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Contra Cantor
Sebastian Hayes
Passing in review the various paradoxes, linguistic and mathematical, that
bothered logicians around the beginning of the last century, Russell and
Whitehead in their Principia Mathematica—I shall henceforth just say
Russell—found that ‘they all result from a certain kind of vicious circle’
that consists in ‘supposing that a collection of objects may contain mem-
bers which can only be defined by means of the collection as a whole’ (R &
W, 37). As an example of what they had in mind they cited the statement
‘All propositions are either true or false’. Russell comments:

It would seem that such a statement could not be legitimate un-
less ‘all propositions’ referred to some already definite collection,
which it cannot do if new propositions are created by statements
about ‘all propositions’. (R & W, 37).

More mathematical examples are the Set of All Sets—is it a member of
itself?—or Burali-Forti’s1 paradox of the Ordinal Number of All Ordinals.

Russell suggests stopping such statements being made, or at any rate
being accepted as meaningful by logicians—‘Whatever involves all of a col-
lection must not be one of the collection’ (R & W, 37). Poincaré coined
the term ‘impredicative’ for statements that define an object in terms of a
collection to which the object being defined belongs. He considered that
impredicative definitions should be banned from mathematics.

But what happens if we do want to talk about ‘all’ the members of such
a collection? This, Russell assures us, need not pose any insuperable difficul-
ties. A statement about ‘all’ of a certain collection is of ‘higher type’ than
a statement about specific members of the collection and in consequence
must be excluded from the range of application of the statement. The Set
of All Sets is ‘of higher type’ than any Set you like to mention which will
be one of its members, and so we do not get the ridiculous situation of the
Set of All Sets being at one and the same time a member, and yet not a
member, of itself.

At first sight Russell’s solution sounds both sensible and effective. How-
ever, it soon became a major embarrassment to him, for not only did strict
application of the theory of types make a lot of proofs very cumbersome it
actually invalidated a lot of them. As Weyl and others pointed out, analysis
turned out to be littered with impredicative formulae. This stimulated the

1Apparently, contrary to what I have always believed up to now, Burali-Forti is a
singleton set from the Set of All People, being not two persons but one.
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Intuitionists to reformulate the whole subject but Russell had no intention
of taking such a heroic course. He states airily in the Introduction to the
1927 re-edition of Principia Mathematica that ‘though it might be possible
to sacrifice infinite well-ordered series to logical rigour, the theory of real
numbers . . . can hardly be the object of reasonable doubt’ (R & W, xlv,
1927). But why not? Russell’s reply sounds suspiciously like an eighteenth
century clergyman’s assertion that ‘the eternal existence of a Creator God
cannot seriously be questioned’.

Subsequent mathematical discussion of these issues has clouded rather
than clarified the basic principles at stake: in particular far too much at-
tention has been given to the validity or otherwise of the so-called Axiom
of Choice. As it seems to me, the problem is not ‘impredicative statements’
as such—this is something of a red herring—but a failure to distinguish
between ‘definite’ sets and ‘indefinitely extendable’ sets. By definition the
former are fully constituted once and for all, and thus listable, whereas the
latter are not. Confusing the two is the real ‘category mistake’ at the root
of all the kerfuffle.

In conversation we normally deal with two, and only two, types of sets
or collections, those that are what I call definite and those that are contin-
ually being extended. The persons living in the UK at the present moment
constitute a definite set which can be (and actually is) listed—at any rate
within the bounds of bureaucratic error. The set of all human beings, past,
present and future, is not a definite set but a continually expanding one, and
one that will presumably continue to expand as long as the species exists.

Self-referential statements of the type ‘Whatever I say is untrue’ only
cause trouble because there is a certain ambivalence about the type of col-
lection we are dealing with. One schoolboy philosopher exclaims to another
during the lunch-break, “You know, there’s not a single thing I’m sure
about!” His companion rejoins, “Ah! but there is one thing at least you’re
sure about, and that is that you aren’t sure about anything!”

Sceptic’s first statement only referred to the fully definite set of all
beliefs he had actually considered up to that moment, and a standpoint
of all-round scepticism was not one of them. It would be quite perverse
to consider his first statement as referring to the collection of all possible
beliefs the human species might conceivably entertain. The belief ‘I don’t
believe in anything’ was not, at the beginning of the discussion, a member
of the Set of All Beliefs Sceptic Had Considered (a definite set) but after
the end of the conversation it was. His first statement was time and context
dependent: it was not an intemporal assertion.
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At a future date Sceptic might say, “I’m not sure about anything—
except the statement I made to you yesterday that I wasn’t sure about
anything I’d considered up to then.” The Set of Beliefs Sceptic Was Sure
About starts off empty, then contains one member, perhaps goes on to
containing two members, and so on.

