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Solution 248.3 – Integer triangles
A triangle has integer area and consecutive integer sides. Apart
from (3, 4, 5), is it the case that exactly one height must also be
an integer?

Chris Pile
Let the triangle sides be a = n− 1, b = n and c = n+ 1. Then by Heron’s
formula the area, A, is given by

A =
√
s(s− a)(s− b)(s− c), where s =

a+ b+ c

2
=

3n

2
.

So

A =

√
3n

4

√
(n+ 2)(n− 2), n > 2.

For this to be an integer, n must be even and n2 − 4 must be a multiple of
three times a square.

The sides of the triangle differ by 1. Therefore the lengths of corre-
sponding altitudes must in general differ by less than 1; i.e. there are only
two, consecutive, integer values that the altitudes can take. As the side
length increases, the triangle more closely resembles an equilateral triangle
and the altitudes will differ by an amount approaching

√
3/2. This implies

that only one can be an integer.

n area altitudes

4 6 3, 4
14 84 12 (= 2 · 6)
52 1170 45

194 16296 168 (= 2 · 84)
724 226974 627

2702 3161340 2340 (= 2 · 1170)
10084 44031786 8733
37634 613283664 32592 (= 2 · 16296)

140452 8541939510 121635
524174 118973869476 453948 (= 2 · 226974)

1956244 1657092233154 1694157
7300802 23080317394680 6322680 (= 2 · 3161340)

27246964 321467351292366 23596563
101687054 4477462600698444 88063572 (= 2 · 44031786)
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Steve Moon
Let the side lengths be x, x+ 1 and x+ 2. Then

A =
x+ 1

2

√
3(x+ 3)(x− 1)

4
.

But A is an integer. Hence x cannot be even as all the factors in the
numerator are then odd. For the heights we can write

hi =
x+ 1

x+ i

√
3(x+ 3)(x− 1)

4
, i = 0, 1, 2.

Clearly h1 must be an integer as the square root is that of a perfect square
for all x generating a triangle of integer area.

Now for all integers x > 1, gcd(x, x+1) = gcd(x+1, x+2) = 1. Suppose
h0 is an integer. Then we have

h0 = (x+ 1)

√
3(x+ 3)(x− 1)

4x2
.

As no factor of x divides x+ 1, we require√
3(x+ 3)(x− 1)

4x2
= M

for some positive integer M . Then

3(x+ 3)(x− 1) ≥ 4x2 ⇒ − x2 + 6x+ 9 ≥ 0 ⇒ − (x− 3)2 ≥ 0,

which only holds for x = 3. Hence h0 is an integer only when x = 3. (So
for the right-angled triangle (3, 4, 5) we have at least two integer sides.)

Now suppose h2 is an integer. Then

h2 = (x+ 1)

√
3(x+ 3)(x− 1)

4(x+ 2)2
= (x+ 1)N

for some positive integer N as no factor of x+ 2 divides x+ 1. Then

3(x+ 3)(x− 1) ≥ 4(x+ 2)2 ⇒ − (x+ 5)2 ≥ 0,

which is clearly false. So h2 is never an integer for any x as defined.
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Tony Forbes
Let n = 2k. Then A2 = 3k2(k2 − 1), and for A to be an integer we require
3(k2 − 1) to be a square divisible by 3, 9m2, say. Thus

A = 3km, k2 = 3m2 + 1. (1)

The three triangle heights are

h1 =
2A

n
= 3m, h2 =

2A

n− 1
=

3mn

n− 1
and h3 =

2A

n+ 1
=

3mn

n+ 1
.

Clearly h1 is an integer. Now suppose n ≥ 8. From (1) we have

3m =
√

3k2 − 3 =

√
3n2

4
− 3 <

√
3n

2
< n− 1.

Therefore, since gcd(n, n ± 1) = 1, neither h2 = 3mn/(n − 1) nor h3 =
3mn/(n+ 1) can be an integer. We can show by trial that the only possible
triangle with n < 8 is the Pythagorean triple (3, 4, 5).

Although we do not need it for the problem as stated, the standard
method for solving the Diophantine equation k2 = 3m2+1 gives all possible
triangles with consecutive integer sides and integer area. We ignore the
trivial solution, k0 = 1, m0 = 0, because it yields (1, 2, 3), which is not
really a triangle. The fundamental solution is k1 = 2, m1 = 1, leading to
(3, 4, 5). Thereafter solutions are defined by[

ki
mi

]
=

[
2 3
1 2

]i [
1
0

]
.

Problem 251.1 – Increasing digits
Jeremy Humphries
How many positive integers have the property that their digits increase
when read from left to right? For example, 3, 26, 1357, but not 10, 43, 778,
34592.

