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Chinese sections

Alan Davies

1 Introduction

In the mid 1990s I went to a schools’ lecture at the Royal Institution given
by the late Pat Perkins. In the lecture she described the method of sec-
tions used by the ancient Chinese mathematicians to find the volumes of
some common objects. I was particularly taken by the problem posed to
find the volume common to two intersecting cylinders. I had, of course,
seen the result using a triple integral in my undergraduate days. Since the
principles involved are easily understood by year nine pupils, I developed
a mathematics masterclass session to be presented in the series running at
the University of Hertfordshire and I’ve presented it a number of times sub-
sequently. Others have also done something similar. For readers interested
in material suitable for presentation to a schools’ audience the Nrich work
produced by Emma McCaughan (2001) is an excellent resource.

2 Cavalieri’s principle

Today we would recognise the method of these early Chinese mathemati-
cians as the so-called Cavalieri’s principle developed some thirteen hundred
years later. In fact, this was not the first use of the technique. Archimedes,
in the third century BC, had already developed a very similar method based
on mechanical principles and he used it to find the volume of a sphere. The
work, described in his Method of mechanical theorems, was thought to be
lost but was found in the palimpsest (Wikipedia 2021a) discovered in 1906
(Heath 2002).

Bonaventura Cavalieri (1598 – 1647), as a disciple of Galileo, was en-
couraged to develop the idea of indivisibles, quantities which were infinitesi-
mally small. In 1635 Cavalieri published the method in his highly-acclaimed
Geometria indivisibilus continuorum and used it to develop the eponymous
principle. We shall state his principle in the form given by Boyer (1968).

If two solids have equal altitudes and if sections made by planes
parallel to the bases and at equal distances from them are always
in the same ratio, then the volumes of the two solids are also in
the same ratio.

The principle is illustrated in Figure 1 where we have volumes V1 and V2
whose areas satisfy A1/A2 = k.
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Figure 1: Solids with equal altitudes, h. Sections A1 and A2 in a constant
ratio, k, when h1 = h2.

With A1/A2 = k, Cavalieri’s principle states that V1/V2 = k. Cav-
alieri used his approach to deduce the volume of a sphere from the known
volume of a cone and a cylinder (Wikipedia 2021b).

3 Chinese sections

We move back now to those early mathematicians in China and, in par-
ticular, to Liu Hui (c.225 – c.295) and his attempt to find a formula for
the volume of a sphere. Liu Hui knew that a sphere of radius r could be
circumscribed by a cube two of whose faces are horizontal and that the
cube also circumscribes an object called a móuhéfānggài by the Chinese.
The word móuhéfānggài literally means ‘two close-fitted square lids’. The
móuhéfānggài is the volume contained by the intersection of two horizontal
cylinders, each of radius r, whose coplanar axes are perpendicular. It’s also
the volume contained by a pair of folding cloth mesh covers, the type used
to protect food in the summer, see Figure 2, placed base-to-base.

Figure 2: Folding cloth mesh food cover.
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The móuhéfānggài also circumscribes the sphere and the important
property is that the cross sectional areas of the móuhéfānggài are squares
which are in a constant ratio with the latitudinal small circles of the sphere.
Hence if Liu Hui could find an expression for the volume of the móuhéfānggài
he could find one for the volume of a sphere. Unfortunately for Liu Hui he
was unable to find such an expression. It was another two hundred years
before Zu Chongzhi (429 – 500) and his son Zu Gengzhi (c.450 – c.520)
were able to find an expression for this much more complicated volume.
Zu Chongzhi’s major claim to mathematical fame is his amazingly accu-
rate approximations to the value of π: 3.1415926 < π < 3.1415927 and
π ≈ 355/113, the latter value not being known in Europe for another thou-
sand years (Kiang 1972).

A note on Chinese names is worthwhile here. Zu Chongzhi is sometimes
known as Tsu Ch’ung-Chih and it is in this form that a crater on the far side
of the Moon is named. The word móuhéfānggài is written in the modern
Hànyŭ P̄inȳin system now in use in China. The interested reader can find
the Chinese symbols for the names in this article in the works of Kiang
(1972), Lam and Shen (1985) and Polster (2004).

The yángmă

To follow the Chinese approach we first have to construct a yángmă (Brun-
ton 1973). Every cube can be divided into three identical solids. Each of
these solids is called a yángmă, see Figure 3. If the side of the cube is a
then we shall say that the yángmă has side a.

Figure 3: Yángmă, one third of a cube.

We shall need the value of the cross section of a yángmă, of side r, at a
height x as shown in Figure 4.