All this hardly seems worth dwelling on. So why the fuss? Because,
when it comes to mathematics, the situation is very, very different. Math-
ematical assertions are not generally considered to be time and context
dependent, they are in some sense held to be ‘eternally true’, true even
before human beings or the universe we live in existed.

So far it has not been necessary to introduce the fatal word ‘infinite’ but
it cannot be withheld any longer. Can any so-called ‘infinite’ set ever be a
fully constituted totality, a ‘definite set’? I do not see that it can. The only
sensible way of treating ‘infinite’ sets is to view them as open-ended partly
definite sets which can be extended as far as we wish. This is entirely in line
with the way we proceed in normal speech and conversation—which, one
strongly suspects, is the main reason mathematicians disapprove of such an
approach.

What we must above all not do is treat an open-ended indefinite set
as a fully constituted one. But in mathematics, ever since the advent of
Cantor, this is exactly what is done in mathematics. This is the essential
‘category mistake’, not Russell’s ‘self-referential misapprehension’. Some
mathematicians, notably Cantor himself, were frank enough to put their
hands on the table and declare that they really did believe in the existence
of the transfinite. Even Russell, though at the time a positivist, introduced
into his Principia the controversial Axiom ‘That infinite classes exist’ (R &
W, *120.03). Most modern mathematicians are, however, content to evade
the issue: as Davis and Hersh point out, the modern mathematician is two
things at once, a Platonist in the study, but a Formalist when confronting
the outside world.

Cantor’s proofs

Cantor’s proofs are of two main types, one acceptable (to me), one not. Let
us first take his proof that the rational numbers between 0 and 1 form a
null set. This depends on two prior results, his ingenious diagonalization of
Q, the rational numbers, and the well-known limit (as usually formulated)

lim
n→∞

(
1

2
+

1

4
+

1

8
+ · · ·+ 1

2n

)
= 1.
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Since, for any positive rational number you like to name, say 1/N , I can
always find a smaller one, namely 1/(N + 1), it looks at first sight as if it
were impossible to list the rational numbers, first, second, third &c.; i.e. put
them in one–one correspondence with N, the natural numbers. But Cantor
showed how this could be done. For example, those between 0 and 1 can be
listed as follows:

0, 1,
1

2
,

1

3
,

2

3
,

1

4
,

2

4
,

3

4
,

1

5
,

2

5
,

3

5
,

4

5
,

1

6
, . . . .

This is not an ordering by increasing or decreasing size but that does not
matter, nor does it matter (too much) that there will be some redundancy—
2/4 will appear though we already have 1/2. The point is that given any
specified fraction between 0 and 1, it will eventually crop up and can be at-
tributed an ordinal from the natural numbers, hundred and seventy-seventh,
ten-thousandth, or what have you. We do not need to know what this ordi-
nal is, but we do know that we can provide it if challenged to do so if given
enough time. There is nothing objectionable in this procedure since we
do not have to envisage the rational numbers between 0 and 1 as a defini-
tively constituted totality existing in some Platonic Never Never Land—
though this is undoubtedly how Cantor himself viewed them. The sequence
S = 1/2, 1/4, 1/8, . . . , 1/2n−1 is a geometric sequence with constant ratio
1/2. The terms are respectively t1 = 1/2, t2 = 1/22, . . . , tn = 1/2n. If we
take partial sums S1, S2, . . . , Sn we have

S1 =
1

2
=

(
1− 1

2

)
, S2 =

1

2
+

1

4
=

(
1− 1

2

)
+

(
1

2
− 1

4

)
= 1− 1

4

and Sn =

(
1− 1

2n

)
< 1 for all n ∈ N.

The series Sp of successive partial sums is clearly, in my terms, not a fully
constituted totality but an indefinitely extendable one. Many slapdash au-
thors, who ought to know better, talk about 1 being ‘the sum to infinity’
of the series: in fact, as is generally the case with series, the limit 1 is
unattainable and there is no definitive sum, only a perpetually changing
one as n increases, which is why we speak of ‘partial’ sums, though the
word is misleading.

