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Trapping the primes
Martin Hansen

1. A simple beginning

An infinite arithmetic progression may be prime free,

AP{4, 10} : 4, 14, 24, 34, 44, 54, 64, 74, 84, 94, . . . ,

or have a single prime as initial term,

AP{5, 10} : 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, . . . ,

or contain many primes,

AP{9, 10} : 9, 19, 29, 39, 49, 59, 69, 79, 89, 99, . . . .

These examples are amongst those depicted in the ten-wide number grid
below in which only the primes within the respective sequences are shown,
composite terms being indicated with a dash.

AP{1, 10} y = 1 + 10n - 11 - 31 41 - 61 71 - - 101 . . .
AP{2, 10} y = 2 + 10n 2 - - - - - - - - - - . . .
AP{3, 10} y = 3 + 10n 3 13 23 - 43 53 - 73 83 - 103 . . .
AP{4, 10} y = 4 + 10n - - - - - - - - - - - . . .
AP{5, 10} y = 5 + 10n 5 - - - - - - - - - - . . .
AP{6, 10} y = 6 + 10n - - - - - - - - - - - . . .
AP{7, 10} y = 7 + 10n 7 17 - 37 47 - 67 - - 97 107 . . .
AP{8, 10} y = 8 + 10n - - - - - - - - - - - . . .
AP{9, 10} y = 9 + 10n - 19 29 - - 59 - 79 89 - 109 . . .

2. No primes at all

The observation that a particular infinite arithmetic progression contains
no primes at all is easily proven. For example, to prove that no number in
the infinite arithmetic progression AP{4, 10} is prime I could observe that
all terms in AP{4, 10} are of the form,

y = 4 + 10n, for n = 0, 1, 2, 3, . . . ,

and factorise to get
y = 2(2 + 5n),

which shows that these numbers are always divisible by 2. As the first term,
4, is also not prime, no term in AP{4, 10} is prime.
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3. Where lie the primes?

The ten-wide number grid shows that, with the exception of 2 and 5, all
primes must be in one of AP{1, 10}, AP{3, 10}, AP{7, 10} or AP{9, 10}.
Thus when a prime greater than 5 is divided by 10 the remainder must be
one of 1, 3, 7 or 9. Furthermore, when a positive integer other than 2 and
5 is divided by 10, if the remainder is 0, 2, 4, 5, 6 or 8, then that number
cannot be prime, a fact known to every school pupil in the land.

Interestingly, other than 2 and 5, of the ten available rows the primes
are trapped in 4 of them. Although the rows are of infinite extent, in terms
of knowing where the primes lie, there is a sense in which they are trapped in
40% of the available space as those rows head off to infinity. This argument
can be made more rigorous by taking a limit as columns are added. A
natural development is to wonder if we can do better than the 40% of the
ten-wide number grid. We can. First, however, a small digression.

4. Can an all prime arithmetic progression exist?

At this point it’s worth noticing that none of the sequences above were
composed entirely of primes. It’s tempting to jump to the conclusion that
no sequence of the form y = a + 10n can be composed entirely of primes.
The conclusion would be correct, but pinning it down needs care. By way
of highlighting the need for caution, consider AP{13, 10},

y = 13 + 10n

= 3 + 10 + 10n

= 3 + 10(n+ 1) for n = 0, 1, 2, 3, . . . .

Thus AP{13, 10} is the sequence AP{3, 10} with the first term removed.
So, the possibility exists that by throwing away sufficient initial terms a
sequence remains composed entirely of primes. The search for an all prime
arithmetic progression is degenerating into a chase after the infinite; in any
given infinite arithmetic progression that contains primes, every time we
encounter a composite number we can throw away the sequence up to that
term, and hope that what comes next is an all prime arithmetic progression.

A strategy to kill the idea of the all prime infinite arithmetic progres-
sion is to show that all infinite arithmetic progressions contain an infinite
sequence of composite numbers.

Consider the generalised infinite arithmetic progression

y = a+ dn.
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As n increments through all non-negative integers it will take on the values
given by the infinite ‘kill’ sequence

k(m) = a+m+md

where m is a positive integer.