Using similar triangles in Figure 4 we see that the cross section at height
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x is a square of side x whose area is given by

Ayangma = x2. (1)

Since the cube has volume r3 we can write

Vyangma =
1

3
r3. (2)

Figure 4: Cross section of yángmă at a height x.

In the Appendix the interested reader can find a template to make a
yángmă from card.

The móuhéfānggài

Now, we turn our attention to the móuhéfānggài. Since it is the volume
enclosed by the intersection of two identical cylinders, whose axes are or-
thogonal and lie in the same plane, the cross section in the plane of the axes
is a square, see Figure 5.

If the cylinders have radius r then an octant of the móuhéfānggài fits
snugly into a cube of side r, as shown in Figure 6(a).

The cross sections at height x are shown in Figure 6(b), where the dashes
denote the square section of the cube, side r, and the solid lines form the
square section of the móuhéfānggài whose side l is yet to be determined. A
vertical section through the móuhéfānggài and the cube is shown in Figure 7
from which we see that

l2 = r2 − x2.

Now the area of the L-shaped section in Figure 6(b) is given by

AL-shape = r(r − l) + l(r − l)
= r2 − l2 = x2 = Ayangma,
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Figure 5: Intersection of two identical cylinders.

Figure 6: Octant of móuhéfānggài fitting snugly in a cube (after Mc-
Caughan, 2001).

using equation (1). Hence it follows, from equation (2) that

VL-shape = Vyangma

=
1

3
r3.

If we consider the diagram in Figure 6 we see that the volume of the
octant of the móuhéfānggài is given by

r3 − VL-shape =
2

3
r3
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Figure 7: Vertical section through the móuhéfānggài and the cube.

and so

Vmouhefanggai =
16

3
r3. (3)

This was the value found by the Zus, father and son, in the fifth century.
For completeness we shall show how they then used Liu Hui’s idea to find
the volume of a sphere.

The sphere

Now imagine a sphere of radius r fitting snugly inside the móuhéfānggài. A
horizontal slice at height x is shown in Figure 8(a).

Figure 8: (a) Horizontal slice at height x, (b) vertical section through the
octant of the sphere.

In Figure 8(b) we show a vertical slice through an octant of the sphere
and from the diagrams in Figure 8 we see that

Acircle = π(r2 − x2) and Asquare = 4(r2 − x2).
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Hence
Acircle

Asquare
=

π

4

and it follows that
Vsphere

Vmouhefanggai
=

π

4
.

Hence the volume of the sphere is given by

π

4
Vmouhefanggai =

4

3
πr3.

4 Postscript

We could, of course, use calculus to obtain the volume of the móuhéfānggài:

Vmouhefanggai =

∫ r

−r

∫ √r2−z2

−
√
r2−z2

∫ √r2−z2

−
√
r2−z2

dx dy dz =
16

3
r3

but this is far less elegant.

Even worse, we could use our favourite CAS package! The MATLAB
code is as follows.

int(int(int(1,-sqrt(r^2-z^2),sqrt(r^2-z^2)),

-sqrt(r^2-z^2),sqrt(r^2-z^2)),-r,r)
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6 Appendix

In Figure 9 we show a template for the yángmă in a unit cube.

Figure 9: Yángmă, one third of a cube.

Problem 301.1 – Power sum
Tony Forbes
Let b and k be integers greater than 1. Show that

S(b, k) =

∞∑
i=0

1
k−1∑
j=0

bki+j

=
(b− 1) bk

(bk − 1)2
.

For example,

S(2, 2) =
1

1 + 2
+

1

4 + 8
+

1

16 + 32
+ . . . =

4

9
,

S(10, 3) =
1

1 + 10 + 100
+

1

1000 + 10000 + 100000
+ . . . =

1000

110889
.

https://en.wikipedia.org/wiki/Archimedes_Palimpsest
https://en.wikipedia.org/wiki/Archimedes_Palimpsest
https://en.wikipedia.org/wiki/Cavalieri%27s_principle
https://en.wikipedia.org/wiki/Cavalieri%27s_principle
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Solution 296.1 – Divisibility
Let m and n be positive integers with m ≥ 4. Show that

(mn)!−m! (n!)m ≡ 0 (mod nm+3),

or find a counter-example.

Ted Gore
Let

p =
(mn)!

(n!)mm!
.

Then
(mn)!−m!(n!)m = m!(n!)m(p− 1).

I use an example to demonstrate that (mn)! is divisible by m!(n!)m. For
(m,n) = (4, 5) we get

20! = (20 · 19 · 18 · 17 · 16)(15 · 14 · 13 · 12 · 11)(10 · 9 · 8 · 7 · 6)(5 · 4 · 3 · 2 · 1).