Cantor now invites us to construct a sequence of open intervals where
each interval {In} has centre rn. Each interval starts at the point rn −
k/2n+1 and ends at the point rn + k/2n+1 so it has length twice k/2n+1 or
k/2n. Since we have got a way of listing the rational numbers we drop them
one after the other into these intervals. And the total length of n intervals
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is

k

2
+
k

22
+
k

23
+ · · ·+ k

2n
= k

(
1

2
+

1

4
+

1

8
+ . . .

)
= k

(
1− 1

2n−1

)
< k

since 1 − 1/2n−1 < 1. Provided we can decrease k as much as we wish,
we can squeeze ‘all’ the rationals between 0 and 1 into an arbitrarily small
compass. So a line segment a foot (or a millimetre) long is nonetheless
capable of containing an ‘infinite’ quantity of numbers, many more than
there are stars in the sky. Cantor has thus, to his own satisfaction at least,
shown that the rationals between 0 and 1 are what he calls a ‘null set’: they
take up so little space it’s as if they weren’t there at all.

One might baulk a little at this over-literal way of considering numbers
as points on a line (which they are not) and, of course, in the real world there
would be a definite limit to the size of k—it could not be made smaller than
that of an elementary particle, for instance. However, one might be prepared
to let this pass as temporary exercise of mathematical licence. The main
thing is that there is no need to view this procedure as having been carried
out for ‘all’ the rationals 0 < q < 1 but only for as many as someone likes
to mention. It is usually stated in maths books that this result (the infinite
compressibility of Q) is ‘counter-intuitive’: it would be more accurate to
describe it as being totally unrealistic. This is not a problem if we make
sure to continually bear in mind that a mathematical model or construction
is not itself part of the physical world to which it can sometimes be applied
successfully.

Other bizarre results such as the length of the Koch curve fall into the
same category. Starting with an equilateral triangle, then building one on
the middle third of each side and continuing in this way ad infinitum, it
appears that the perimeter of the curious jagged figure can be made to
exceed any stipulated length provided you go on long enough even though
the whole creature can be inserted in a disc of, say, radius one metre. Of
course, in any actual situation there would once again be a limiting size
beyond which it would not be possible to go: there is certainly no need to
conclude that we have here a case of ‘infinity in the palm of your hand’
(Blake), though some people seem to think so.

If now we pass to Cantor’s ‘proof’ that the real numbers are not denu-
merable, we have a very different kettle of fish. A collection is considered
denumerable if it can be put in one-one correspondence with N, the natural
numbers—broadly speaking can be listed. We have seen that this is possible
for the rationals between 0 and 1. Cantor now invites us to consider an enu-
merated list of all the real numbers (rationals + irrationals) between 0 and
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1. These reals are exhibited in the form of non-terminating decimals—any
other base would be just as good. To avoid ambiguity a fraction like 1/5
has been listed as 0.19999999. . . instead of 0.2—absurd though it would be
to do any such thing. So there they all are:

s1 = 0.a11a12a13 . . .
s2 = 0.a21a22a23 . . .
s3 = 0.a31a32a33 . . .
. . . ,

where every a is a natural number between 0 and 9.

Cantor now produces out of a hat a ‘number’ that has not appeared in
the list, call it b. We concoct b by ‘doing the opposite’ as it were. If a11
is 1, make b1 (the first digit of b) = 2, if a11 6= 1, make b1 = 1. Likewise
for a22, a33, giving b2, b3 and so on. This defines b = 0.b1b2b3 . . . . But
this ‘number’ has not appeared in the list since it differs from s1 in the first
place, from s2 in the second place and so on. Therefore, the real numbers
between 0 and 1 are not denumerable, and since these are only a small part
of R as a whole, R, the Set of all Reals is not denumerable—a paradoxical
result since N is already an ‘infinite’ set, so R must be of a higher type of
infinity than N, Q.E.D.

Now this proof by contradiction wholly depends on the original assump-
tion that all the reals between 0 and 1 have been listed—not one has been
left out. Since Cantor shows one that has been left out, the assumption
must have been wrong in the first place. However, if we do not view the
reals between 0 and 1 as a wholly constituted totality, listable and enumer-
able, but as an open-ended extendable set, the argument collapses like a
burst balloon. All that could ever be on view at a single moment in time
is an array of decimals—or digits in some other base r—taken to n places.
A competing generator handled by Cantor in person cannot produce any
real number for given r and n which is not on show since all possibilities
are covered. All Cantor can do is print out an arbitrary ‘diagonal’ rational
number between 0 and 1 to m places with m > n.