Problem 251.2 – Thirteen boxes
Tony Forbes
For reasons which are of no interest to anyone other than me I would like
to know how big h must be in order to pack thirteen 17×6×6 cuboids into
a 33× 23× h box.
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Solution 248.4 – Integral
Compute ∫ ∞

−∞

∫ ∞
−∞

∫ ∞
−∞

e−(x
2+y2+z2)3/2dx dy dz.

Steve Moon
The integral can be thought of as the integral of the function e−(x

2+y2+z2)3/2

over all space. With mutually orthogonal cartesian axes x, y, z, each ex-
tending over (−∞,∞), the infinitesimal volume element δv is the cuboid
δx δy δz, which becomes dx dy dz in the triple integral.

As set, I think this problem is relatively intractable. The symmetry

of the function e−(x
2+y2+z2)3/2 indicates that spherical polar, rather than

cartesian, coordinates will be useful. The key results are

r2 = x2 + y2 + z2,

δV = LM · JL · δ r
= L′M ′ · JL · δ r
= r(sin θ) δφ · r δθ · δr
= r2(sin θ) δθ δφ δr

and
0 ≤ r ≤ ∞,

0 ≤ φ ≤ 2π,

0 ≤ θ ≤ π.

For an integral over all space, it does not matter how we compile v from
different forms of δv. So the integral becomes

I =

∫ ∞
0

∫ π

0

∫ 2π

0

r2er
3

(sin θ)dφ dθ dr,

which is separable. Thus

I = 2π

∫ ∞
0

r2er
3

∫ π

0

(sin θ)dθ dr = 4π

∫ ∞
0

r2er
3

dθ dr =
4π

3
.
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Problem 251.3 – Four towns
Dick Boardman
Four towns lie at the corners of a quadrilateral with integer sides and integer
diagonals (no two the same). They are each connected to a single point such
that the sum of the four distances is minimum. Find solutions where all of
the individual lengths are integers.

Problem 251.4 – Four more towns
Tony Forbes
This is like Problem 251.3 – Four towns.
However, we now require the towns
to be serviced by a road network of
minimum length. This can often be
achieved by the creation of two junc-
tions, called Steiner points, where three
roads meet at 120◦. A typical layout is
shown on the right.

Find a solution where the lengths of
the five road segments and the six dis-
tances between the towns are distinct
integers.

Problem 251.5 – Continued fractions
Tony Forbes
Show that

1/(1 + 2/(2 + 3/(3 + 4/(4 + 5/(5 + . . . ))))) =
1

e− 1
,

2/(1 + 3/(2 + 4/(3 + 5/(4 + 6/(5 + . . . ))))) = 1,

3/(1 + 4/(2 + 5/(3 + 6/(4 + 7/(5 + . . . ))))) =
4

3
,

and if possible explain in a simple manner how shifting the numerator se-
quence to the left converts the transcendental number 1/(e−1) to an integer
and then to a rational. If you do one more shift, you get

4/(1 + 5/(2 + 6/(3 + 7/(4 + 8/(5 + . . . ))))) =
21

13
.
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Solution 248.1 – Two theorems
What’s wrong with the following?

Theorem 1 lim
x→0

sinx

x
= 1.

Proof Since sin 0 = 0 we use l’Hôpital’s rule:

lim
x→0

sinx

x
= lim

x→0

d
dx (sinx)
d
dx (x)

= lim
x→0

cosx

1
= 1.

Theorem 2
d(sinx)

dx
= cosx.

Proof Using the definition of the derivative we have

d(sinx)

dx
= lim

h→0

sin(x+ h)− sinx

h

= lim
h→0

(sinx)(cosh) + (cosx)(sinh)− sinx

h

= lim
h→0

(cosx)(sinh)

h
= (cosx) lim

h→0

sinh

h
= cosx.

Steve Moon
I looked at this for some time before the penny dropped. The proof set out
in Theorem 1 relies on showing (or here, knowing) that d(sinx)/dx = cosx.
However, Theorem 2, which sets out a proof of this, relies in its final step
on limh→0(sinh)/h = 1. This is the subject of Theorem 1, which we have
implicitly assumed in Theorem 2 but clearly it is not yet proved. Hence, to
rectify this, in order to rely on the argument set out in Theorem 2, we need
an alternative proof of limx→0(sinx)/x = 1.

The one I recall is a geometric proof. In the diagram, ∠AOB is x,
0 < x < π/2, and BC is tangent to the circle at B. Then sinx ≤ x. Also
x ≤ tanx = |BC|. Thus
sinx ≤ x ≤ tanx. Hence

cosx ≤ sinx

x
≤ 1.

Now as x → 0, cosx → 1;
so limx→0(sinx)/x = 1 by
the squeeze rule. ��

��
�
��

�
��

�
��

�
��A
A
A
A
A
A
A
A

O A

B

C
x

sinx x
tanx

�
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Sebastian Hayes
Reflections on Problem 248.1

What is wrong with these two theorems? The argument is circular. The-
orem 1 uses Theorem 2 in the final step and Theorem 2 uses Theorem 1.
But this set me thinking. How would I convince myself that the limit of
(sin θ)/θ = 1 as θ →∞?