The corresponding terms in the arithmetic progression are of the form

y = a+ d(a+m+md)

= a+ ad+md+md2

= (a+md)(1 + d),

which is composite.

5. An improved prime trap

Returning to the main thrust of the article, having dealt exhaustively with
the ten-wide prime trap, now consider one that is six-wide. Shown below,
it’s clear that, with the exception of 2 and 3, all primes lie in AP{1, 6} or
AP{5, 6}. Two out of the six rows gives this prime trap a rating 331/3 %.

AP{1, 6} y = 1 + 6n - 7 13 19 - 31 37 43 - - 61 . . .
AP{2, 6} y = 2 + 6n 2 - - - - - - - - - - . . .
AP{3, 6} y = 3 + 6n 3 - - - - - - - - - - . . .
AP{4, 6} y = 4 + 6n - - - - - - - - - - - . . .
AP{5, 6} y = 5 + 6n 5 11 17 23 29 - 41 47 53 59 - . . .

6. A trap of prime-width

Constructing a trap that has a width which is a prime number is a disap-
pointing endeavour. By way of illustration, in the seven-wide trap shown,
once past the number 7, only the row that contained the 7 is prime free.
In general, a p-wide trap will have primes in all rows except AP{0, p}, once
past p.

AP{1, 7} y = 1 + 7n - - - - 29 - 43 - - - 71 . . .
AP{2, 7} y = 2 + 7n 2 - - 23 - 37 - - - - - . . .
AP{3, 7} y = 3 + 7n 3 - 17 - 31 - - - 59 - 73 . . .
AP{4, 7} y = 4 + 7n - 11 - - - - - 53 - 67 - . . .
AP{5, 7} y = 5 + 7n 5 - 19 - - - 47 - 61 - - . . .
AP{6, 7} y = 6 + 7n - 13 - - - 41 - - - - - . . .
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7. Coprime is the key

In 1837 Peter Dirichlet [1805–1859] proved that for any two positive coprime
integers, a and d, there are infinitely many primes of the form y = a+ dn.
An analysis of Dirichlet’s intricate proof is one of the highlights of Tom
Apostol’s classic book Introduction to Analytic Number Theory [1]. The
result confirms what the ten-, six- and seven-wide traps are suggesting: the
rows were the primes are trapped are those coprime to the width of the trap.
To be clear, the numbers coprime to ten are 1, 3, 7 and 9 corresponding
to the observation that the ten-wide trap placed the primes in AP{1, 10},
AP{3, 10}, AP{7, 10} and AP{9, 10}.

Dirichlet’s result also explains why a p-wide number grid was such a
poor trap of primes. For any given prime p, all positive integers less than
p are coprime to p. So the primes can and do appear in all rows except
that described by AP{0, p}, which is equivalent to AP{p, p}. As no prime
is coprime with itself, this is the only prime free row, once past p.

8. Euler’s totient function

In the developing quest to find which width of trap is most effective in
relatively restricting the primes, it is the number of coprime integers to a
given width that is of interest. This is given by Euler’s totient function,
φ(n), also often called Euler’s phi function. There is a delightfully simple
formula for φ(n), when n is a prime power, pm,

φ (pm) = pm−1(p− 1).

(For a proof see, for example, [2].)

So, when n = 7,

φ
(
71
)

= 71−1 × (7− 1) = 6,

which matches the observation that in the seven-wide number grid, the
primes are to be found in six of the seven rows, bar the exception of the
prime 7.

For two coprime integers, p and q, Euler’s totient function is multiplica-
tive.

φ(pq) = φ(p)× φ(q) for coprime p and q.

(For a proof, again see, for example, [2].)

So, when n = 10,

φ(10) = φ(2)φ(5) = 4,
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which matches the observation that in the ten-wide trap, the primes are to
be found in four of the ten rows.

Here is a table of values of φ(n) for 1 ≤ n ≤ 39.

