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Decomposition of K10 into Petersen graphs
Reinhardt Messerschmidt
Many textbooks, for example [1], [2], [3], use the following problem as an
example of how linear algebra can be used to solve problems in graph theory:

Can the edges of K10 (the complete graph on 10 vertices) be
coloured red, green and blue in such a way that the resulting
red, green and blue spanning subgraphs are each isomorphic to
the Petersen graph?

The answer to the question is ‘no’, which is where [1], [2], [3] stop. We
will go one step further and identify the graph(s) that the blue graph can
be isomorphic to, given that the red and green graphs are each isomorphic
to the Petersen graph. This is not a new result, but I could find only one
reference, at [5], and the solution given there was not clear to me. I will
attempt to present a clearer solution.

Terminology and notation

Unless otherwise stated, the terminology and notation of [3] will be used.

Given a colouring of the edges of K10, let R, G, B denote the resulting
red, green and blue spanning subgraphs, and let AR, AG, AB denote their
adjacency matrices. If u, v are vertices of K10, then v is respectively a red
neighbour, green neighbour or blue neighbour of u if the edge uv is red, green
or blue.

Let P denote the Petersen graph, and let X denote the circulant graph
on 10 vertices with connection set {±1, 5}. Two drawings of X are shown
in Figure 1.

Main result

We claim that:

(i) there exists a colouring such that R ∼= P , G ∼= P , B ∼= X;

(ii) X is unique, in the sense that if R ∼= P , G ∼= P then B ∼= X.

Prerequisites

We will need the following results from section 8.8 of [3]:
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Figure 1: Two drawings of X

Proposition 1 If H is a k-regular graph with eigenvalue −k, then H has
a bipartite component.

Note that H itself is not necessarily bipartite. For example, if H is
the disjoint union of K4 and K3,3, then H is 3-regular and has −3 as an
eigenvalue, but it is not bipartite, because the K4 component has a triangle.

Proposition 2 If H is a connected k-regular graph, then k is a simple
eigenvalue of H with eigenvector 1.

Proposition 3 If H is a bipartite graph and λ is an eigenvalue of H with
eigenvector z = [a, b]T , where a, b are the values of z on the two parts of
H, then −λ is an eigenvalue of H with eigenvector [a, −b]T .

We will also need the following properties of the Petersen graph:

(i) its spectrum is 3, 1(5), (−2)(4);

(ii) any two adjacent vertices have no common neighbours;

(iii) any two non-adjacent vertices have exactly one common neighbour.

A consequence of (ii) and (iii) is that the Petersen graph has no triangles
and no 4-cycles.
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Vertex
Neighbours

Red Green Blue

0 3, 4, 6 2, 7, 8 1, 5, 9
1 3, 8, 9 4, 5, 7 0, 2, 6
2 5, 6, 8 0, 4, 9 1, 3, 7
3 0, 1, 5 6, 7, 9 2, 4, 8
4 0, 7, 8 1, 2, 6 3, 5, 9
5 2, 3, 7 1, 8, 9 0, 4, 6
6 0, 2, 9 3, 4, 8 1, 5, 7
7 4, 5, 9 0, 1, 3 2, 6, 8
8 1, 2, 4 0, 5, 6 3, 7, 9
9 1, 6, 7 2, 3, 5 0, 4, 8

Table 1: A colouring for which R ∼= P , G ∼= P , B ∼= X

Existence

If the edges of K10 are coloured according to Table 1, then the red and
green graphs are as in Figure 2, and the blue graph is as in Figure 1.

Uniqueness

Suppose that R ∼= P , G ∼= P . The objective is to show that B ∼= X.

Step 1. Since K10 is 9-regular and R, G are each 3-regular, the graph
B is 3-regular.

Step 2. This step is as in [1], [2], [3]. Let ER, EG be the eigenspaces of
R, G with respect to the eigenvalue 1, and let S be the span of ER ∪ EG.
Note that S ⊆ 1⊥ and dim ER = dim EG = 5; therefore

dimS ≤ dim(1⊥) = 9, dim ER + dim EG = 10;

therefore dimS < dim ER+dim EG. This implies that there exists a nonzero
x ∈ ER∩EG, because if ER∩EG = {0} then dimS = dim ER+dim EG. Since
AR +AG +AB = J − I, we have

ABx = (J − I −AR −AG)x

= 0− x− 1x− 1x

= (−3)x;



Page 4 M500 298

0

1

2

3
4

5

6

7

8

9

0
1

2

3

4

5

6

7

8

9

Figure 2: The red and green graphs resulting from the colouring in Table 1

therefore −3 is an eigenvalue of B. (The Petersen graph does not have −3
as an eigenvalue, so we can already conclude that B 6∼= P .) It follows by
proposition 1 that B has a bipartite component.