Since the base used is immaterial let us use base 2 and print out numbers
between 0 and 1 using only the symbols 0 and 1. In the first print out we
only go so far as one digit, then we print out all numbers with two digits
after the point and so on. We have

0.0, 0.00, 0.000; 0.1, 0.01, 0.001; 0.10, 0.010;

0.11, 0.011; 0.100; 0.101; 0.110; 0.111.
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To keep ahead Cantor has to counter with a number containing at least one
more digit after the point, but, whatever number he chooses, this number
will appear in the next print out. Thus the struggle is ding-dong and in-
conclusive. It should be stressed that the ability to view R as a whole does
not depend on our limited range of vision or the size of the memory of the
computer or any other technicality: the reals are simply not exhibitable in
their full extent because strictly speaking they do not have a ‘full extent’.
Even God would not be able to view ‘all’ the real numbers at one fell swoop
because there is no ‘all’ to view.

Very similar is Cantor’s ‘proof’ that, for all non-empty sets A, the cardi-
nality of A is less than the cardinality of the power set of A. (The power set,
remember, consists of the sets that can be constructed from the members
of A; e.g. if A = {1, 2, 3}, then P (A) consists of A itself = {1, 2, 3}, also
the sets {1, 2}, {1, 3} and {2, 3}, the singleton sets {1}, {2} and {3} and ∅,
the empty set.) Obviously, for ordinary ‘finite’ sets the theorem holds, but,
since things become so disconcerting when we pass to consider transfinite
sets, Cantor wonders whether it remains valid.

In typical fashion Cantor proceeds to assume that an exhaustive map-
ping from A to P (A) has been carried out. Since for any a we can, faute de
mieux, pair it off with the set of which it is the sole member, namely {a}
and this is far from exhausting all the possibilities, Cantor concludes that
the cardinality of P (A) cannot be less than the cardinality of A. We are
now invited to consider the set B given by B : {a ∈ A, a 6= f(a)}; i.e. the set
containing all those elements which are not members of the sets they have
been paired off with in the mapping. It would seem that B is non-empty.
But if so, B, being a bona fide subset of P (A) must have a pre-image under
this mapping, ab say, i.e. there is an ab in A such that f(ab) = B. But ab
itself must either belong to B, or not belong to B. We find that if it does
it doesn’t and if it doesn’t it does. Thus contradiction. Therefore there can
be no such mapping f : A→ P (A) and so card A < card P (A). Q.E.D.

This argument is worthless because Cantor has envisaged a mapping
that cannot ever be carried out in full, even in theory: he is treating an
ongoing, indefinitely extendable mapping as a completed act.

Sets with oscillating membership

If we regard the proposed function f , not as already existent, but as in the
process of being defined, we get a different picture. Suppose we have carried
out a bijection from A to P (A) to n places—which is all we can ever hope to
do—and we have a non-empty set B satisfying Cantor’s condition, namely
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that individual members of B have not been paired off with themselves
viewed as sets. But B does not as yet have a pre-image in A; so, noting
this, we pick some element in A not yet used, ab say, and form (ab, B).

Now, prior to its being assigned an image under the function f , the
element ab did not have an image; however, now that it has acquired one
we realize that it has automatically become a member of B (which it was
not before) and so is disqualified from being the pre-image of B. We thus
remove ab from (ab, B) and look for another pre-image. The same situation
develops and one might justifiably conclude that, since we are perpetually
going to have to change B’s pre-image as soon as we assign one, then any
function of the desired type A to P (A) is going to be of a very provisory
nature and so, we might decide, for this reason, to conclude that the car-
dinality of P (A) must be ‘greater’ than that of A. This is not quite what
Cantor says though. This oscillating procedure whereby one or more ele-
ment changes sets perpetually is entirely normal outside mathematics—in
fact it is really only in the unreal world of mathematics that sets ever do
get constituted definitively once and for all. Individuals are always chang-
ing their set membership as their age changes, as their beliefs mature, as
the frontiers of countries are redrawn and so forth. Even species evolve
and change into radically different ones, so we are told, and nothing stays
exactly the same for very long.

A typical example of ‘oscillating membership’ is provided by Russell’s
Village Barber Paradox though Russell did not realize this. Russell invites
us to consider a Village Barber who claims he shaves everyone in the village
who does not shave himself and only such persons. The big question is:
Does he shave himself? If he does shave himself, he shouldn’t be doing
so—since, as a barber, he shouldn’t be shaving self-shavers. On the other
hand, if he doesn’t shave himself, that is exactly what he ought to be doing.