+ 0 1 2 3 4 5 6 7 8 9
0 - 1 1 2 2 4 2 6 4 6
10 4 10 4 12 6 8 8 16 6 18
20 8 12 10 22 8 20 12 18 12 28
30 8 30 16 20 16 24 12 36 18 24

A much bigger table for 0 < n < 2460 is available at [3]. A good trap will
have a value of φ(n) in the table that’s low in relation to those around it.
The entry φ(6) = 2 was good because it seems to be the last occurrence
of a value of 2 in the table; a comment based on the observation that the
values in the table, on average, seem to be increasing. Assuming no more
occurrences of 4 or 6 are to be found in an extended table, we have the
following ‘best so far’ results;

φ(6)

6
=

φ(12)

12
=

φ(18)

18
=

1

3

(
331/3 %

)
.

Motivation to keep going is provided by the entry for φ(30),

φ(30)

30
=

4

15

(
262/3 %

)
.

In a thirty-wide table all the primes greater than 7 will be trapped into
eight of the thirty available rows. It’s the best result yet but comes with a
caveat; how can we be sure that there’s not another n for which φ(n) takes
the value of 8 further on, beyond where our table (however big) stopped?

9. Establishing boundaries

Reassurance is sought that the equation

n = φ−1(s) when s = 8

has the finite set of solutions that are visible in our table of values of φ(n).
That is, n is precisely the set of solutions

n = {15, 16, 20, 24, 30}.

A lovely result, originally due to Gupta [4], more accessible in Coleman [5],
places bounds on the value of n for a given s that’s known to be in the table
of values for φ(n).
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Theorem 1: Given that s is an even number, and p is prime, define A(s)
to be

A(s) = s
∏

p−1|s

p

p− 1
.

If n ∈ φ−1(s), then s < n ≤ A(s).

Proof: If φ(n) = s then, from the definition of φ(n) being the number of
positive integers less than n that are coprime to n, it’s clear that s < n. On
the other hand, if n is decomposed into its product of primes,

n = pk0
0 p

k1
1 . . . pkr

r

for the necessary primes, p0, p1, . . . , pr and positive integers, k0, k1, . . . ,
kr, then, because Euler’s totient function is multiplicative,

s = φ(n)

= φ
(
pk0
0 p

k1
1 . . . pkr

r

)
= φ

(
pk0
0

)
φ
(
pk1
1

)
. . . φ

(
pkr
r

)
= pk0−1

0 (p0 − 1)pk1−1
1 (p1 − 1) . . . pkr−1

r (pr − 1)

= pk0
0

(
p0 − 1

p0

)
pk1
1

(
p1 − 1

p1

)
. . . pkr

r

(
pr − 1

pr

)
= n

r∏
i=0

pi − 1

pi

⇒ n = s

r∏
i=0

pi
pi − 1

.

A consequence of the formula φ (pm) = pm−1(p − 1) is that if p divides n
then p − 1 must divide φ(n) and it follows that, for each p, pi − 1 divides
s. Hence we have n ≤ A(s). �

From Theorem 1, bounds of the solutions to the equation

n = φ−1(8)

are found by adding one to each of 1, 2, 4 and 8, the divisors of 8, to obtain
the prime numbers 2, 3 and 5, and the composite 9 which is thrown away.
Thus

A(8) = 8× 2

1
× 3

2
× 5

4
= 30,
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therefore
8 < φ−1(8) ≤ 30,

and the desired reassurance has been obtained.

Theorem 1 has ‘holes in it’ in the sense that many integers, s, are not in
φ−1(n). For example, a consequence of the formula φ (pm) = pm−1(p−1) is
that if either p is odd or p = 2 and m > 1 then pm−1(p− 1) is even. Hence,
for n ≥ 3, φ(n) cannot be odd. Some even numbers also are missing, the
first example being 14 for which I’ll provide a proof in Proposition 1. Other
low value examples are 26, 34, 38, 50 and 62, [6].

Proposition 1: φ(n) = 14 has no solutions.

Proof: If a prime p is a divisor of n then p − 1 is necessarily a divisor of
φ(n). The primes p for which p− 1 is a divisor of 14 are 2 and 3.

Case 1: Suppose that n = 2r; then

φ (2r) = 2r−1 6= 14.