For most people, including quite a few mathematics students, the rela-
tion is true since for anything less than 0.087 radians (about 5 degrees), sin θ
and θ are the same to three decimal places. But how is sin θ calculated?
Presumably by using the expansion

sin θ = θ − θ3

3!
+
θ5

5!
− θ7

7!
+ . . . .

But I strongly suspect that the person or persons (Maclaurin? Euler?) who
first concocted this series did so by using the ‘fact’ that the second derivative
of sinx was − sinx and then expanding sinx as a power series. So we are
not out of the woods yet.

As a mathematical fundamentalist or vegan, I view sines and cosines as
essentially ratios between line segments rather than infinite series. Consider
the following figure.

�
��
�
��

�
��

�
��

�
��

�
��

O E

P
Q

D
θ �

OP = OE = r

PD = r sin θ

arc PE = rθ

QE = r tan θ

If ∠POD = θ in radians, PE, the arc subtended by the angle θ, is rθ and
rθ > PD = r sin θ. Also, QE = r tan θ > rθ > PD. So

r sin θ < rθ < r tan θ.

This inequality holds for any circle with r > 0 and all angles θ for which
sin θ, cos θ and tan θ are defined. We take θ as positive (anti-clockwise from
the x-axis) and, since we are only concerned with small angles, 0 < θ < π/2.

Dividing by r sin θ, which is positive and non-zero we have

1 <
θ

sin θ
<

1

cos θ
.
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But 1 has limit 1 since it is never anything else. If we can show that the
limit of 1/(cos θ) is 1 as θ → 0, the expression θ/(sin θ) will be squeezed
between two limits. What can at once be deduced from the diagram is:

1. r cos θ must be smaller than the radius and so, for unit radius,
0 < cos θ < 1;

2. As θ decreases, cos θ increases, or if φ < θ, cosφ > cos θ.

Thus 1/(cos θ) is thus monotonic decreasing and has a lower limit of 1 which
is sufficient to establish convergence. If we want to apply the canonical test,
we have to find a δ such that, for any ε > 0, whenever 0 < θ < δ we have
|(1− 1/(cos θ)| < ε.

With δ < cos−1 1/(1+ε) we should be home and, applying the ‘sandwich
principle’ for limits, we have limθ→0 θ/(sin θ) = 1. Turning this on its head,
we finally obtain

lim
θ→0

sin θ

θ
= 1.

Note, however, that θ is the independent variable — sin θ depends on θ and
not the reverse. From here we can find the derivative of sin θ in the manner
of Theorem 2 — all that is needed apart from the definition of the derivative
is the ‘double angle’ formula sin(A + B) = sinA cosB + cosA sinB, which
can be easily proved geometrically for all angles A, B, where 0 < A < π/2
and 0 < B < π/2.

However, what’s all this got to do with the well-known power series?
Define a convergent power series f(x) with the property that d2f(x)/dx2 =
−f(x). Setting A0 = 0, A1 = 1 and equating coefficients we eventually end
up with

f(x) = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ . . . .

But I’m none too happy about identifying the above series with sinx (and its
derivative with cosx). For, if sinx and cosx are geometric relations between
line segments, when there is no triangle, there can be no sine or cosine. For
me, geometric sinx is undefined at x = 0 (and likewise at x = π/2 &c.)
although the limit of sinx as x → 0 is certainly 0. (It is distressing how
often it seems necessary to point out, even to mathematicians, that the
existence of a limit does not in any way guarantee that this limit is actually
attained.)
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All in all, I would feel a lot easier if the ‘sinx power series’ were derived
(or defined) recursively term by term along with a demonstration that the
difference between f(x) and sinx is always decreasing as we add more terms
with limit zero. For sinx is, in my eyes, itself the limit of a power series as
n increases without bound, i.e. if 0 < x < π/2,

lim
n→∞

(
x− x3

3!
+
x5

5!
− x7

7!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)!

)
= sinx.

A more general point needs to be made. Practically all proofs in Anal-
ysis and Calculus depend on the assumption that the independent variable
(in this case the angle θ) can be made arbitrarily small. This is quite le-
gitimate if we restrict ourselves to pure mathematics. But Calculus was
invented by Newton and Leibnitz to elucidate problems in physics and has
been employed in applied areas ever since. Translated into physical terms,
the basic assumption of Calculus and Analysis, is the presumption that
space and time are ‘infinitely divisible’. But I do not believe they are for
both logical and observational reasons. There is a growing (but still mi-
nority) view amongst theoretical physicists that Space/Time is ‘grainy’, i.e.
that there are minimal distances and minimal intervals of time just as there
are minimal transfers of energy (quanta). If this proves to be the case, Cal-
culus and a lot else besides constitutes a very misleading model of a reality
that is, at bottom, discrete. The great majority of differential equations
are, in any case, unsolvable analytically and increasingly the trend is to
slog things out iteratively with high-speed computers taking things to the
level of precision required by the conditions of the problem and then stop-
ping. Dreadful to say so, but it seems that Calculus’s reign, like that of the
dinosaurs, is drawing to a close and that the future will go to algorithmic
methods, genetic or otherwise.