Step 3. Since B is 3-regular, each of its components has at least 4
vertices. One of the following therefore holds:

(i) B has exactly two components B1, B2, with B1
∼= K4 and B2 a bipar-

tite graph on 6 vertices;

(ii) B is a connected bipartite graph on 10 vertices.

We will show that (i) leads to a contradiction. (I believe that [5] omits this
necessary step.)

Suppose (i) holds. Let 0, 1, 2, 3 be the vertices of B1, i.e. the edges 01,
02, 03, 12, 13, 23 are blue. Let 4, 5, 6 be the red neighbours of 0. The edge
01 is blue; therefore 0, 1 are not adjacent in R; therefore 0, 1 have exactly
one common red neighbour. This implies that exactly one of 14, 15, 16 is
red. The other two are green, because the three blue neighbours of 1 are 0,
2, 3. We may assume that 14 is red and 15, 16 are green.

Similarly, one of 24, 25, 26 is red and the other two are green. The red
edge is in fact one of 25, 26, because if both 25, 26 are green then 15261
is a green 4-cycle. We may assume that 25 is red and 24, 26 are green.
Similarly, 36 is red and 34, 35 are green.

The edge 45 is blue, because if 45 is red then 0450 is a red triangle, and
if 45 is green then 3453 is a green triangle. Similarly, 46 and 56 are blue. It
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Figure 3: The two possibilities for B

follows that 4564 is a triangle in B2, which contradicts the fact that B2 is
bipartite.

Step 4. So far, we know that B is a connected 3-regular bipartite graph
on 10 vertices, and there exists a nonzero vector x such that ARx = AGx =
1x and ABx = (−3)x. Let V1, V2 be the two parts of B. Since B is regular,
the two parts have the same size, i.e. |V1| = |V2| = 5. We will show that
every u ∈ V1 has exactly one red neighbour in V2. Since |V2| = 5 and u has
exactly three blue neighbours in V2, it will also follow that u has exactly
one green neighbour in V2.

Let y be the vector that is 1 on V1 and −1 on V2. By propositions 2
and 3, the vector y is a simple eigenvector of B with eigenvalue −3; therefore
x, y are scalar multiples of each other. We may assume that x = y. Let
a, b be the number of red neighbours of u in V1, V2 respectively. Since
ARy = 1y, we have 1 · a + (−1) · b = 1. Since a, b ≥ 0 and a + b = 3, we
have a = 2 and b = 1, and so we are done.

Similarly, every vertex in V2 has exactly one red neighbour and exactly
one green neighbour in V1.

Step 5. The graph B can be viewed as a spanning subgraph of K5,5.
Let B be its complement with respect to K5,5. In other words, B consists
of all non-blue edges with one endpoint in V1 and one endpoint in V2. It
follows that B is a 2-regular bipartite graph; therefore B is a disjoint union
of cycles of even length; therefore B is isomorphic to one of the two graphs
in Figure 3.

Suppose, for a contradiction, that B is isomorphic to the left-hand side
graph in Figure 3. By step 4, we may assume that 03, 69, 25 are red and
05, 36, 29 are green. Suppose 06 is red. The edge 39 is then green, because
if 39 is red then 39603 is a red 4-cycle. The edge 26 is red, because if 26 is
green then 26392 is a green 4-cycle. The edge 59 is green, because if 59 is
red then 59625 is a red 4-cycle. The edge 02 is green, because if 02 is red
then 0260 is a red triangle. It follows that 02950 is a green 4-cycle, which
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is a contradiction. If 06 is green, then a contradiction can be derived in a
similar way.

Step 6. The complement, with respect to K5,5, of the right-hand side
graph in Figure 3 is the graph X in Figure 1.

Generalization

We can go even further and ask:

In how many ways can the edges of K10 be coloured red, green
and blue so that the resulting red, green and blue spanning
subgraphs are each a 3-regular graph?

