Amazing object, Andrew Pettit; Solution 189.3,
Dick Boardman, Barbara Lee, David Kerr, M500 192; Problem 242.6 –
Three cylinders; Solution 242.6, Tamsin Forbes, Tony Forbes, M500 245,
Steve Moon, M500 248; Problem 245.2 – Intersecting cylinders; Solution
245.2, Richard Gould, M500 248. — TF

https://mathworld.wolfram.com/SteinmetzSolid.html
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Problem 297.3 – Telling the time
Tony Forbes
Show that it is possible to tell the time on a standard 12-hour analogue clock
with no markings just by measuring the three angles between the pairs of
hands. For example, if the angles between the hands are (hour : minute,
hour : second, minute : second) = (225◦, 45◦, 180◦), then it must be half past
one. Note, however, that this type of clock cannot distinguish between a.m.
and p.m.

It is probably a good idea to be consis-
tent about measuring angles. If you want
the hour : minute angle, for instance, orien-
tate the clock so that the minute hand is
pointing north and then measure the bearing
of the hour hand clockwise from north. So
the correct angles for 03:00:00 and 09:00:00
are (90◦, 90◦, 0◦) and (270◦, 270◦, 0◦) respec-
tively.

The above assumes that you can tell which hand is which. If you can’t,
show that it is usually still possible to tell the time and that exceptions
occur at half past the hours.

00:30:00 (195◦, 15◦, 180◦) 06:30:00 (15◦, 195◦, 180◦)
01:30:00 (225◦, 45◦, 180◦) 07:30:00 (45◦, 225◦, 180◦)
02:30:00 (255◦, 75◦, 180◦) 08:30:00 (75◦, 255◦, 180◦)
03:30:00 (285◦, 105◦, 180◦) 09:30:00 (105◦, 285◦, 180◦)
04:30:00 (315◦, 135◦, 180◦) 10:30:00 (135◦, 315◦, 180◦)
05:30:00 (345◦, 165◦, 180◦) 11:30:00 (165◦, 345◦, 180◦)

Problem 297.4 – Bridge
Tony Forbes
A problem for Bridge fans. Devise an arrangement of the cards and a bid-
ding sequence where you could realistically and sensibly end up as declarer
playing in 8♦. Assume such a bid is legitimate. Assume you and the other
three players always bid and play intelligently.

Whether bids at the eighth level should be allowed is a debatable point.
The practice is currently banned by World Bridge Federation rules, but that
has not always been the case.
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Problem 297.5 – A gun and a wall
A wall is separated from a gun by 2 m. The height of the wall is h > 2 m.
A bullet is fired with velocity vm/s orthogonally towards it. See the front
cover for a picture. With the usual assumptions show that if the bullet
clears the wall, then it will land somewhere on a line of length

L =
4h
√
v4 − 4g2 − 2hv2g

g(h2 + 4)
m.

Problem 297.6 – Polygons
Prove that if polygon A fits inside polygon B, then the fitting can be done
with at least one side or diagonal of A parallel to at least one side or diagonal
of B. Or find a counter-example.

Mathematics in the kitchen – XII
Tony Forbes
The inverse square law in pictures.

2m

500W
Absorbed radiation

500C

22
= 125C watts

Very dangerous
[Standards for leaky ovens]

0.01m

2W
Absorbed radiation

2C

0.012
= 20000C watts

Extremely dangerous
[Compare above]
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04.00

Problem 297.7 – Two queens
Two queens are placed on an 8 metre square chessboard at random given
that they must be separated from each other by at least 2 metres. What’s
the probability that they do not attack each other.

Front cover Firing bullets over a wall. See Problem 297.5, page 25.