Problem 251.6 – Integer
Tony Forbes
Show that for positive integer n,(

109n10
n−1−1 − 1

) (
100n − 10n + 10

)
+ 9(

10n − 1
)2

is an integer.
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Solution 210.1 – Determinant
Compute∣∣∣∣∣∣∣∣

4 a+ b+ c+ d a2 + b2 + c2 + d2 a3 + b3 + c3 + d3

a+ b+ c+ d a2 + b2 + c2 + d2 a3 + b3 + c3 + d3 a4 + b4 + c4 + d4

a2 + b2 + c2 + d2 a3 + b3 + c3 + d3 a4 + b4 + c4 + d4 a5 + b5 + c5 + d5

a3 + b3 + c3 + d3 a4 + b4 + c4 + d4 a5 + b5 + c5 + d5 a6 + b6 + c6 + d6

∣∣∣∣∣∣∣∣ .
Steve Moon
Assuming there is a relatively elegant expansion for this determinant, I
gave up trying to find it by brute force; any material simplification was well
hidden in the lengthy algebra.

To simplify, hopefully, I considered the determinants of smaller n × n
matrices, symmetric about the main diagonal, with all elements the sum
of powers of n parameters, each freely interchangeable. Hence any solution
is expected to reflect this interchangeability. The number in the top-left
position is of course the sum of the zeroth powers of the parameters.

For n = 2,∣∣∣∣ 2 a+ b
a+ b a2 + b2

∣∣∣∣ = 2(a2 + b2)− (a+ b)2 = (a− b)2.

For n = 3,∣∣∣∣∣∣
3 a+ b+ c a2 + b2 + c2

a+ b+ c a2 + b2 + c2 a3 + b3 + c3

a2 + b2 + c2 a3 + b3 + c3 a4 + b4 + c4

∣∣∣∣∣∣ = (a− b)2(a− c)2(b− c)2,

which meets the pairwise interchangeability condition. Even for this small
example the algebra is tedious, and is omitted.

So for n = 4, we deduce that the answer to the problem is

(a− b)2(a− c)2(a− d)2(b− c)2(b− d)2(c− d)2,

and this is confirmed by Maple.

Finally I evaluated the determinant for n = 5:

(a− b)2(a− c)2(a−d)2(a− e)2(b− c)2(b−d)2(b− e)2(c−d)2(c− e)2(d− e)2,

again confirmed by Maple.
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Tony Forbes
Curiously, if you generalize the thing slightly by adding t to each exponent,
you also get a nice formula. For example, in the case n = 3 the determinant
becomes∣∣∣∣∣∣

at + bt + ct at+1 + bt+1 + ct+1 at+2 + bt+2 + ct+2

at+1 + bt+1 + ct+1 at+2 + bt+2 + ct+2 at+3 + bt+3 + ct+3

at+2 + bt+2 + ct+2 at+3 + bt+3 + ct+3 at+4 + bt+4 + ct+4

∣∣∣∣∣∣
= (abc)t(a− b)2(a− c)2(b− c)2.

Unfortunately I do not know of any way to obtain this result other than by
getting Mathematica to do the work.

Solution 234.2 – Series
Show that

1− 1

7
+

1

9
− 1

15
+

1

17
− 1

23
+

1

25
− . . . =

π(
√

2 + 1)

8
,

an interesting relation between π and
√

2.

Steve Moon
Let S1 denote the series in question. From the power series for tan−1 x,

tan−1 x = 1− x3

3
+
x5

5
− x7

7
+
x9

9
− x11

11
+ . . . ,

set x = 1 and recall that tan−1 1 = π/4. Thus

S1 =
π

4
+

(
1

3
− 1

5
+

1

11
− 1

13
+

1

19
− 1

21
+ . . .

)
=

π

4
+ S2,

say. So S2 denotes the infinite series containing the ‘missed terms’.

We can generate the terms of S2 as follows. We have∫ 1

0

x2 − x4

1− x8
dx =

∞∑
k=0

∫ 1

0

(x2 − x4)x8kdx =

∞∑
k=0

[
x8k+3

8k + 3
− x8k+5

8k + 5

]1
0

=
1

3
− 1

5
+

1

11
− 1

13
+

1

19
− 1

21
+ . . . ,
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where we have used 1/(1 − x8) = 1 + x8 + x16 + . . . . To confirm that the
integrand is finite throughout the range 0 ≤ x ≤ 1 we need to check that
limx→1(x2−x4)/(1−x8) exists. But by l’Hôpital’s rule this is limx→1(2x−
4x3)/(−8x7) = 1/4. So I believe we are OK to proceed. Therefore

S1 =
π

4
+

∫ 1

0

x2 − x4

1− x8
dx =

∫ 1

0

x2

(1 + x2)(1 + x4)
dx.