Case 2: Suppose that n = 3s; then

φ (3s) = 3s−1 × 2 6= 14.

Case 3: Suppose that n = 2r3s; then

φ (2r3s) = φ (2r)× φ (3s) = 2r−1 × 3s−1 × 2 = 2r3s−1 6= 14.

Thus φ(n) = 14 has no solutions. There is no width of number grid that
can trap the primes in 14 of the available rows. �

10. How good a trap can be built?

Some stabs in the dark reveal that better traps than those for n = 6 and
n = 30 exist. For example, with n = 420,

φ(420)

420
× 100 = 226/7 %.

The curious will wish to know how low this percentage can go. In a natural
manner the requirement has arisen to understand the function

f(n) =
φ(n)

n
.

The percentage rating of a trap is then given by simply multiplying f(n) by
100. Partial illumination is provided by Theorem 2. I’ll prove this carefully
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and in detail because it’s a thought-provoking result, and interested readers
may wish to revisit the steps to explore easily obtained improvements either
in general, or in specific cases, such as when n is divisible by 4 or when n
has some other property yet to be identified as of importance.

Theorem 2:
1

2
√
n
≤ φ(n)

n
≤ 1 for n ≥ 1.

Proof: Without loss of generality, by the fundamental theorem of arith-
metic, let the positive integer n be written as a product of primes of the
form

n = 2k0pk1
1 . . . pkr

r

for necessary odd primes, p1, . . . , pr and positive integers, k1, . . . , kr; k0 is
a non-negative integer. That is, k0 can be zero.

By the multiplicative property of Euler’s totient function,

φ(n)

n
=

φ
(
2k0
)
φ
(
pk1
1

)
φ
(
pk2
2

)
. . . φ

(
pkr
r

)
2k0pk1

1 p
k2
2 . . . pkr

r

=

(
2k0−1

2k0

)(
pk1−1
1 (p1 − 1)

pk1
1

)
. . .

(
pkr−1
r (pr − 1)

pkr
r

)
. (1)

For an upper bound we can further write (1) as

φ(n)

n
=

(
2− 1

2

)(
p1 − 1

p1

)
. . .

(
pr − 1

pr

)
=

(
1− 1

2

)(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

pr

)
and use the inequality that for any prime p,

1− 1

p
≤ 1

to obtain the stated upper bound, also noticing that when n is even this
can effortlessly be improved to give

φ(n)

n
≤ 1

2
for even n.
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For a lower bound we can use in (1) the fact that for any odd prime, p,
p− 1 >

√
p. Thus (1) becomes

φ(n)

n
≥
(

1

2

)(
pk1−1
1

√
p1

pk1
1

)
. . .

(
pkr−1
r
√
pr

pkr
r

)

≥
(

1

2

)(
pk1−0.5
1

pk1
1

)
. . .

(
pkr−0.5
r

pkr
r

)
.

Now for k ≥ 1, k − 0.5 ≥ 0.5k,

φ(n)

n
≥
(

1

2

)(
p0.5k1
1

pk1
1

)
. . .

(
p0.5kr
r

pkr
r

)

≥
(

1

2

)(
20.5k0

20.5k0

)(
1

p0.5k1
1

)
. . .

(
1

p0.5kr
r

)
≥
(

1

2

)(
20.5k0

√
n

)
.

Finally, observing that for any non-negative integer value of k0, 20.5k0 ≥ 1
yields the claimed lower bound. �

The upper bound of Theorem 2 is not a surprise because of the fact
established by Euclid that there are an infinite number of primes. Each
time a prime is encountered f(n) is almost on the upper bound. In other
words,

f(p) =
φ(p)

p
=

p− 1

p
= 1− 1

p
→ 1 (i.e. 100%) as p→∞.

The lower bound of Theorem 2 is tantalising for it leaves open, but unre-
solved, the possibility that as n becomes larger there are widths of number
grid to be found in which the primes become trapped in an ever decreasing
percentage of the rows of the n-wide table. Of course, just because Theo-
rem 2 established a lower bound, there’s no guarantee that values of φ(n)
come close to it. This worry is exacerbated by the fact the lower bound
values seem well below the ‘best in their neighbourhood’ results previously
obtained. That is,

for n = 6,
φ(6)

6
= 0.333, but

1

2
√

6
= 0.204;

for n = 30,
φ(30)

30
= 0.267, but

1

2
√

30
= 0.091.
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As is so often experienced by those working with prime numbers, seeming
progress can turn out to be an illusion.