Taking the largest value from each set we get

20! = 4! · 54(19 · 18 · 17 · 16)(14 · 13 · 12 · 11)(9 · 8 · 7 · 6)(4 · 3 · 2 · 1).

Each set of four consecutive numbers is divisible by 4!. So 20! = 4! · (5!)4p,
where p = (19 · 3 · 17 · 4)(7 · 13 · 11)(9 · 2 · 7). Note that p is not divisible by
5. In this case p− 1 = 782183 · 54.

We need to show that m!(n!)m(p− 1) ≡ 0 (mod nm+3). Let

G(m,n) =
⌊m
n

⌋
+
⌊m
n2

⌋
+
⌊m
n3

⌋
+ . . . ,

where b c is the floor of its argument.

If n is prime then G returns the highest power of n that divides m!.
When n is compound then the highest power of n may be greater than G.

We can say immediately that G(m,n) ≥ 3 if m ≥ 3n or if m ≥ n2.
What about other combinations of m and n?

Let m!(n!)m = xnm+b+f , where b = G(m,n) and f is the power of n in
m!(n!)m generated by the factors of n less than n itself.

Let p = ync + k, so that p− 1 = ync + k − 1. Let

(mn)!−m!(n!)m = znd = xnm+b+f (p− 1).
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If k = 1, then znd = xnm+b+fync, so that d = m+ b+ f + c. Otherwise
znd = xnm+b+f (p− 1), so that d = m+ b+ f .

We need to show that znd ≡ 0 (mod nm+3).

It’s easily seen that the condition is true for n = 4. For all compound
n > 4, Wilson’s theorem tells us that (n− 1)! ≡ 0 (mod n), so that f ≥ m.
Therefore we need to show that, for a prime, if b + f < 3 then k = 1 and
c ≥ 3− (b+ f).

I use (4, 5) to demonstrate that k always equals 1 for an odd prime n.
To obtain qt we start with the subset that has tn as its highest value and
remove that value. So we take the first subset (20 · 19 · 18 · 17 · 16) and
remove the first value to give

q4 = (19 · 18 · 17 · 16) = (20− 1)(20− 2)(20− 3)(20− 4) = α(5) + 4!,

where α(n) denotes a polynomial such that each term is divisible by at least
n. We know that q4 is divisible by 4! so that α(5) is divisible by 4!.

This procedure can be carried out for each subset to give

p =
(19 · 18 · 17 · 16)(14 · 13 · 12 · 11)(9 · 8 · 7 · 6)(4 · 3 · 2 · 1)

(4!)4

= (3875 + 1)(1000 + 1)(125 + 1)

= (31 · 53 + 1)(8 · 53 + 1)(53 + 1).

We see now that p actually equals α(53) + 1 and we might expect c to be
3. In fact, p− 1 = 782183 · 54 which satisfies the condition c ≥ 3.

We need to show that, for an odd prime n > 3, c ≥ 3. Taking

qt = (tn− 1)(tn− 2)(tn− 3)(tn− 4),

where n = 5, we have

qt = t4n4 − 10t3n3 + 35t2n2 − 50tn+ 24.

Obviously every term but the constant term is divisible by n3.

With qt = (tn− 1)(tn− 2)(tn− 3)(tn− 4) the expansion of the term in
n is

−4!

(
1

1
+

1

2
+

1

3
+

1

4

)
tn = − 50tn = − 2tn3.

And the expansion of the term in n2 is

4!

(
1

2
+

1

3
+

1

4
+

1

6
+

1

8
+

1

12

)
t2n2 = 35t2n2 = 7t2n3.
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These results suggest two conjectures. For primes greater than 3,

(n− 1)!

n−1∑
i=1

1

i
is divisible by n2, and

(n− 1)!
∑

1≤i<j≤n−1

1

ij
is divisible by n.

I have confirmed they are true for the primes from 5 up to 1999. If the two
conjectures are accepted, then for all primes n > 3, we have c ≥ 3.

A similar procedure for n = 3 shows that b ≥ 1 and c ≥ 2. For n = 2,
we have b ≥ 3 and c ≥ 1.

Now the coefficients 50 and 35 are Stirling numbers of the first kind; 50
being s(5, 2) and 35 being s(5, 3).

The conjectures become that s(n, 2) is divisible by n2 and s(n, 3) is
divisible by n. Wolstenholme’s theorem is proof of the first. I have not
found a specific proof of the second.

Tommy Moorhouse

Our strategy is to extract factors of n before proving that a certain sum is
divisible by n, leading to the stated result. We first set out some lemmas.

Lemma 1 If n is composite then (n− 1)! ≡ 0 (mod n).