The contradiction only arises because Russell, like practically all modern
mathematicians, insists on viewing sets as being constituted once and for all
in the usual Platonic manner. Let us see what would actually happen in real
life. It is first of all necessary to define what we mean by being a self-shaver:
how many days do you have to shave yourself consecutively to qualify? Ten?
Four? One? It doesn’t really matter as long as everyone agrees on a fixed
length of time, otherwise the question is completely meaningless. Secondly,
it is important to realize that the barber has not always been the Village
Barber: there was a time when he was a boy or perhaps inhabited a different
village. On some day d he took up his functions as Village Barber in the
village in question. Suppose our man has been shaving himself for the last
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four days prior to taking on the job, so, if four days is the length of time
needed to qualify as a self-shaver, he classes himself on day d as a self-shaver.
He does not get a shave that day since he belongs to the self-shaving set
and the Village Barber does not shave such individuals.

The next day he reviews the situation and decides he is no longer in
the self-shaving category—he didn’t get a shave the previous day—so he
shaves himself on day 2. On day 3 he carries on shaving himself—since he
has not yet got a run of four successive self-shaving days behind him. This
goes on until day 6 when he doesn’t shave himself. The barber spends his
entire adult active life oscillating between the self-shaving and the non-self-
shaving sets. There is nothing especially strange about this: most people
except strict teetotallers and alcoholics oscillate between being members of
the set of drinkers and non-drinkers—depending of course on how much and
how often you have to drink to be classed as a ‘drinker’.

This example was originally chosen by Russell to show that the self-
referential issue has nothing necessarily to do with infinity. Nor does it, but
it does depend on the question of whether sets or collections are treated as
time and context dependent or not.

Conclusion

One understands, of course, why mathematics as the exact science par excel-
lence does not want to be bothered with such messy creatures as sets with
varying membership but it is worth stressing how different the abstract sys-
tems of mathematics are from conditions in the real world. Perhaps, in
the future a kind of mathematics will arise which will be time and context
dependent while still remaining more precise than ordinary speech. Mathe-
matics does indeed model time dependent processes, notably via differential
equations, but only from the outside; time itself, in the sense of change, is
never allowed to be present within the boundaries of the mathematical sys-
tem itself. Once true, always true—or so it would seem in mathematics.

Mathematics has managed to do something which sounds equally diffi-
cult, namely to model randomness (up to a point) and there is an interesting
chapter discussing this complex issue in a recent book, How Mathemati-
cians Think, by William Byers (Chapter 7). However, randomness is still,
like time, studied from the outside although it is getting steadily closer and
closer to the fixed, ideal world of mathematics via Heisenberg, chaos theory,
Gödel’s Incompleteness and so forth. Maybe the twin shadows of time and
chance will in the end darken out the pure light of eternity after all.
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Quaternionic space

Dennis Morris

The 4× 4 matrix form of the quaternions is
a b c d
−b a d −c
−c −d a b
−d c −b a

 .
The real part of this commutes with the non-real part. We thus have

exp



a b c d
−b a d −c
−c −d a b
−d c −b a




= exp



a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a


 exp




0 b c d
−b 0 d −c
−c −d 0 b
−d c −b 0


 .

The successive powers of the ‘imaginary’ matrix are surprising; we have

I2 =


−b2 − c2 − d2 0 0 0

0 −b2 − c2 − d2 0 0
0 0 −b2 − c2 − d2 0
0 0 0 −b2 − c2 − d2

 ,

I3 = (−b2 − c2 − d2)


0 b c d
−b 0 d −c
−c −d 0 b
−d c −b 0

 ,

I4 =


(−b2 − c2 − d2)2 0 0 0

0 (−b2 − c2 − d2)2 0 0
0 0 (−b2 − c2 − d2)2 0
0 0 0 (−b2 − c2 − d2)2

 ,
leading to

exp



a b c d
−b a d −c
−c −d a b
−d c −b a
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=


ea 0 0 0
0 ea 0 0
0 0 ea 0
0 0 0 ea




cos θ
b

θ
sin θ

c

θ
sin θ

d

θ
sin θ

− b
θ

sin θ cos θ
d

θ
sin θ − c

θ
sin θ

− c
θ

sin θ −d
θ

sin θ cos θ
b

θ
sin θ

−d
θ

sin θ
c

θ
sin θ − b

θ
sin θ cos θ


,

where θ =
√
b2 + c2 + d2.

Normalizing this expression shows that the particular functions are pro-
jections onto the axes of the space. The rotation matrix is the exponential
of a matrix with zero trace and thus has determinant unity.