Splitting the integrand into partial fractions gives

S1 =
π

4
+

1

2

∫ 1

0

x2 + 1

1 + x4
dx− 1

2

∫ 1

0

1

1 + x2
dx =

π

8
+

1

2

∫ 1

0

x2 + 1

1 + x4
dx,

since
∫ 1

0
dx/(1 + x2) =

[
tan−1 x

]1
0

= π/4.

To deal with the other integral we use

x4 + 1 = (x2 +
√

2x+ 1)(x2 −
√

2x+ 1)

and again split into partial fractions:

x2 + 1

1 + x4
=

1

2

(
1

x2 +
√

2x+ 1
+

1

x2 −
√

2x+ 1

)
.

Hence

S1 =
π

8
+

1

4

∫ 1

0

1

x2 +
√

2x+ 1
+

1

4

∫ 1

0

1

x2 −
√

2x+ 1

=
π

8
+

1

2

∫ 1

0

1

1 + (
√

2x+ 1)2
+

1

2

∫ 1

0

1

1 + (
√

2x− 1)2

=
π

8
+

√
2

4

(
tan−1(

√
2 + 1) + tan−1(

√
2− 1)

)
.

But tanπ/8 =
√

2− 1 and tan 3π/8 =
√

2 + 1. Hence

S1 =
π

8
+

√
2

4

(
3π

8
+
π

8

)
=

π

8
(
√

2 + 1),

as required.

Problem 251.7 – Fourteen cubes
Can you fit 14 cubes of volume 2 in a 5× 5× 2 1

2 box?
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Problem 251.8 – Six-week months
Tony Forbes
A week starts on Monday and ends on Sunday. A six-week month is a month
that spans six weeks (September 2013 for example).

Show that a year has two, three or four six-week months, at least one
of which must have 31 days. (This year has two—the other one being De-
cember.) So these things cannot be avoided, as I expect calendar designers
already know.

Show that when there are four six-week months in a year, they must be
January, April, July and December.

Problem 251.9 – The Philo line
Dick Boardman

Philo of Byzantium (180–120
BC) examined the following
problem: Given two lines meet-
ing at angle ρ, say, and a fixed
point between them, what is the
shortest line through the fixed
point and its intersections with
both lines.

I can solve this using calcu-
lus. But how could Philo have
proved the minimum using the
tools available at that time? All
I can think of is that he used
a light ray and mirrors or that
he used the tangent to a higher
curve. Any ideas?

A

P

W

B

O
Ρ

Tony Forbes — The illustration shows the special case where ρ = 90
degrees. The lines are OA and OB, the point is P , and the Philo line is
AB. This suggests another problem. Assuming that ρ = π/2 and that P
has coordinates (1, p), determine the coordinates of W , the other point of
intersection between the Philo line and the circle with diameter OP .

If you are like me, expect to be surprised and delighted by the answer.
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Solution 249.4 – Radium
Imagine you have constructed a sphere, 10 cm radius, of pure
radium-226. You then leave it alone and return to it about
1600 years later. What would you expect to see? Recall that
Ra-226 decays to radon-222 with half-life 1601 years, and Rn-
222 decays to polonium-218 with half-life 3.8235 days. There
are further steps: Po-218 to lead-214 and astatine-218, Pb-214
to bismuth-214, At-218 to Bi-214 and Rn-218 (half-life 0.036
seconds), and so on until Pb-206 is reached. Amongst the decay
products are noble gases. Will they work their way out and
escape gracefully from the surface of the sphere, or will there be
sufficient accumulation in the centre to build up pressure and
blow the thing apart?

Colin Davies
A few quick thoughts about the radium sphere.

I suspect that a sphere of pure radium-226, once assembled, would get
extremely hot very quickly as a result of its very high radioactivity. Ra-
dium’s melting temperature is apparently 700◦C. It might melt, but before
it melted it would probably collapse into a pancake under its own 23 kg
weight.

Radium is the atomically heaviest of the group 2 metals and is therefore
very reactive chemically. The hot sphere would probably react with almost
all the gases (including nitrogen) in the atmosphere, so it would need to be
left in a vacuum for the 1600-year duration of the experiment.

However, let’s assume it can remain as a reasonably solid sphere in
a vacuum. Then the radon-222 content would presumably be continually
proportionate to the ratio of the half-lives of radon-222 to radium-226. That
is presumably 3.8235/(1601·365) ≈ 6·10−6. That is about 1 part in 100,000.
So I don’t think it would take up much room or have much effect.