Proof If n = ab for integers a and b both greater than 1, then a and b are
both smaller than n− 1 and so both are factors of (n− 1)!. Hence n is also
a factor. �

Lemma 2 If n is a prime greater than 3 then

n−1∑
k=1

k2 ≡ 0 (mod n).

Proof This follows from the expression for the sum of consecutive squares

n−1∑
k=1

k2 =
1

6
n(2n− 1)(n− 1).

Since n is prime it is easily checked that the term (2n−1)(n−1) is divisible
by 6, so that the sum is divisible by n. �
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Now we expand the expression

(nm)! = nm(nm− 1) · · ·n(m− 1) · · ·n(m− k) · · ·n(n− 1) · · · 2 · 1.

We can extract a factor nmm! to leave nmm!Q(m,n) where

Q(n,m) = (nm− 1)(nm− 2) · · · (n(m− 1) + 1)(n(m− 1)− 1) · · ·

=
(
n2(m− 1)2 − (n− 1)2

)(
n2(m− 1)2 − (n− 2)2

)
· · ·

· · ·
(
n2(m− 1)2 − 12

)
×

(
n2(m− 3)2 − (n− 1)2

)(
n2(m− 3)2 − (n− 2)2

)
· · ·

· · ·
(
n2(m− 3)2 − 12

)
× · · ·

×
(
n2 − (n− 1)2

)(
n2 − (n− 2)2

)
· · ·
(
n2 − 12

)
.

Here we have matched up terms either side of the ‘holes’ in Q(m,n) at
n(m− (2k + 1)), i.e. the terms

n(m− (2k + 1) + j) and n(m− (2k + 1)− j),

where j = 1, 2, 3, . . . , n− 1, to get the terms

n2(m− (2k + 1))2 − j2.

A sketch might help to see what is happening: here the (singly or doubly)
starred terms are matched, shown next to the ‘holes’.

nm ∗ · · ·n(m− 1) · · · ∗ n(m− 2) ∗ ∗ · · ·n(m− 3) · · · ∗ ∗n(m− 4) · · ·

If m is even then all the terms match up this way to give a product of
differences of two squares. If m is odd we can match all the terms except
those less than n, which leaves us with an extra factor of (n − 1)!. In the
expression for Q(m,n) we see that if we multiply out the final terms in each
of the brackets we get (n − 1)!m, taking into account the final (n − 1)! in
the case of odd m. This cancels with the (n− 1)!m in Q(m,n)− (n− 1)!m,
so we can concentrate on the other terms in Q(m,n).

We don’t need to expand out the whole of Q(m,n), but simply note that
the terms that miss out exactly one of the final terms in the main brackets
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bring a factor of n2. Reducing Q(m,n)− (n− 1)!m modulo n3 we have

n2
[m/2]∑
k=1

(m− (2k − 1))2(n− 1)!m
n−1∑
j=1

1

(n− j)2
.

We can ignore the sum involving m here. We consider the term

(n− 1)!m
n−1∑
j=1

1

j2
(mod n),

which contains the same terms as that above, modulo n. The inverted
terms can be resolved using the fact that, for prime n and any j < n there
is a unique j′ < n such that jj′ ≡ 1 (mod n). Thus the final sum can be
rewritten (mod n) as

n−1∑
j=1

j2 (mod n)

which, by Lemma 2, is congruent to zero modulo n. Thus, since we have
shown that

Q(m,n)− (n− 1)!m ≡ 0 (mod n3)

if n is prime, we see that nm+3 divides (nm)!−m!(n!)m. If n is composite
we use Lemma 1 to reach the same conclusion more directly.

Problem 301.2 – Reciprocal sum

Ted Gore

Show that if n is prime and n > 3, then

(n− 1)!

n−1∑
i=1

1

i
≡ 0 (mod n2)

and

(n− 1)!
∑

1≤i<j≤n−1

1

ij
≡ 0 (mod n).

See page 17 for the next problem of this type.
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Solution 286.5 – Factorization
Given a positive integer n, denote by φ(n) the number of positive integers
m < n such that gcd(m,n) = 1. If we know the complete factorization of
n, say n = pa1

1 p
a2
2 . . . par

r with positive integers a1, a2, . . . , ar and distinct
primes p1, p2, . . . , pr, we can easily compute

φ(n) = (p1 − 1)pa1−1
1 (p2 − 1)pa2−1

2 . . . (pr − 1)par−1
r .

Is this process reversible? Given n and φ(n), is it possible to construct
the complete factorization of n without too much difficulty? If it is, try
factorizing

n = 1586 02481 31293 11974 04552 75968 73607 71145 55549 11334 22976
68001 07012 76942 47700 99421 02756 52867 12646 06754 07200 60245 86133
22978 29252 68997 66323 73467 11294 88572 28050 70734 96620 00789 92252
73781

given that

φ(n) = 1586 02481 31293 11974 04552 75968 61357 52500 38117 66204 95814
65893 63834 77320 84117 64608 84450 72128 92453 11845 67688 17202 39729
99520 14675 73124 90380 04713 14884 75595 39954 75897 02033 54901 63971
74000.