Setting the polar form equal to a Cartesian form matrix and taking the
determinants of both sides leads to the distance function:

r4 =
(
a2 + b2 + c2 + d2

)2
, r =

√
a2 + b2 + c2 + d2.

Since the functions in the rotation matrix are projections onto the axes,
we are justified in calling them the trigonometric functions of quaternionic
space. However, they do not have the simple differentiation cycles that we
normally associate with trigonometric functions. We have

∂(cos θ)

∂b
= − b

θ
sin θ,

and similarly for the other variables, but

∂

(
b

θ
sin θ

)
∂b

=
b2θ cos θ + (c2 + d2) sin θ

θ3

and similarly for the other variables. Setting any two of the variables to
zero restores the usual differential cycles.

The quaternions are a bona fide division algebra (though not an alge-
braic field). Since we have a distance function and a rotation matrix con-
taining four (trigonometric) functions that are projections onto the axes, we
have a geometric space. However, the failure of the trig functions to have a
four-fold differentiation cycle shows that the axes of this space are not fixed
together ‘properly’. It seems that what we have is a kind of ‘Siamese triplet’;
we have three copies of 2-dimensional euclidean space joined together along
the real axis. Such, it seems, is quaternionic space—many writers of science
fiction make the most of it.



Page 12 M500 223

The sequence 1, 1, 3, 7, 19, 51, . . .
Patrick Walker
Pascal’s triangle is well known.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

The middle binomial coefficients are

1, 2, 6, 20, 70, 252, 924, 3432, 12870, . . . .

We can divide them by the natural numbers to give the sequence

1, 1, 2, 5, 14, 42, 132, 429, 1430, . . . .

The result of this division is always an integer since

1

n+ 1

(
2n

n

)
=

1

2n+ 1

(
2n+ 1

n

)
.

These are the Catalan numbers.

A similar triangle is obtained by forming each number in a row as the
sum of the one above plus the two on either side of it.

1

1 1 1

1 2 3 2 1

1 3 6 7 6 3 1

1 4 10 16 19 16 10 4 1

1 5 15 30 45 51 45 30 15 5 1
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The sequence of middle numbers is

1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953, 25653, . . . .

The two ‘triangles’ appear at first sight to have quite different patterns.
But both contain a sloping line of triangular numbers,

1, 3, 6, 10, 15, 21, 28, . . . .

The sum of any row of Pascal’s triangle is a power of two. The sum of any
row in the second triangle is a power of three. In Pascal’s triangle, adding
and subtracting in turn each element of a row gives a total of zero. In the
second triangle, adding and subtracting in turn each element of a row gives
a total of 1. And so on.

These are intriguing comparisons, and it might be thought that the
sequence of middle numbers in the second triangle would possibly bear some
relation to the Catalan numbers. One can prove by induction that the nth
term is the coefficient of xn in the expansion of (1 + x+ x2)n, but I cannot
find a closed formula. Can anyone help?

Problem 223.1 – Mud
Norman Graham
Mud flies off the hindmost point of a wheel rolling at a uniform speed. Will
it hit the wheel again if it leaves the wheel in the same direction as the
hindmost point (a) at the same speed, (b) slower, (c) faster? Of course, the
vehicle is being driven in a perfect vacuum.

Problem 223.2 – Gun
Norman Graham
If a gun has a maximum range of r on a level plain, what is it from the top
of a cliff of height h? Find a construction for the angle of elevation.

Problem 223.3 – Factorization
Tony Forbes
For which integer values of d does

x4 − x− d

factorize?
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How to solve quartics
Tony Forbes
Going through past issues of M500 I notice that regularly and often we have
occasion to find the roots of fourth-degree polynomials. We always just
quote the solution, referring to the literature or to computer software for
the method of getting there. I find this unsatisfactory. And it is regrettable
that quartics are no longer actively solved in schools. So I thought it would
be a good idea if M500 were to fill a possible gap in your mathematical
education by presenting a short exposition. Surely it can’t be that difficult.

The problem is simple to state, ‘Solve

x4 + a x3 + b x2 + c x+ d = 0 (1)

in terms of the coefficients a, b, c and d.’

But that’s far too difficult!