11. Primorials

The search for a good prime trap alighted upon the fact that the number
grids with widths associated with φ(6) and φ(30) were more restrictive than
neighbouring values. Since 1987, when Harvey Dubner [7] invented the
expression, 6 and 30 have become known as early consecutive terms of the
sequence of ‘primorials’. For the wth prime number, pw# is defined as the
product of the first w primes.

pw# product value
p1# 2 2
p2# 2× 3 6
p3# 2× 3× 5 30
p4# 2× 3× 5× 7 210
p5# 2× 3× 5× 7× 11 2310

What is sought is a sequence within f(n) that ignores most of the terms
in f(n) that are displaying so much variation, and which instead steadily
decreases in value towards 0 as Theorem 2 suggested is possible. Primorials
are the key as Theorem 3 and its proof will show.

Theorem 3: For each primorial pw#,

f(pw#) =
φ (pw#)

pw#

is smaller than itself for any lesser primorial.

Proof: Let an arbitrary primorial pw# with w ≥ 2 be decomposed into its
product of primes, for any w ≥ 2, pw# = p0p1 . . . pw. Then

φ (pw#)

pw#
=

φ (p0p1 . . . pw)

p0p1 . . . pw

=
φ (p0p1 . . . pw−1)

p0p1 . . . pw−1
× φ (pw)

pw

=
φ (pw−1#)

pw−1
× (pw − 1)

pw
=

φ (pw−1#)

pw−1
×
(

1− 1

pw

)
;

therefore

φ (pw#)

pw#
<

φ (pw−1#)

pw−1
for any w ≥ 2. �
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12. Conclusion

A simple idea has been pursued a long way with a pleasingly minimalist set
of tools. Success has been achieved in trapping the primes into as small a
proportion of the positive integers as desired. However, some quick numer-
ical calculations show that the widths of the number grids required rapidly
become vast. For example,

φ(p10#)

p10#
=

1 021 870 080

6 469 693 230
= 0.158.

This primorial-width number grid has a lot of rows in which the primes
reside, even if the percentage rating of the trap is down to 15.8%.
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Problem 302.1 – A circle and a hyperbola

The circle has radius r and the hyperbola is
y = 1/x. What’s the area of the yellow (light
grey) part?

I (TF) cannot recall ever seeing this in any
textbook or other publication. Yet surely it
must be amongst the most natural of the var-
ious shapes that you would want to consider
as soon as you have learned how to calculate
areas by integrating functions. If r ≤

√
2, the

hyperbola can be ignored.

http://www.NumberWonder.co.uk/Pages/Page9079.html
http://www.NumberWonder.co.uk/Pages/Page9079.html
http://www.oeis.org/A005277


Page 12 M500 302

The necklace counting formula: addendum
Robin Whitty
In M500 Issue 285 I wrote down a formula for the number of necklaces with
bi beads of colour i, i = 1, . . . , t. The formula was given in terms of the
partially ordered set (poset) of divisors d1, . . . , dm of the greatest common
divisor of the bi, and of the Möbius function µ(x, y) for this poset:

N(b1, b2, . . . , bt) =
1

n

m∑
i=1

m∑
j=i

di

(
n/dj

b1/dj , . . . , bt/dj

)
µ(di, dj), (1)

where n = b1 + . . . + bt. The formula works if some of the bi are zero,

using the fact that gcd(x, 0) = x. The multinomial coefficient

(
x

y1, . . . , yt

)
is evaluated as x!/(y1! · · · yt!) and counts the number of non-circular per-
mutations of x objects of which y1 are colour 1, y2 are colour 2, etc. The

usual binomial coefficient

(
x

y

)
is a short way of writing

(
x

y, x− y

)
. Recall

that if we sum these binomial coefficients over all choices of y the result is
2x and this generalises to monomial coefficients:∑

y1+...+yt=x

(
x

y1, . . . , yt

)
= tx. (2)

By ‘necklace’ we mean a circular permutation of objects belonging to
distinguished classes (colours) taking into consideration rotational symme-
try. Formula (1) was derived from a 1956 Mathematical Gazette paper in
which the number of such permutations was found as the solution to a set
of simultaneous equations. I found the double sum above to be preferable
to saying “the solution is now found by inverting the equation matrix”.
However, I didn’t go far enough: a single summation was just around the
corner!