It is reported in [4] that, for an appropriate definition of two colourings
being ‘different’, there are 8999 ways.
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Problem 298.1 – Vectors
Tony Forbes
Given an integer n ≥ 2, show how to construct a set of n mutually orthog-
onal linearly independent vectors of dimension n that includes the all-ones
vector. Here’s an example when n = 4:

{(1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 1,−1), (−1, 1, 1,−1)}.

https://mathoverflow.net/questions/87886
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Solution 208.2 – Binary tree
Imagine the picture below extended to infinity left, right, up and
down. It is clear that there are infinitely many nodes; but what
sort of infinity? Are the nodes countable or uncountable?

What about the simpler case, where the diagram extends to
infinity only to the right?

Peter Fletcher
The number of nodes in each layer from left to right is obviously

1, 2, 4, 8, 16, . . . = 20, 21, 22, 23, 24, . . . , 2n, . . . .

If we take logs to base 2 of the number of nodes in each layer and add 1, we
shall get 1, 2, 3, 4, 5, . . . , n+ 1, . . ..

Therefore we can put the numbers of nodes layer by layer in one-to-one
correspondence with every element of N and the total number of nodes is
countably infinite.

Georg Cantor
Was ist los mit dem folgenden Argument? Weisen Sie einem absteigenden
Pfad 0 und einem aufsteigenden Pfad 1 zu. Dann erzeugt jeder Pfad eine
eindeutige unendliche Folge von Nullen und Einsen. Nach meinem diago-
nalen Argument muss es also unzählige Wege geben.
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Solution 295.2 – States
What is the probability of winning a game of Hangman where
the words are restricted to the names of six-letter USA states.
Assume only one life. Assume also that you and your opponent
always play sensibly.

(At the start you choose a 6-letter USA state, S, say, and maybe
draw six dashes, . Then (∗) your opponent chooses a
letter, α, say. If α does not occur in S, the game ends and
you win. Otherwise you reveal the position(s) of α in S. If S
is identified, the game stops and you lose. Otherwise and the
game continues from (∗).) See also M500 276.

Ted Gore
I approached this question in an intuitive way. I first decided on a minimum
number of responses that player 2 should consider making and chose {a n}
since these letters allow player 2 to identify 4 and 3 of the states respectively
(based on the position of the chosen letter in the state name) and together
they cover all the states.

I grouped the states together in subsets AH = {Alaska, Hawaii}, KN =
{Kansas, Nevada} and O = {Oregon}

Player 2 can win by choosing ‘a’ if player 1 has chosen from AH; by
choosing ‘a’ or ‘n’ if player 1 has chosen from KN ; by choosing ‘n’ if player
1 has chosen O.

I chose to assume that the loser of each game would pay the winner 1
pound. In Game Theory terms this makes the game a zero sum game.

The game can be represented by a Game Theory tableau where 1,−1 is
a win for player 1 and −1, 1 is a win for player 2.

a n

AH −1, 1 1,−1
KN −1, 1 −1, 1
O 1,−1 −1, 1

Looking at this, player 1 is bound to lose by choosing KN and it can be
removed from the tableau leaving the following

a n

AH −1, 1 1,−1
O 1,−1 −1, 1
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A pure Nash equilibrium occurs when the result for a particular row and
column cannot be improved on for either player by moving to a different
row/column. There is no pure equilibrium in this game. There is a mixed
strategy Nash equilibrium. Both players should choose one of their options
at random with 0.5 probability. They will each win half of the games. There
are easy ways to calculate these probabilities for a 2× 2 game but they are
not suitable for larger games.

There is a way to reduce the number of rows or columns in a game
depending on the idea of dominance.

Row A strictly dominates row B if each outcome for player 1 using
choice A is greater than the corresponding outcome using choice B.

Row A weakly dominates row B if each outcome for player 1 using choice
A is greater than or equal to the corresponding outcome using choice B.

A column may dominate other columns in a similar fashion.

A strictly dominated row can be eliminated without affecting the equi-
libria. A weakly dominated row can be eliminated but may reduce the
number of Nash equilibria (and may therefore result in one or other of the
players missing a better strategy).

My intuitive decision to group states together in the six-letter game is
equivalent to removing weakly dominated strategies.

A better method for solving games is to use linear programming. I found
a solution to this game using the linear programming software in Octave
with player 2 considering using all 14 letters that appear in the state names.
The solution was the same as the one above. In this case the removal of
weakly dominated rows and columns did not affect the final result.

For the game with states with eight letter names I started with {a i n r
o l} for player 2 since each of these identifies three states. This starts as a
6× 6 game.