We can simplify the problem by getting rid of the x3 term with an affine
transformation. Make the substitution x→ x− a/4 and the second term of
(x− a/4)4 is −ax3, which exactly cancels the ax3 of the original expression
(1). Assuming you want to see it written out in full, the equation becomes

x4 +

(
b− 3a2

8

)
x2 +

(
c+

a3

8
− ab

2

)
x+ d− 3a4

256
+
a2b

16
− ac

4
= 0

and, as you can see, the x3 term really has vanished. However, we will
continue to use the original coefficients, as in equation (1), but henceforth
we shall assume that a = 0. I suppose it’s worth pointing out that if a = 0
anyway, there is no need to perform this initial step.

We introduce a parameter u the value of which we shall decide at a time
when it is convenient for us to do so. Remembering that a = 0, we rewrite
(1) as

(x2 + u)2 = (2u− b)x2 − c x+ u2 − d. (2)

Now for the clever part. We want to make the right-hand side of (2) a
square, just like the left-hand side. That means the discriminant ∆, say, of
the quadratic

(2u− b)x2 − c x+ u2 − d (3)

must be zero. But

∆ = c2 − 4(2u− b)(u2 − d) = − 8u3 + 4bu2 + 8du+ c2 − 4bd. (4)
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Now is a good time to decide the value of that parameter. We choose
u to be anything that makes ∆ = 0. This involves solving the cubic on the
right of (4); but I have already explained how to do that—see ‘How to solve
cubics’ in M500 202. Given that u satisfies ∆ = 0, we know the quadratic
(3) must factorize into a square. Hence (2) becomes

(x2 + u)2 = (2u− b)
(
x− c

2(2u− b)

)2

. (5)

You can verify that on multiplying (5) out you should recover the original
equation (1) (with a = 0) when you substitute zero for 8u3 − 4bu2 − 8du+
4bd− c2.

Taking square roots of both sides of (5), we obtain

x2 + u = ±
√

(2u− b)
(
x− c

2(2u− b)

)
, (6)

a pair of quadratics, which can be solved using a neat method sent to me
by Martin Hansen; see below.

The problem is solved. However, one small detail is bothering me. As
a quartic, (1) is supposed to have four solutions. But the cubic on the right
of (4) has three roots, and together with the plus-or-minus choice of sign in
(6) and the fact that a quadratic has two roots, there are twelve solutions
altogether. We would be interested if someone can explain how to dispose
of eight unwanted solutions.

How to solve quadratics
Martin Hansen
To solve ax2 + bx+ c = 0, multiply through by 4a,

[4a2x2 + 4abx] + 4ac = 0,

complete the square within the square brackets,

[(2ax+ b)2 − b2] + 4ac = 0,

(2ax+ b)2 = b2 − 4ac,

square-root both sides,

2ax+ b = ±
√
b2 − 4ac,

and the well-known formula is there for the taking.
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Letters to the Editor

Problem 220.4 – Biseptic
Tony,

Relying on intuition and putting x = π into my old and trusted pocket
calculator, working at ten sig. figs, I get x14 + 508x4 = 9171655.016. Wow!

Solution time = 27 seconds which, for recent M500 problems, must be
record (for me at least).

Jim James

Cylinders
Re: M500 218 page 13, ‘Mutually touching cylinders.’

It occurred to me that six cylinders could be arranged thus. Take three
of the cylinders (I used pencils) and bind them with an elastic band, near
to the ends. Hold the bunch loosely by this binding and force the ends
apart, twisting clockwise as you do. You now have a crude tripod. Repeat
the process with the three other cylinders, this time twisting anticlockwise.
Nest the second tripod into the first and bind the ends together in three
pairs (one from each ‘tripod’ forming a pair). I tried this but I couldn’t
decide if all six were in mutual contact (possibly because the elastic bands
got in the way!).

However, I recall seeing a solution with seven cylinders in a book many
years ago (it could have been from the Scientific American series ‘Mathe-
matical Puzzles and Diversions’ by Martin Gardner, but at a quick glance
it didn’t turn up in my collection of this and similar publications). The ar-
rangement is in the diagram. The pencils meet at infinity if necessary, since
the cylinders are allowed to be of infinite length. Looking at this diagram it
does seem that the arrangement is valid. If so then given a set of cylinders
of unit radius, what is the minimum length required? How would you prove
that all seven are in mutual contact?

Ken Greatrix

TF writes. To amuse myself I had a go at making the thing out of
pencils and rubber bands. The resulting photograph I think illustrates the
situation far better than any diagram I can reproduce. Moreover I was
surprised to see how stable this configuration actually is. And I can even
convince myself that each cylinder touches the other six—especially if you
count points at infinity.
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Solution 210.5 – A monkey and a pole
A monkey climbs a pole along DC to a height y. It is tethered
by a line to a drum of radius R which rolls on its axle of radius
r along a flat bed PQ. During this rolling, the drum moves
horizontally by a distance x. You may assume that the pole
isn’t high enough for the drum to collide with it, that the drum
rolls back to its start position when the monkey climbs down
again and that the line is always tangential to the drum. What
is the relationship between x and y?