I also suggested that it was textbook stuff to specify a formula for the
number of necklaces with the number of colours, t, specified but with no
restriction on their distribution. This is true; the formula is the following:

N(n, t) =
1

n

∑
d≤n

ϕ(d)tn/d, (3)

using poset notation d ≤ n to mean d divides into n. The function ϕ is
Euler’s totient function whose value at a positive integer x is the number of
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positive integers less than x and coprime to x. For example,

N(6, 3) =
1

6

(
ϕ(1)× 36 + ϕ(2)× 33 + ϕ(3)× 32 + ϕ(6)× 31

)
=

1

6
(1× 729 + 1× 27 + 2× 9 + 2× 3) = 130.

There are many ways to determine the values of ϕ(x). We are going to find
convenient the following recursive definition, due to Gauss:

ϕ(1) = 1,

ϕ(y) = y −
∑
x<y

ϕ(x), y > 1, (4)

where we are still using poset notation and ‘<’ means ‘strictly divides’.

Formula (3) is sometimes misattributed to Captain Percy Alexander
MacMahon who indeed wrote about it in 1892 but acknowledged its prior
discovery by another soldier, Monsieur le Colonel Charles Paul Narcisse
Moreau. Moreau had solved our counting problem in 1872 and was, as far
as I know, the first to do so. Formula (3) is a special case of his solution
and I would now like to explain how we get to it from formula (1).

Let me recall what, in my original contribution, I said about the Möbius
function. We are concerned with the version for the poset of divisors, as
illustrated below left. Somewhat informally the value of the Möbius function
µ(x, y) for two elements x and y of this poset is

∑
(−1)l(c) where the sum

is over all upward ‘chains’ c from x to y and l(c) is the number of edges in
the chain. The diagram of the poset only shows ‘immediate’ division but
our summation must also include all implied edges, such as the edge from
3 to 12.

1 2 3 4 6 12

1 1 −1 −1 0 1 0

2 1 0 −1 −1 1

3 1 0 −1 0

4 1 0 −1

6 1 −1

12 1

The table shows the values of
µ(x, y) for the poset on the
left. For example, µ(3, 12) =
0 because there are two chains
from 3 to 12: the two-edge
chain 3 − 6 − 12 which con-
tributes (−1)2 to the calcula-
tion and the one-edge chain
3 − 12, not included in the
diagram, which contributes
(−1)1.
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I will rewrite formula (1) in a more poset-friendly form:

N(b1, b2, . . . , bt) =
1

n

∑
e≤M


(

n/e

b1/e, . . . , bt/e

)∑
d≤e

dµ(d, e)

 , (5)

where M = gcd(b1, . . . , bt) and I no longer need to list the divisors of M
explicitly because the poset notation e ≤ M takes care of that. The order
of summation has changed from (1) but that is just a matter of count-
ing by column instead of by row. The important thing is to isolate the
sum

∑
d≤e dµ(d, e), because such a sum is amenable to Möbius inversion, a

contribution to number theory by August Ferdinand Möbius in the 1830s,
transferred to posets by group theorists in the 1930s as follows:

g(y) =
∑
x≤y

f(x), for all y, if and only if f(y) =
∑
x≤y

g(x)µ(x, y), for all y.