By iterative application of the removal of weakly dominated rows and
columns we arrive at the following.

n r o

D 1,−1 −1, 1 1,−1
K −1, 1 1,−1 1,−1
Ok 1,−1 1,−1 −1, 1

The solution to this game is that each player should employ a mixed strat-
egy, choosing each of their options at random with 1/3 probability. Player
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1 will win 2/3 of the games.

In this case the elimination of rows and columns has resulted in some
solutions being lost.

There are better mixed strategies for player 2.

The linear programming solution to the 6× 6 game with player 2 con-
sidering just the letters {a i n r o l} produced the following solution.

State Probability

D 1/5
K 2/5
M 1/5
Ok 1/5

Letter Probability

a 1/5
n 2/5
r 1/5
o 1/5

Using this strategy player 1 would win 3/5 of the games. It is obviously
better for player 2 to adopt this strategy rather than the one for the 3× 3
game.

The game in which player 2 considers using all eleven letters that occur
in 2 or 3 state names {a i n r o l e k m s u} gives the following solution.
Note that player 2 actually only needs to use six of the letters.

State Probability

D 2/11
I 1/11
K 3/11
M 2/11
Ok 2/11
V 1/11

Letter Probability

n 2/11
r 3/11
o 2/11
l 1/11
e 1/11
k 2/11

This results in player 1 winning 6/11 of the games, once again an improve-
ment for player 2.

The game in which player 2 considers using all 19 letters gives the same
result as above. No further improvement is possible for player 2.

A computer simulation confirmed the expected number of games won
using the above probabilities.

6-letter states: Alaska, Hawaii, Kansas, Nevada, Oregon;
7: Alabama, Arizona, Florida, Georgia, Indiana, Montana, Vermont, Wyoming;
8: Arkansas, Colorado, Delaware, Illinois, Kentucky, Maryland, Michigan, Mis-
souri (M), Nebraska, Oklahoma, Virginia.
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Solution 169.4 – Functional inequality
The function f takes a positive integer, n, as an operand, and
must produce a positive integer result; that is, the function is
undefined unless both n and f(n) are positive integers. If, for
any positive integer, n, it is always true that f(n+1) > f(f(n)),
prove that f(n) = n must follow as a consequence.

David Sixsmith
I must admit I am a little unsure about the solution to 169.4 in M500 296.
The solution states that powers are the only ‘nonlinear functions that have
inputs and outputs both positive integers’. But I don’t quite understand
this. For example, f(n) = n! is a counter-example.

This seems a really nice and quite tricky problem. Here is an alternative
solution. We have this function f defined from the natural numbers N to
itself, and such that:

f(n+ 1) > f(f(n)) for all n. (A)

We can rewrite this as

f(n) > f(f(n− 1)) for n > 1. (B)

We claim first that:
f(n) ≥ n for all n. (C)

We prove (C) by induction on f(n). When f(n) = 1 (C) asserts that
f(n) = 1 implies that n = 1. To see this suppose that f(n) = 1 and n > 1.
Then by (B) we have 1 = f(n) > f(f(n − 1)). This is impossible as it
asserts that the right-hand side is a natural number less than one. This
contradiction completes the proof in the case f(n) = 1.

Now suppose we have proved (C) for f(n) = 1, 2, . . . , m for some m ≥ 1.
We need to prove that (C) holds when f(n) = m + 1, i.e. that n ≤ m + 1.
We can suppose n > 1, since otherwise there is nothing to prove. By (B)
we have m + 1 = f(n) > f(f(n − 1)). Thus f(f(n − 1)) ≤ m. Hence we
can apply induction, twice, and deduce first that f(n − 1) ≤ m, and then
that n−1 ≤ m. Hence n ≤ m+1 as required. This completes the inductive
proof of (C).

Finally we need to show that (C) implies that f(n) = n for all n. Note
first by (A) and (C) that

f(n+ 1) > f(f(n)) ≥ f(n) for all n. (D)
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In other words, f is strictly increasing. Now, suppose by way of contradic-
tion that there is n such that f(n) > n, so that f(n) ≥ n + 1. Then, by
(A), and because f is strictly increasing,

f(n+ 1) > f(f(n)) ≥ f(n+ 1).

This is a contradiction which completes the proof.