You do not give the half-life of astatine-218, but as a halogen, it will be
certain to react chemically with the radium to form RaAt2. That reaction
will be exothermic, and will increase the temperature even more.

It is not clear from your explanation how much stable noble gas will
be produced, but as it will be produced evenly over the whole volume of
the hot sphere I think it will form a sort of colloidal solution of a gas in a
solid. In other words, the sphere would become a meringue, or possibly a
stiff foam like a metallic pizza if it did collapse.
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Barbara Lee
Dear Tony,

What are you trying to do, discover if there is a critical mass for radium?
This was not discussed in our lectures at the Isotope School.

Radium-226 decays with the emission of an alpha particle, a gamma ray
and a small amount of internal conversion where energy is transmitted to
one of the orbital electrons.

Polonium-218 emits an alpha particle. Alpha particles are considered
to be heavy in nuclear physics and their range in air is only about 4 cm; so
the ones in your lump of radium won’t be going anywhere.

Lead-214 emits mainly beta particles and some weak gamma rays. So
does bismuth-214. And so on until you are left with lead-206.

As there is a lot of activity going on in your sphere I suspect that the
critical mass might be reached before you finish constructing it. Please
do not do this; my youngest son lives in Wolsey Drive and he might be
exterminated by your big bang.

Yours sincerely,

Tony Forbes
Wikipedia provides the following details for Ra-226 and its decay products.

Nuclide Half-life Decay modes

Ra-226 1601 y α to Rn-222
Rn-222 3.8235 d α to Po-218
Po-218 3.10 m 99.98% α to Pb-214, 0.02% β− to At-218
At-218 1.5 s 99.90% α to Bi-214, 0.10% β− to Rn-218
Rn-218 35 ms α to Po-214
Pb-214 26.8 m β− to Bi-214
Bi-214 19.9 m 99.98% β− to Po-214, 0.02% α to Tl-210
Po-214 0.1643 ms α to Pb-210
Tl-210 1.30 m β− to Pb-210
Pb-210 22.3 y 99.9999981% β− to Bi-210, 0.0000019% α to Hg-206
Bi-210 5.013 d 99.99987% β− to Po-210, 0.00013% α to Tl-206
Po-210 138.376 d α to Pb-206
Hg-206 8.15 m β− to Tl-206
Tl-206 4.199 m β− to Pb-206
Pb-206 - stable
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From this information we can compute the numbers of atoms of the various
elements in the sample arising from a single Ra-226 nucleus after 1601 years:

Ra-226: 0.5, Rn-222: 3.269× 10−6, Po-218: 1.841× 10−9,
At-218: 2.969× 10−15, Rn-218: 6.927× 10−20, Pb-214: 1.591× 10−8,
Bi-214: 1.182× 10−8, Po-214: 1.626× 10−15, Tl-210: 1.544× 10−13,
Pb-210: 0.00706, Bi-210: 4.347× 10−6, Po-210: 0.000120,
Hg-206: 9.325× 10−17, Tl-206: 3.335× 10−15, Pb-206: 0.493,
He-4: 2.493.

As we can see, the only significant quantities remaining are radium, lead, a
little polonium and a rather large amount of helium (from alpha particles
that have each acquired a couple of stray electrons). In terms of weight,
from one gram of Ra-226 we get:

Ra-226: 0.5 g, Rn-222: 3.211× 10−6 g, Po-218: 1.775× 10−9 g,
At-218: 2.864× 10−15 g, Rn-218: 6.682× 10−20 g, Pb-214: 1.506× 10−8 g,
Bi-214: 1.119× 10−8 g, Po-214: 1.539× 10−15 g, Tl-210: 1.434× 10−13 g,
Pb-210: 0.00656157 g, Bi-210: 4.038× 10−6 g, Po-210: 0.0001115 g,
Hg-206: 8.498× 10−17 g, Tl-206: 3.039× 10−15 g, Pb-206: 0.449092 g,
He-4: 0.0441441 g.

Now one can add up all these masses to obtain a total of 0.999916 g. So,
it looks as if our 10 cm sphere, weighing approximately 23 kg, will generate
about 23×0.000084 c2 ≈ 1.7×1014 joules during the life of the experiment—
starting at about 4.8 kilowatts and decreasing roughly exponentially to
about 2.4 kW.

There is no cause for concern. From the wording of the problem, I think it is
clear we are dealing with an imaginary situation. In the past radium might
have been obtainable by the shovelful from the local chemist but nowadays
it is a little difficult to get hold of.