ADF — On reading this after an interval of two years it has become evident
that we have been a little sloppy with the statement of the problem. One
interpretation is implied by the solution offered below, in which the monkey
is tethered by a fixed piece of rope, which goes initially from D to A to B
to C and afterwards from D′ to C via D, A′ and B′, but I have no idea of
the mechanism that keeps the rope tangent to the drum. Perhaps we can
treat the problem as an exercise in geometry. Given the parameters r, R, h,
x, y, z, and that the polygonal lines DABC and D′A′B′C are equal, find a
relation between x and y.

q q q

q

C

D′

D

QP

A A′

B B′
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Steve Moon
In the diagram, x = AA′, the distance moved by the drum, y = DD′, the
distance climbed by the monkey, z = AD and h = CD.

The length of the rope at the start is |CB| + R + z and at the end
|CB′|+R+z−x+y. Hence y = x+ |CB|−|CB′|. By Pythagoras, |A′C|2 =
|CB′|2+R2 and |A′C|2 = h2+(z−x)2. Therefore |CB′|2 = h2+(z−x)2−R2.
Also |AC|2 = |BC|2 +R2 = h2 + z2; therefore |CB|2 = h2 + z2−R2. Hence

y = x+ |CB| − |CB′| = x+
√
h2 + z2 −R2 −

√
h2 + (z − x)2 −R2.

ADF again — Well, I am unhappy because I notice that the parameter
r has disappeared! And judging by the simplistic answer I am convinced
that the intended problem has not been solved. As the real solution is likely
to be of interest, can someone please enlighten us as to the true nature of
the real problem.

Problem 223.4 – The arbelos
Norman Graham
Also known as the ‘shoemaker’s knife’ of Archimedes, this shape, the arbelos,
is bounded by three touching circles of radii a, b and a+ b, as in the upper
diagram on the next page.

A ‘train’ of circles Cn, n = 1, 2, . . . , is constructed inside the arbelos as
shown in the lower diagram. Show that their centres lie on an ellipse, and
find the diameter dn of each circle in terms of a, b and n. Also show that
for each Cn, the centre is at a distance ndn from the centre-line.

Hint. There is a beautiful proof using inversion geometry. With O
as the centre of inversion, any point X is inverted to X ′ on OX, where
|OX| · |OX ′| = k2, for some constant k. The two tangent circles are inverted
to two parallel straight lines, so that the train becomes a set of equal-radii
circles touching those lines.

Reference. Martin Gardner, Fractal Music, Hypercards and More:
Mathematical Recreations from Scientific American magazine, Chapter 10.

[To get a better idea of the inversion process, you can look at the front
cover of M500 203, where the train of shrinking circles and their tangent
lines do really become a column of constant-radius circles sandwiched be-
tween two vertical lines. — TF]



Page 20 M500 223

-a -b

C1

C2C3
C4

C5

O

What did the string theorist say when his wife caught him in bed with his
mistress?

“It’s all right, dear, I can explain everything!”
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Problem 223.5 – Reversing a needle
Tony Forbes
A needle of length 2 is lying in the plane pointing straight up and with its
centre at the origin. It is required to reverse its direction, so that it points
straight down, again with its centre at the origin. The needle must remain
in the plane throughout the reversing manoeuvre; so picking it up, turning
it around and putting it back would be cheating.

Question. What is the smallest possible area on the plane swept out by
the needle during the process?

Think of the needle as being very dirty, so that it leaves marks on the
all parts of the plane it comes into contact with. The marked parts then
identify the area swept by the needle. If you rotate it through 180 degrees
about its centre, the area is π. But perhaps one can do better by imagining
that the needle is a car doing an n-point turn along arcs of radius r for
some odd integer n and some positive number r. Here, for instance, is what
happens when n = 3 and r = 1.77.

Thanks to Emil Vaughan for showing me something like this problem.
As a warm-up, see if you can find the exact value of r for which the hole in
the centre of the diagram just ceases to exist. Do it for any odd n.

If you disregard the very simplest cases, there is in all of mathematics
not a single infinite series whose sum has been rigorously determined. In
other words, the most important parts of mathematics stand without a
foundation.—Niels Abel
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