Solution 293.2 – Graphs with integer eigenvalues
For i = 1, 2, . . . , define a graph Gi as follows.
Let ni = (i − 1)2 + 1. The vertices of Gi are 1, 2, . . . , ni.
For the edges, write down the pairs {a, b}, 1 ≤ a < b ≤ ni in
lexicographical order and remove the last i(i− 1)/2 items from
the list. The remaining ni(ni − 1)/2− i(i− 1)/2 pairs form the
edges of Gi.
Prove that the adjacency matrix of Gi has integer eigenvalues, or
find a counter-example. For the first few, we have the following.

i ni edges eigenvalues

1 1 0 0
2 2 0 0, 0
3 5 7 3,−2,−1, 0, 0
4 10 39 8,−3,−1,−1,−1,−1,−1, 0, 0, 0
5 17 126 15,−4,−1 eleven times, 0, 0, 0, 0
6 26 310 24,−5,−1 nineteen times, 0, 0, 0, 0, 0

Tommy Moorhouse
For each natural number i > 0 a graph G is constructed with ni vertices by
deleting the edges connecting a subset of i vertices. For i > 3 the construc-
tion is that of the smash product Kni−i∨Ni (see M500 Problem 294.6). An
adjacency matrix of a smash product G∨H where G has n vertices and H
has m vertices can be constructed as follows. Set an adjacency matrix for
G in the top left block of an (n+m)× (n+m) matrix, and set an adjacency
matrix for H in the bottom right block. Then fill the top right and bottom
left blocks with 1s. To avoid notational clutter we denote the blocks of 1s
by U , keeping in mind that they have different shapes in general. That is,(

Kn×n Un×m
Um×n Nm×m

)
→

(
K U
U N

)
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Suppose that Λ ≡ Kni−i ∨Ni has an eigenvector v, which we write in block
form as (tn, bm)T , so that Λv = λv. We write

∑
t for (

∑n
k=1 tk)Um×1 and∑

b for (
∑m

k=1 bk)Un×1. We have(
K U
U N

)(
t
b

)
=

(
Kt+

∑
b∑

t

)
=

(
λt
λb

)
.

Here we have used the unique adjacency matrix for Nm consisting of an
m×m block of zeros. The bottom block tells us that b is a scalar multiple
of Un×1, so that λ

∑
b = m

∑
t.

Now we consider the eigenvectors of Kn. It can be shown (see for
example M500 Solution 282.5) that the eigenvalues of Kn are n− 1 and −1
(n− 1 times). The eigenvector associated with n− 1 is Un×1. If Knt = −t
then

∑
t = 0 (check this). So we take t to be an eigenvector of Kn with

Kt = µt and find that

(λ− µ)t =
∑

b = λ−1m
∑

t.

We have two cases to consider. First, take µ = n − 1 and t = Un×1. Then∑
t = n and

λ(λ− µ) = mn.

The construction of G tells us that n = ni− i and m = i. The solutions for
λ (after some straightforward algebra) are

λ = i(i− 2), −(i− 1),

both integers.

Next consider Kt = −t, with
∑
t = 0. Then b = 0m×1 and λ+1 = 0, so

that λ = −1 for each such eigenvector. The number of nonzero eigenvalues of
Λ is the number of linearly independent rows in Λ, which is ni−i+1 = n+1.
The remaining i − 1 eigenvalues are zero. Thus by choosing t to be an
eigenvector of Kn we have found all the eigenvalues of G, which are all
therefore integers.

Problem 298.2 – Three 7-cycles
Take a K7, a complete graph on 7 vertices. Choose 7 of the 21 edges of
the K7 such that, together with their incident vertices, they form a 7-cycle.
From the remaining 14 edges of the K7, choose another 7 such that, together
with their incident vertices, they too form a 7-cycle. Do the remaining 7
edges together with their incident vertices form a 7-cycle?
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Solution 192.1 – Root 33
If θ = 2π/33, show that

cos θ + cos 2θ + cos 4θ + cos 8θ + cos 16θ =
1 +
√

33

4
.

Peter Fletcher
Let

S = cos(θ) + cos(2θ) + cos(4θ) + cos(8θ) + cos(16θ)

= <
(

exp(iθ) + exp(2iθ) + exp(4iθ) + exp(8iθ) + exp(16iθ)
)
.

If we write down the Gaussian sum per https://mathworld.wolfram.com/
GaussianSum.html with p = −2 and q = 33, we shall find that S is included
as part of the expansion of the sum.

This particular Gaussian sum is:

32∑
r=0

exp

(
2πir2

33

)
=
√

33

since 33 ≡ 1 (mod 4).