Americium-241, on the other hand, is readily available as the active
ingredient of smoke alarms. However, a typical 0.9 microcurie’s worth of
Am-241 (half-life 432 y) in a smoke detection unit weighs less than 0.3 mi-
crograms, and although the critical mass of Am-241 is understandably kept
secret (figures in the public domain are presumably disinformation) we can
assume you would probably need kilograms of the stuff. So if you are plan-
ning to build an Am-241 reactor, your biggest problem by far will be the
disposal of the scrap plastic from several billion dismantled smoke alarms.
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Solution 238.3 – Sums
Let

Sn(k) =

n∑
j=0

(−1)j
(
n

j

)
(n− j)k,

where k ≥ 2 is an integer. Prove that

S1(k)

1
− S2(k)

2
+
S3(k)

3
− · · · ± Sk(k)

k
= 0.

Reinhardt Messerschmidt
Let

S(k) =
S1(k)

1
− S2(k)

2
+
S3(k)

3
− · · · ± Sk(k)

k
.

If k,m, r are integers such that 0 ≤ r ≤ m ≤ k, let

F (k,m, r) =

{
0 if m = r = 0,∑k
s=r(−1)s+1sm−r

(
k−r
s−r
)

otherwise.

Step 1. We first show that S(k) = F (k, k − 1, 0) for every k ≥ 2. Since(
n
j

)
=
(
n
n−j
)
, we have

Sn(k) =

n∑
j=0

(−1)j
(

n

n− j

)
(n− j)k.

Substituting s = n− j gives

Sn(k) =

n∑
s=0

(−1)n−s
(
n

s

)
sk =

n∑
s=1

(−1)n−s
(
n

s

)
sk.

It follows that

S(k) =

k∑
t=1

(−1)t+1St(k)

t
=

k∑
t=1

(−1)t+1 1

t

t∑
s=1

(−1)t−s
(
t

s

)
sk

=

k∑
t=1

t∑
s=1

(−1)2t−s+1

(
t

s

)
sk

t
=

k∑
t=1

t∑
s=1

(−1)s+1

(
t

s

)
s

t
sk−1.

We have
(
t
s

)
s
t =

(
t−1
s−1
)
; therefore

S(k) =

k∑
t=1

t∑
s=1

(−1)s+1

(
t− 1

s− 1

)
sk−1.
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Changing the order of summation gives

S(k) =

k∑
s=1

(−1)s+1sk−1
k∑
t=s

(
t− 1

s− 1

)
.

We can show by induction that
∑k
t=s

(
t−1
s−1
)

=
(
k
s

)
for every k ≥ s; therefore

S(k) =

k∑
s=1

(−1)s+1

(
k

s

)
sk−1 =

k∑
s=0

(−1)s+1

(
k

s

)
sk−1 = F (k, k − 1, 0).

Step 2. Next, we show that F satisfies the boundary condition

F (k,m,m) = 0 (1)

for every k,m such that 0 ≤ m < k. The case m = 0 follows from the
definition of F . If m > 0, then

F (k,m,m) =

k∑
s=m

(−1)s+1

(
k −m
s−m

)
sm−m =

k∑
s=m

(−1)s+1

(
k −m
s−m

)
.

We can show by induction that the last sum vanishes for every k > m.

Step 3. We now show that F satisfies the recurrence relation

F (k,m, r)− rF (k,m− 1, r) = (k − r)F (k,m, r + 1) (2)

for every k,m, r such that 0 ≤ r < m < k.

Suppose m = 1. Since 0 ≤ r < m, we must have r = 0. The left-hand
side of (2) then becomes

F (k, 1, 0)− 0 · F (k, 0, 0) =

k∑
s=0

(−1)s+1

(
k

s

)
s =

k∑
s=1

(−1)s+1

(
k

s

)
s.

We have
(
k
s

)
s =

(
k−1
s−1
)
k, therefore

F (k, 1, 0)− 0 · F (k, 0, 0) = k

k∑
s=1

(−1)s+1

(
k − 1

s− 1

)
.

We can show by induction that the last sum vanishes for every k ≥ 2. By
(1), the right-hand side of (2) is

(k − 0)F (k, 1, 1) = k · 0 = 0;

therefore (2) holds for m = 1.
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Suppose m > 1, then

F (k,m, r)− rF (k,m− 1, r) =

k∑
s=r

(−1)s+1

(
k − r
s− r

)(
sm−r − rsm−r−1

)
=

k∑
s=r+1

(−1)s+1

(
k − r
s− r

)
(s− r)sm−r−1.

We have
(
k−r
s−r
)
(s− r) =

(
k−r−1
s−r−1

)
(k − r); therefore

F (k,m, r)− rF (k,m− 1, r) = (k − r)
k∑

s=r+1

(−1)s+1

(
k − r − 1

s− r − 1

)
sm−r−1

= (k − r)F (k,m, r + 1).