Peter Fletcher
If we try Maple’s ifactor on n or φ(n), Maple gets stuck, so we need a
different method.

Let N be some integer and consider N −Φ(N). If q1, q2 and q3 are the
prime factors of N with multiplicities a, b and c, then

N − Φ(N) = qa1 q
b
2 q

c
3 − (q1 − 1)qa−11 (q2 − 1)qb−12 (q3 − 1)qc−13 .

If now we expand this and divide by N , we get

N − Φ(N)

N
=

q1q1 + q1q3 + q2q3 − q1 − q2 − q3 + 1

q1 q2 q3
.

Note that the denominator is the product of the prime factors ignoring the
multiplicities. If now b = 1 and c = 1 and we divide N by q1 q2 q3, the result
will be qa−11 .

Turning to the question, it turns out that if we let the denominator of(
n − φ(n)

)
/n be d and find n/d, this is an integer that happens to be a

square of a prime: let this prime be p1. Since p1 appears in d exactly once,
we know that p31 divides n.

Let

n1 =
n

p31
and φ1(n1) =

φ(n)

(p1 − 1)p21
.
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We know that the rest of the prime factors of n, let them be p2, p3, . . ., each
appear in n1 exactly once. This means that we must have

φ1(n1) = (p2 − 1)(p3 − 1) · · · .

We can still not use Maple’s ifactor on n1, but we can use it on φ1(n1):
the result is 20 prime factors, 2 appearing three times. Each (pi−1) is even,
so there could be up to three more primes to find.

Let the prime factors of φ1(n1) be denoted f1, f2, . . . f20. A certain
product of some of these, including at least one 2, will equal (p2 − 1), so if
we then add 1 we shall get p2.

We can loop through each of

fi + 1, fifj + 1, fifjfk + 1, . . .

in turn, for i, j, k, . . . = 1, 2, . . . , 20 and test each product+1 to see if it is
prime. If it is, we can then see if it divides n1. If we do this, we very soon
find (p2 − 1) with five prime factors and hence p2.

Let n2 = n1/p2. Maple’s ifactor does now work on n2 and the result
is p3 and p4.

To summarise, n = p31 p2 p3 p4, where n is per the question and

p1 = 466435879660522367654413675211,

p2 = 562422394447827908154562532159,

p3 = 494179332730633784520908832239,

p4 = 562324418721793120042174985351.

Problem 301.3 – Integers
Tony Forbes
For some integer q ≥ 1, there are q + 1 non-negative integers, n1, n2, . . . ,
nq+1 that satisfy

q +

q+1∑
i=1

ni =

q+1∑
i=1

i ni =

q+1∑
i=1

i(i− 1)ni = q2 + q.

Show that n1 = q2 − 1 and nq+1 = 1.
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Lines in R3 and vector fields on S2

Tommy Moorhouse
This investigation concerns a correspondence between sets of lines in R3

and vector fields on the 2-sphere S2. If we fix an origin in R3, real three-
dimensional space, we can characterise all its directed lines using pairs of
vectors as follows. Let ~v be the unique vector based at the origin meeting
the line at right angles. Then let ~u be a unit vector pointing along the
line from the tip of ~v, defining the direction of the line. The pair (~v, ~u)
completely specifies the directed line. We have the conditions ~v ·~u = 0, and
~u · ~u = 1.

This specification can be used to define vector fields on part or (more
interestingly) all of S2. Given (~v, ~u) the unit direction vector ~u gives a point
of S2 and we define the tangent vector at this point to be ~v. By construction
~v is tangent to the sphere at the point defined by ~u.

It is interesting to see what the correspondence looks like. Try sketching
a set of lines (part of a ruled surface for example) and mark the correspond-
ing vector field on a sketch of part of a sphere, or take your favourite vector
field on S2 and see what the corresponding set of lines in R3 looks like. Keep
in mind that ~v and ~u must be perpendicular. One set of corresponding con-
figurations is shown in Figure 1, where the lines (each line representing a
pair of oppositely directed lines) pass through a single point P distinct from
the origin, and the vector field vanishes at the poles but generally points
‘north’.

Figure 1: Vector field on sphere and some of the corresponding lines.

Rotations of R3 fixing the origin also change the vector field on S2 –
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perhaps you can investigate how. What happens if the origin is changed but
the set of lines remains fixed? For example, in the case depicted in Figure
1 what happens when P is moved downwards to eventually coincide with
the origin? With the origin fixed any point P determines a vector field on
S2 through the set of lines passing through it.