If we write out all 33 terms, we find that we can group them as follows,
remembering that exp

(
i(θ + 2π)

)
= exp(iθ):

√
33 = 1 + 4

[
exp

(
2πi

33

)
+ exp

(
2πi · 4

33

)
+ exp

(
2πi · 16

33

)
+ exp

(
2πi · 25

33

)
+ exp

(
2πi · 31

33

)]
+ 2

[
exp

(
2πi · 3

33

)
+ exp

(
2πi · 9

33

)
+ exp

(
2πi · 12

33

)
+ exp

(
2πi · 15

33

)
+ exp

(
2πi · 22

33

)
+ exp

(
2πi · 27

33

)]
.

Since the LHS of this equation is obviously real, we know that the imaginary
parts on the RHS must cancel out. If we put a ‘<’ in front of the RHS and
keep the real parts unchanged, the sum will still be

√
33 whatever we do to

the imaginary parts.

Now

exp

(
2πi · 25

33

)
= cos

(
2π · 25

33

)
+ i sin

(
2π · 25

33

)

https://mathworld.wolfram.com/GaussianSum.html
https://mathworld.wolfram.com/GaussianSum.html
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and

cos

(
2π · 25

33

)
= cos

(
2π · (33− 25)

33

)
= cos

(
2π · 8

33

)
,

so that

<
[
exp

(
2πi · 25

33

)]
= <

[
exp

(
2πi · 8

33

)]
.

Similarly,

<
[
exp

(
2πi · 31

33

)]
= <

[
exp

(
2πi · 2

33

)]
and inside the first pair of square brackets we have 1, 2, 4, 8 and 16 multiply-
ing 2πi/33 inside the exponentials. Thus we can write

√
33 as 1+4S+2<(T ),

where T is the sum of the remaining complex exponentials inside the second
pair of square brackets.

Of the terms in T , we can write

<
[
exp

(
2πi · 27

33

)]
= <

[
exp

(
2πi · 6

33

)]
and

<
[
exp

(
2πi · 22

33

)]
= cos

(
4π

3

)
= − 1

2
.

We can now identify the remaining five terms in T as forming
a geometric sum. Referring to https://mathworld.wolfram.com/

ExponentialSumFormulas.html, if we let N = 6 and x = exp(2π ·3/33),
we can write

<(T ) = <

[(
6∑

n=0

exp

(
2πi · 3n

33

)
− 1

)
− 1

2

]
.

From the link to Wolfram, we can write

6∑
n=0

exp

(
2πi · 3n

33

)
=

1− exp

(
2πi · 18

33

)
1− exp

(
2πi · 3

33

)

=
1− cos(12π/11)− i sin(12π/11)

1− cos(2π/11)− i sin(2π/11)

https://mathworld.wolfram.com/ExponentialSumFormulas.html
https://mathworld.wolfram.com/ExponentialSumFormulas.html
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=

(
1 + cos(π/11) + i sin(π/11)

)(
1− cos(2π/11) + i sin(π/11)

)(
1− cos(2π/11)

)2
+ sin2(2π/11)

.

The numerator of this last expression is

1− cos(2π/11) + cos(π/11)

− cos(π/11) cos(2π/11)− sin(π/11) sin(2π/11) + i=(expr)

= 1− cos(2π/11) + cos(π/11)− cos(2π/11− π/11) + i=(expr)

= 1− cos(2π/11) + i=(expr).

The denominator is

1− 2 cos(2π/11) + cos2(2π/11) + sin2(2π/11)

= 2− 2 cos(2π/11).

We can now write down

<(T ) =

(
1

2
− 1

)
− 1

2
= − 1

and √
33 = 1 + 4S − 2 = 4S − 1.

Therefore

S = cos(θ) + cos(2θ) + cos(4θ) + cos(8θ) + cos(16θ) =
1 +
√

33

4
.

Problem 298.3 – Balls
Let n ≥ 1 be an integer. Take a sufficiently large bucket and put in it a red
ball and a black ball. Perform the following step repeatedly. Remove a ball,
chosen uniformly at random, duplicate it, and then return the two balls to
the bucket.

What’s the probability that at some stage the bucket contains n red
balls and n black balls? Here’s a typical successful path (and hence one
contribution to the probability computation) when n = 3.

••
1
2−→ ••••

2
3−→ ••••••

1
4−→ ••••••

2
5−→ ••••••

The answer when n = 1 is 1. The balls in the top rows are red.
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Three aces

This is a card trick that was presented to us at the 2020 M500 Winter
Weekend by Angela and Paul.