Step 4. We now show that

F (k,m, r) = 0 (3)

for every k,m, r such that 0 ≤ r ≤ m < k. The case m = r follows from
(1). If m ≥ 1, then

F (k,m,m− 1)

= (m− 1)F (k,m− 1,m− 1) + (k −m+ 1)F (k,m,m) by (2)

= (m− 1) · 0 + (k −m+ 1) · 0 by (1)

= 0. (4)

If m ≥ 2, then

F (k,m,m− 2)

= (m− 2)F (k,m− 1,m− 2) + (k −m+ 2)F (k,m,m− 1) by (2)

= (m− 2) · 0 + (k −m+ 2) · 0 by (4)

= 0.

Repeating this process a sufficient number of times gives (3).

Step 5. Finally, substituting m = k − 1 and r = 0 into (3) gives

S(k) = F (k, k − 1, 0) = 0.
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Letter

Arabic numbers
Many thanks to Ralph Hancock [M500 249, p. 11] for pointing out my error
in suggesting that the Arabs write their numerals in ascending order unlike
us. There are no less than three distinct issues here: (1) writing anything,
sentences, names, numbers &c. from right to left or from left to right, (2)
writing numerals in ascending or descending order, (3) the order in which
we deal with numerals when performing addition/subtraction and so on.
My main source, Gillings, writes

Today most nations write from left to right, and our numbers
are so written also; but the values of the digits in our ‘Hindu-
Arabic’ decimal system increase in place value from right to left.
So, if we have to perform an addition or subtraction, we begin
with the units column on the right, and work toward the left
through the tens, hundreds and so on.

Conversely, the Egyptians wrote their words and numbers from
right to left. Of necessity, however, the Egyptian mathemati-
cians, like ourselves, had to start adding in the opposite direc-
tion to that in which they were accustomed to write, so the place
value of the Egyptians’ digits increases from left to right, and the
Egyptian system therefore runs widdershins to ours.

R. Gillings, Mathematics in the Time of the Pharaohs

The muddle about left to right and right to left has been confounded
because renderings of ancient Egyptian texts naturally reverse the orien-
tation with respect to sentences but often print the numerals in imitation
hieroglyphs in the order in which they appear in the papyrus with a mod-
ern numeral written underneath each one (so that people can see the hi-
eroglyphs). This gives the erroneous impression that the Egyptians wrote
their numerals in ascending order which they did not according to Gillings.

But how/why did writing numbers in descending order ever come about
in the first place? Presumably because this mimicked the way in which large
quantities were assessed by State officials. Confronted with, say, a confused
mass of prisoners or pottery imports, an official would start by working out
the thousands or hundreds, then pass to the tens and finally to the units.
He would call out the amounts as he worked them out and the scribe would
record the numerals in the order in which he heard them, i.e. largest amount
first. Moreover, in this way, a visiting official could get a rough idea of the
size simply by glancing at the first hieroglyphic numeral (which, remember,
is a different pictogram for each power of ten). But, when it came to actual
operations with numbers, the scribes like everyone else had to proceed the
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other way (though some mental arithmetic experts say they add the higher
columns first).

The confusion demonstrates the basic conflict between two very different
functions of numbers: (1) as devices for the compact recording of data
and (2) as a means of drawing original conclusions from given data. The
first process is a movement from the unknown (or very roughly known)
to the known, the second a movement from the known into the unknown
which, if the reasoning is valid, eventually transforms it into part of the
known. As professional or amateur mathematicians we tend to think that
numbers were invented for the purpose of getting out precise solutions to
mathematical equations, but the recording function of numbers was by far
the more important for millennia and arguably still is.

Sebastian Hayes

Please note that in M500 249, ‘Arabic numbers’, page 11, ‘which can be
transliterated “asalif wa-khamsaman’a wa-sita” and “means thousand and-
five hundred and-six”’ (How Ralph Hancock’s original submission got so
mangled to create this mess (which then remained undetected by this mag-
azine’s Editor and proof-readers) is a bit of a mystery. Someone, ICL math-
ematician Robert Vaughan, I think, once told me that the process of proof
correction is not necessarily convergent. But whether that is relevant here
I’m not so sure. Anyway, my fault. Apologies.) should of course read
‘which can be transliterated as “alif wa-khamsamān’a wa-sita” and means
“thousand and-fivehundred and-six”’ — TF.

Mathematics in the kitchen – IX
Robin Whitty
This question concerns tea, in particular the preparation of the hot water
for the brewing of the said beverage from tea-bags individually in cups.

Either (1) you boil a full cylinder of water and make a sequence of
cups of tea, at times t, t + k, t + 2k, . . . , reboiling the
remaining volume each time;

or (2) you boil one cupful of water for each of your cups.

Is (1) is more energy efficient than (2) when k = 0 (i.e. boiling one big
kettle is better than boiling lots of little ones)? Maybe this depends on the
parameters of the cylinder. If so, is there a value of k below which (1) is
more energy efficient than (2)?

[Please do not try this at home. Boiling water is a hazardous substance
capable of causing severe burns. — TF]
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