Let us call a set of lines that gives rise to a smooth vector field with
isolated zeros on S2 through the above correspondence ‘allowed’. What
properties must an allowed set of lines have to ensure that the corresponding
set of vectors forms a smooth vector field on the whole of S2? Deduce from
the properties of smooth vector fields on S2 that any allowed set contains
at least one directed line through the origin. Is the origin special or does
any allowed set include at least one directed line passing through any given
point of R3?

Note The construction in this article was used by N. J. Hitchin to
construct solutions to a set of equations arising in physics, and by others in
the study of surfaces.

Problem 301.4 – Triple reciprocal sum
Tony Forbes
(i) Suppose n is odd. Either show that

(n− 1)!
∑

1≤i<j<k≤n−1

1

ijk
≡ 0 (mod n),

or find a counter-example.

(ii) Let n be a positive integer and let

Hs(n) = 1 +
1

2s
+

1

3s
+ · · ·+ 1

ns
.

Show that for any positive integer n,∑
1≤i<j<k≤n

1

ijk
=

H1(n)3 − 3H1(n)H2(n) + 2H3(n)

6
.

This formula might be useful for dealing with (i). For not too large n, the
Mathematica function HarmonicNumber[n,s] can be used to compute
Hs(n) very rapidly.
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Solution 295.4 – A line and a circle
Richard Gould

•

C

O

M

N

L

r

2

θ

θ

P (x,y)

Q(x,y1)

s

Problem The line L makes an angle θ with the horizontal, where 0 <
θ < π/2. A circle C lies below L, separated from it by 2 m. A particle is
dropped from a variable point P above C and falls under gravity a distance
s to meet the circle at Q. Determine the fastest time of descent for the
particle and show that it is independent of the radius of C. Gravity is
constant and acts vertically down.

Construction OM is the perpendicular from the centre of the circle,
O, to L. Drop a perpendicular from M to meet the horizontal line through
O at the point N . The angle OM̂N is equal to θ.

Solution Let the magnitude of the acceleration due to gravity be g.
Using the standard notation and equations of motion for constant linear
acceleration we have

v = gt, v2 = g2t2 = 2gs,

giving t =

√
2s

g
.

From which we see that, unsurprisingly, the fastest descent occurs when the
vertical distance between the line and the circle is a minimum.

Establish a Cartesian coordinate system with origin at the centre of the
circle O and let the radius of the circle be rm. The geometry of triangle
OMN tells us that the coordinates of M are (−(2 + r) sin θ, (2 + r) cos θ).
Since L has gradient tan θ, the equation of L is

y − (2 + r) cos θ = (x+ (2 + r) sin θ) tan θ,

from which y = x tan θ +
2 + r

cos θ
,
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The equation of the circle is, of course x2 + y2 = r2. Referring to the
diagram, we can now find the s-value for an arbitrary point P (x, y) on L.

s = y − y1 = x tan θ +
2 + r

cos θ
−
√
r2 − x2.

To find the minimum distance we solve the equations

∂s

∂x
= tan θ +

x√
r2 − x2

= 0, (1)

∂s

∂r
=

1

cos θ
− r√

r2 − x2
= 0, (2)

simultaneously. Equation (2) gives x = ±r sin θ. Substituting into equation
(1) gives

tan θ ± r sin θ√
r2(1− sin2 θ)

= 0 for x = −r sin θ only.

So there is a station-
ary point at x = −r sin θ.
As this does not provide a
constant solution for (r, x)
there is no isolated lo-
cal extremum. Indeed,
the usual tests for classi-
fying stationary points fail
since the determinant of
the Hessian matrix is zero
(not demonstrated here)
and the matrix itself has
a zero eigenvalue.

A 3-D plot, generated
by Maple, shows us what
is going on.

Plot of s(r, x) for θ = π/6

From the plot we see that there is a minimum in the x-r plane (i.e. s
constant) for each value of r and these all appear to lie in the same s-r
plane. We can confirm the minimum by the second derivative test.

∂2s

∂x2
=

√
r2 − x2 +

2x2

2
√
r2 − x2

r2 − x2
=

r2

(r2 − x2)3/2
> 0,
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The minimum value of s and the resulting time of descent are given by

smin = − r sin2 θ

cos θ
+

2 + r

cos θ
− r cos θ

=
2 + r − r(sin2 θ + cos2 θ)

cos θ
=

2

cos θ
.

And tmin =
2√

g cos θ
,

which establishes that tmin is independent of r.