Take a standard deck of cards and remove the four aces. Deal the rest
of the deck face down into three piles until the first pile has 14 cards and
the other two 15 cards each. Place the remaining four cards face down in a
fourth pile. Invite your victim to:

(i) shuffle the first pile;

(ii) put one of the aces face down on top of it;

(iii) shuffle the second pile;

(iv) choose a random number (0 to 15) of cards from the second pile and
place them face down on top of the ace on the first pile;

(v) put another ace face down on top of the second pile (which is not
necessarily non-empty);

(vi) shuffle the third pile;

(vii) choose a random number (0 to 15) of cards from the third pile and
place them face down on top of the ace on the second pile;

(viii) put another ace face down on top of the third pile (which is not nec-
essarily non-empty);

(ix) shuffle the fourth pile and place it on top of the third pile.

Now gather the three piles to form a single stack with the first pile at
the bottom, the second pile next, and the third pile at the top. Deal the
single stack face down alternately into two new piles, A and B, starting
with A.

Pick up the cards of A (so that A is now empty) and deal them face
down alternately on to A and B, starting with B.

Pick up the cards of A (so that A is now empty) and deal them face
down alternately on to A and B, starting with B.

Pick up the cards of A (so that A is now empty) and deal them face
down alternately on to A and B, starting with B.

Point out to the victim that he/she was responsible for the shuffling,
the random number choices and the ace placements in steps (i) to (ix),
above. Point out also that three aces were buried amongst 51 cards and
that pile A now contains three cards. Turn them over. Observe the looks
of astonishment on the faces of your audience. Why?
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Solution 192.2 – 10 degrees
Let x = 1 + 4 sin 10◦. Show that

x =

√
11− 2

√
11 + 2

√
11− 2x.

Peter Fletcher
We have

1 + 4 sin
( π

18

)
=

√
11− 2

√
11 + 2

√
11− 2x.

Squaring both sides,

1 + 8 sin
( π

18

)
+ 16 sin2

( π
18

)
= 11− 2

√
11 + 2

√
11− 2x.

Using 2 sin2(θ) = 1− cos(2θ), this becomes

1− 4 sin
( π

18

)
+ 4 cos

(π
9

)
=

√
11 + 2

√
11− 2x.

From WolframAlpha, we find (from entering ‘cos(B) − sin(A)’ and
‘cos(B) + sin(A)’ separately) that

cos(B)± sin(A) = 2 sin

(
A

2
− B

2
± π

4

)
sin

(
A

2
+
B

2
± π

4

)
so that using the − version,

1 + 4 sin

(
5π

18

)
=

√
11 + 2

√
11− 2x.

Here, the second sine is sin(−π/6) = − sin(30◦) = −1/2. A similar thing
happens the other times we use one of these identities below.

Squaring both sides,

1 + 8 sin

(
5π

18

)
+ 16 sin2

(
5π

18

)
= 11 + 2

√
11− 2x.

Using the double-angle formula again, this becomes

−1 + 4 sin

(
5π

18

)
+ 4 cos

(
4π

9

)
=
√

11− 2x
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and using the + version of the identity from WolframAlpha, we get

−1 + 4 sin

(
7π

18

)
=
√

11− 2x.

Squaring both sides,

1− 8 sin

(
7π

18

)
+ 16 sin2

(
7π

18

)
= 11− 2x.

Using the double-angle formula again, this becomes

−1− 4 sin

(
7π

18

)
+ 4 cos

(
2π

9

)
= − x.

Finally, using the − version of the identity from WolframAlpha, we get

−1− 4 sin
( π

18

)
= − x

or
x = 1 + 4 sin

( π
18

)
and the given expression is satisfied by x.

Solution 293.9 – Sin 105 degrees
What (if anything) is wrong with this argument? We have

sin 45◦ =
1√
2

and sin 60◦ =

√
3

2
.

Hence

sin 105◦ = sin 45◦ + sin 60◦ =
1√
2

+

√
3

2
=

1 +
√

3

2
√

2
.

Chris Pile
The ‘argument’ seems to be a piece of mathematical legerdemain where the
required result appears, as if by magic, after some misleading deceptions.