Define f(e) =
∑

d≤e dµ(d, e), for all e ≤ M . Then e =
∑

d≤e f(d), or
f(e) = e−

∑
d<e f(e). And now from Gauss’s formula (4):

N(b1, b2, . . . , bt) =
1

n

∑
e≤M

(
n/e

b1/e, . . . , bt/e

)
ϕ(e). (6)

This is what Colonel Moreau wrote down almost 150 years ago, and what
I should have written down, two and half years ago, for M500. Suppose we
now sum over all possible distributions of the n beads among the t colours.
We get

N(n, t) =
1

n

∑
b1+...+bt=n

 ∑
e≤gcd(b1,...,bm)

(
n/e

b1/e, . . . , bt/e

)
ϕ(e)

 .

This double sum groups the monomial terms according partitions of n; we
will get the same result if we group according to divisors of n:

N(n, t) =
1

n

∑
e≤n

 ∑
(b′1+...+b′t)e=n

(
n/e

b′1, . . . , b
′
t

)
ϕ(e)


=

1

n

∑
e≤n

ϕ(e)
∑

b′1+...+b′t=n/e

(
n/e

b′1, . . . , b
′
t

) ,

and we recover Moreau’s formula (3) by applying identity (2).
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Solution 295.7 – Divisibility
For positive integer n, show that nn + (n+ 1)n−1− 1 is divisible
by n(n+ 1) if and only if n is even.

Peter Fletcher
Let

nn + (n+ 1)n−1 − 1 = f(n).

Then f(1) = 11 + 20 − 1 = 1, which is not divisible by 1(1 + 1) = 2.

For n > 1, if n is even,

nn − 1 = (n+ 1)(nn−1 − nn−2 + · · ·+ n− 1)

and if n is odd,

nn − 1 = (n− 1)(nn−1 + nn−2 + · · ·+ n+ 1).

These may be confirmed by trying a few even and odd integers.

We also have, for n > 1,

(n+ 1)n−1 = (n+ 1)

(
nn−2 + (n− 2)nn−3 + · · ·

+
(n− 2)(n− 3)

2
n2 + (n− 2)n+ 1

)
.

Clearly f(n) is divisible by (n+ 1) only if n is even, in which case

f(n) = (n+ 1)

(
(nn−1 − nn−2 + · · ·+ n− 1)

+

(
nn−2+(n− 2)nn−3+· · ·+ (n− 2)(n− 3)

2
n2+(n− 2)n+1

))
.

The −1 and +1 cancel to leave sums of powers of n greater than 0, which
are hence divisible by n.

Therefore f(n) is divisible by n(n+ 1) only if n is even.

Problem 302.2 – Divisibility
Tony Forbes
Given integers a and b, for which positive integers n is (n+a)(n+b) divisible
by n2?
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Solution 296.3 – Elliptic curve
Let a be a positive real number. Then the elliptic curve y2 =
x(x2−a2) has two components, an unbounded curve that passes
through (a, 0) and a closed ‘bubble’ that passes through (0, 0)
and (−a, 0). What area does the bubble enclose?

Ted Gore
We have

y2 = x(x2 − a2) = a2z(1 + b),

where z = −x and b = −z2/a2, so that

y = az1/2(1 + b)1/2

= az1/2
(

1 +
b

2
+

1/2(1/2− 1)b2

2!
+

1/2(1/2− 1)(1/2− 2)b3

3!
+ . . .

)
.

Substituting back for b we get∫ 0

−a
ydx =

∫ a

0

ydz

= a

[
z3/2

3/2
− 1/2z7/2

7/2a2
+

1/2(1/2− 1)z11/2

11/2a42!

− 1/2(1/2− 1)(1/2− 2)z15/2

15/2a63!
+ . . .

]a
0

= a5/2
(

1

3/2
− 1/2

7/2
+

1/2(1/2− 1)

11/2 · 2!
− 1/2(1/2− 1)(1/2− 2)

15/2 · 3!
+ . . .

)
= a5/2 0.4792560938942

(calculating 1,000,000 terms using double precision arithmetic). This gives
the area of the bubble above the x-axis. It needs to be doubled for the total
area.

a 1 2 3 4 5

area 0.959 5.422 14.942 30.672 53.582

If you want the exact answer, the constant is

√
π

5

Γ(3/4)

Γ(5/4)
, but I do not

know where it comes from. — TF
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Solution 296.4 – Cubic curve
Let a be a positive real number. Then the cubic curve y2 =
x(x− a)2/(3a) has a loop that passes through (0, 0) and (a, 0).
What is its length and what area does it enclose?