Footnote I learned a salutory lesson from this experience. I always
advise my students to spend a few moments thinking about a problem
before embarking on the obvious method of solution and reconsider their
approach if the working becomes difficult. Although the above was far from
intractable, I had a nagging feeling as I worked through it that there might
be a simpler, geometric solution. I was in Covid-19 lockdown at the time
and sharing puzzles with a friend and colleague who produced the following
solution, having first demonstrated as above that the problem only required
identification of the shortest descent path.

•

C

O

M

N

θ

P (x,y)

Q(x,y1)

L2

R
L

r

B

A

Construction Let OM instersect the circle at A. Draw L2, the tangent
to the circle at A, intersecting PQ at R. Draw a vertical line through A to
meet L at B.

Solution Since L2 is perpendicular to OM it is parallel to L. From
the point P the descent path to the circle is PR + RQ but PRAB is a
parallelogram and so PR = BA. Since, for all points P on L above the
circle, the distance RQ is positive or zero, the minimum descent is from B
with a descent height of BA = 2/ cos θ. The rest follows. Clearly this was
an occasion when I should have followed my own advice!
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Solution 280.3 – Digits
List all the d-digit numbers in base d + 1 (actually any base
larger than d will do) that satisfy all of the following. (i) The
digits are in non-increasing order reading left to right; (ii) the
difference between consecutive digits is either 0 or 1; (iii) the
units digit is 0 or 1. How long is the list?

Steve Moon
Let’s start by working through a specific example. I chose base 5. Including
zero as 0000, there are 16 four-digit numbers whose digits satisfy the three
criteria.

0000 1110 1111 2221 1000 2110 2111 3221
1100 2210 2211 3321 2100 3210 3211 4321

There are 8 three-digit numbers in base 5 whose digits meet the criteria
and these also provide the list of permitted three-digit numbers in base 4.

000 111 100 211 110 221 210 321

There are 4 two-digit numbers in base 5 meeting the requirements and
these also provide the list of permitted two-digit numbers in bases 4 and 3.

00 11 10 21

We conjecture that the number of allowable d-digit numbers in base
d+ 1 is 2d. Furthermore, for any base d+k, k > 1, the number of allowable
d-digit numbers is 2d. The reasoning is as follows: for base d + 1, starting
in the units column as required with either 0 or 1, each of these permits
two options for entry into the next column. Then each entry in this second
column permits two entries in the third column, and so on for up to d
columns.

Problem 301.5 – Matrix powers
Tony Forbes
For integer n ≥ 3, let A be an n×n matrix whose r-th row is [0 1 0 0 . . . 0 1]
rotated right by r − 1 places. Show that for h = 1, 2, . . . , n− 1 and i = 1,
2, . . . , n, we have

[Ah]i,i =

 0 if h is odd,(
h

h/2

)
if h is even.

Can you extend this formula to n ≤ h ≤ 2n− 1?
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Solution 297.1 – Matrix square root
Suppose n ∈ {2, 3, 4, . . . } and α, β are real numbers such that
α − β ≥ 0 and α + (n − 1)β ≥ 0. Let M be the n × n matrix
whose diagonal entries are all α and whose other entries are all
β. Find a square root for M , i.e. a matrix S such that S2 = M .

Tommy Moorhouse
We can write the matrix M as (α−β)I+βU where U is the n×n of 1s. We
observe that U2 = nU. We look for a solution of the form (

√
α− β)(I+xU);

that is,

I +
β

α− β
U = (I + xU)2.

Expanding the right hand side we see that we must have

nx2 + 2x−A = 0

where A = β/(α− β). Solving for x we have

x =
1

n

(√
nA+ 1− 1

)
=

1

n
√
α− β

(√
α+ (n− 1)β −

√
α− β

)
.

Finally, the required square root is(√
α− β

)
I +

1

n

(√
α+ (n− 1)β −

√
α− β

)
U.

The conditions on α and β make both square roots real.

Reinhardt Messerschmidt
Let J and 1 be the all-1 matrix and all-1 column vector respectively, with
their dimensions determined by the context. Note that M = (α−β)I+βJ .
The diagonalization of M is

M =

[
1 1T

1 −I

] [
α+ (n− 1)β 0T

0 (α− β)I

] [
1 1T

1 −I

]−1
=

[
1 1T

1 −I

] [
α+ (n− 1)β 0T

0 (α− β)I

] [
n−1 n−11T

n−11 n−1J − I

]
.