The word ‘Hence’ implies that sin(A+B) = sinA+sinB, and the result
of the calculation is obtained by optical illusion rather than addition! In
fact, 1/

√
2 +
√

3/2 = (
√

2 +
√

3)/2, which is greater than 1.
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I can remember some trig. identities, including sin(A + B) =
sinA cosB + cosA sinB. Therefore

sin 105◦ = sin(45◦ + 60◦) = sin 45◦ cos 60◦ + cos 45◦ sin 60◦

=
1√
2
· 1

2
+

1√
2
·
√

3

2
=

1 +
√

3

2
√

2
,

as expected. In the diagram, ABEG is a rectangle, |AB| =
√

3, |AG| =√
3 + 1 and |BC| = |DE| = |EF | = 1. [Exercise for reader: fill in the

remaining lengths and angles—TF.] Hence

sin 105◦ = sin 75◦ =
|AG|
|AF |

=
1 +
√

3

2
√

2
=

2

2
√

2
+

√
3− 1

2
√

2
=
|AC|
|AF |

+
|GF |
|AF |

.

Therefore

sin 105◦ = sin 45◦ + sin 15◦; sin(45◦ + 60◦) = sin 45◦ + sin(60◦ − 45◦).

This is true for any angle A, sin(A + 60◦) = sinA + sin(60◦ − A), because
cos 60◦ = 1− cos 60◦ = 1/2.

Another integral relationship can be found from pentagonal geometry:

sin 54◦ =
1√

5− 1
and sin 18◦ =

1√
5 + 1

.

Hence sin 54◦ − sin 18◦ = 1/2 = sin 30◦.

A G

B C D E

F

1 + 3

3

1 1

1

75 °



M500 298 Page 21

Peter Michael Neumann
Judith Furner
It was with great sadness that the M500 committee heard of the death of
Peter Neumann. I first met him in 1987, when I was organizing the M500
Revision Weekend at Aston University, and Peter came to speak on the
Saturday evening. He gave us the most fascinating talk on Galois Theory,
ending with the suggestion that some as yet undiscovered Galois papers
might be secreted somewhere in Paris. We were entranced. Had he said
that he had an aeroplane outside, to take us there, I think that we would
have obediently followed his lead, and made our way to Paris to assist the
search.

Subsequently I joined the British Society for the History of Mathemat-
ics, where Peter was a shining light, and I always enjoyed an interesting
conversation with him. He was a stalwart support of the Open University,
of the M500 Society, and a great promulgator of the joys of mathematics.
On one occasion I invited him to Café Scientifique in Brighton, and he once
again gave a fascinating talk.

Peter was unfailingly courteous and kind, interested in people and par-
ticularly students of mathematics everywhere. He is a great loss to the
mathematical world and we regret his passing.

Dorothy Leddy
Peter was a major international figure in algebra, the history of mathematics
and in mathematics education. He was a Tutorial Fellow at The Queen’s
College, Oxford, where he had gained his B.A. and his D.Phil, and a lecturer
in the Mathematical Institute in Oxford, retiring in 2008, whereupon he was
elected Emeritus Fellow. Peter gave great service to the College in many
roles throughout his years there. He always remained deeply committed
to it and its life, and he was much loved and respected by Fellows, staff
and students. He was a founder member of the lively Oxford Mathematics
Forum based at The Queen’s College, and supported it heartily to the very
end of his life.

Peter’s work was in the field of group theory. In all his work he demon-
strated enormous precision and attention to detail. This can be clearly seen
when in 2011 he published the first full English edition of the mathematical
writings of French mathematician Évariste Galois. In 1987 Peter won the
Lester R. Ford Award of the Mathematical Association of America for his
review of Harold Edwards’ book Galois Theory. He was the first Chairman
of the United Kingdom Mathematics Trust, from 1996 to 2004, and in the
2008 New Year Honours he was appointed Officer of the Order of the British
Empire (OBE) for services to education. Peter was President of the Math-
ematical Association from 2015 to 2016. He also served as President of the
British Society for the History of Mathematics, whose Neumann Prize is
named in his honour. These are just a few of Peter’s many accolades and
appointments. He died on 18th December, 2020.
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Problem 298.4 – Sum
Show that

1

1 · 2 · 3
+

1

5 · 6 · 7
+

1

9 · 10 · 11
+ . . . =

log 2

4
.

Problem 298.5 – Trisected rhombus
Tony Forbes
A rhombus has small internal angle 60◦ and big diagonal 2 m. The angle at
each vertex is trisected by lines shown in green/grey as on the front cover.
Show that the thing in the middle is not square and that its sides are

2

3

(
2− cos 20◦ −

√
3 sin 20◦

)
m and

2

3

(√
3−
√

3 cos 20◦ + sin 20◦
)

m,

approximately 0.311941 m and 0.29765 m.