A square root for M is therefore

S =

[
1 1T

1 −I

] [√
α+ (n− 1)β 0T

0
(√
α− β

)
I

] [
n−1 n−11T

n−11 n−1J − I

]
=
(√

α− β
)
I + n−1

(√
α+ (n− 1)β −

√
α− β

)
J.
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Stuart Walmsley

Introduction

The determinant corresponding to the matrix in this problem has been the
subject of two previous problems, 282.5 and 283.2, to each of which I gave a
solution, in issues 284 and 288 respectively. The same method can be used
to solve the present problem. In square matrix M , the diagonal elements
are all equal to α and the off diagonal elements to β. A matrix T , given in
the earlier work, leads to D, a diagonal form of M :

TMT−1 = D (1)

in which all dj,k = 0 for j 6= k. The square root of D is then the diag-
onal matrix R in which each diagonal element is the square root of the
corresponding element in D. Inverting (1),

T−1DT = M, T−1RRT = M, T−1RTT−1RT = M,

so that T−1RT = S is a square root of M .

The Transformation Matrix

It has been shown in the solutions to several previous problems that a matrix
of the form M can be diagonalized by a matrix T , each element of which
is proportional to an nth root of one, n being the dimension of the matrix.
The matrix elements of T are most simply expressed if the rows and columns
are labelled 0 to n− 1. In what follows

ej = exp(2πij/n), j = 0, 1, . . . , n− 1.

and, in particular
ejk = exp(2πijk/n).

From the general properties of roots of one, it is noticed that

e0 = 1 and e1 + e2 + · · ·+ en−1 = − 1.

Then
Tj,k = n−1/2ejk.

An element in the inverse matrix T−1 is given by

T−1j,k = T ∗k,j

in which ∗ represents the complex conjugate.
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Solution

We have
Mj,j = α, Mj,k = β, j 6= k,

Tj,k = n−1/2 exp(2πijk/n),

D0,0 = α+ (n− 1)β, Dj,j = α− β, j > 0,

R0,0 =
√
D0,0, Rj,j =

√
Dj,j , j > 0,

nSj,j = R0,0 + (n− 1)R1,1, nSj,k = R0,0 −R1,1, j 6= k,

M = S2, α = S2
j,j + (n− 1)S2

j,k, β = 2Sj,jSj,k + (n− 2)S2
j,k.

An Example
Mj,j = 5, Mj,k = 1, n = 5,

D0,0 = 9, D1,1 = 4,

R0,0 = 3, R1,1 = 2,

Sj,j = 11/5, Sj,k = 1/5,

Mj,j = 121/25 + 4/25 = 5, Mj,k = 22/25 + 3/25 = 1.

Another Example

Mj,j = 5, Mj,k = 2, n = 4,

D0,0 = 11, D1,1 = 3,

R0,0 =
√

11, R1,1 =
√

3,

Sj,j =
(√

11 + 3
√

3
)
/4, Sj,k =

(√
11−

√
3
)
/4,

Mj,j = (38 + 42)/16 = 5, Mj,k = (4 + 28)/16 = 2.

Problem 301.6 – Almost skew-symmetric matrix
Tony Forbes
Let M be a square matrix of dimension n with integer entries such that
Mi,j = −Mj,i for 1 ≤ i, j ≤ n except for one of the diagonal entries,
i = j = d say, in which case Md,d = p.

Show that (i) when n is even the determinant of M is a square; (ii)
when n is odd the determinant of M is pq2 for some integer q.
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Problem 301.7 – Legendre symbol sum
Tony Forbes
Suppose p is prime and p ≡ 5 (mod 24). Show that

(p−1)/6∑
n=1

n

(
n

p

)
= 0,

where

(
n

p

)
is the Legendre symbol. In case it might be useful, recall that

when 1 ≤ n < p we have ±1 =

(
n

p

)
≡ n(p−1)/2 (mod p). More generally,

find (a,m, d) such that

(p−1)/d∑
n=1

n

(
n

p

)
= 0 for prime p ≡ a (mod m). (1)

For example, (1) holds when (a,m, d) = (1, 4, 1) since(
−1

p

)
= 1 and hence n

(
n

p

)
+ (−n)

(
−n
p

)
= 0.

The triple (a,m, d) = (7, 8, 2) occurs in QARCH 112 (2019). Apart from
silly cases, such as (0, 2, 2) for example, and trivial extensions of (1, 4, 1),
(7, 8, 2) and (5, 24, 6), such as (847, 960, 2) for example, I do not know of
any others.

Problem 301.8 – Prime product
Tony Forbes
Let Pn denote the n-th prime. Consider the product

F (N) =

N∏
i=0

P4i+1

P4i+2

P4i+4

P4i+3
.

Thus

F (0) =
2

3
· 7
5

= 0.933333, F (1) =
2

3
· 7
5
· 11

13
· 19

17
= 0.882655, F (2) = 0.835527,

and so on. Can F (N) ever exceed 1?
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√
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