Curiously, the denominator 3a in the definition of the curve has
some significance. Remove it, and the loop length of the curve
y2 = x(x − a)2 becomes much more difficult to compute. You
are welcome to try!

Ted Gore
We have y2 = x(x− a)2/(3a). So that

y =
x3/2 − ax1/2√

3a

and ∫ a

0

ydx =
2√
3a

[
3x5/2 − 5ax3/2

15

]a
0

=
−4a2

15
√

3
.

This represents the area below the x-axis between 0 and a. We double the
absolute value for the enclosed area.

The length of the curve is

s =

∫ a

0

√
1 + (dy/dx)

2
dx.

But
dy

dx
=

3x1/2 − ax−1/2√
12a

,

(
dy

dx

)2

=
9x+ a2x−1 − 6a

12a
.

The 3a in the denominator makes possible the next step.

1 +

(
dy

dx

)2

=
9x+ a2x−1 + 6a

12a
.

So that

s =

∫ a

0

3x1/2 + ax−1/2√
12a

dx =
[
2x3/2 + 2ax1/2

]a
0

=
2a√

3
.

This is the curve length above the x-axis between 0 and a. We double it for
the total length of the loop.

a 1 2 3 4 5

area 0.308 1.232 2.771 4.927 7.698
length 1.155 2.309 3.464 4.619 5.774
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Solution 292.1 – Angle trisection
Let

D = 10 cos(θ/2)(6− cos θ)
√

29− 4 cos θ

and suppose −120◦ ≤ θ ≤ 120◦. Show that

tan
θ

3
≈ sin θ

6− cos θ
· 1608− 676 cos θ + 68 cos2 θ −D

168 + 100 cos θ − 68 cos2 θ +D
.

Peter Fletcher
Let the RHS of the expression in the question be z.

We begin by noting that

1608− 676 cos(θ) + 68 cos2(θ) =
(

6− cos(θ)
)(

268− 68 cos(θ)
)
.

The factor
(

6− cos(θ)
)

cancels, so

z =
sin(θ)

(
268− 68 cos(θ)− 10 cos (θ/2)

√
29− 4 cos(θ)

)
168 + 100 cos(θ)− 68 cos2(θ) + 10 cos (θ/2)

(
6− cos(θ)

)√
29− 4 cos(θ)

Now we let θ = 3α, expand everything, factorise and divide the numerator
by sin(α) and the denominator by cos(α). This allows us to write

z =
sin(α)

cos(α)
· n
d

= tan

(
θ

3

)
n

d

where

n = 2
(

4 cos2(α)− 1
)(

136 cos3(α)− 102 cos(α)− 134

+ 5 cos

(
3α

2

)√
29 + 12 cos(α)− 16 cos3(α)

)
cos(α)

and

d = − 4
(

cos(α) + 1
)(

68 cos3(α)− 51 cos(α)− 42
)(

2 cos(α)− 1
)2

− 10
(

4 cos3(α)− 3 cos(α)− 6
)

cos

(
3α

2

)√
29 + 12 cos(α)− 16 cos3(α).

If we now plot n/d against α, we can see that n/d is very close to 1 for
−2π/9 ≤ α ≤ 2π/9, which is the same as −2π/3 ≤ θ ≤ 2π/3 or −120◦ ≤
θ ≤ 120◦. Therefore for θ in this range, tan (θ/3) is very close to z, the
expression in the question.
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Plot of n/d against α.

Problem 302.3 – Cycles
Let p be a permutation of the elements of a set S. Let t be a transposition
of two elements of S. Show that when pt and p are each written as products
of mutually disjoint cycles, the number of cycles in pt is either one more or
one less than the number of cycles in p.

Problem 302.4 – Ball-point energy
Tony Forbes
What is the significance of the energy given by the formula mg(h2 − h1)?

Here, g is the acceleration due to gravity and the other parameters arise
as follows. Consider a bog-standard retractable ball-point pen of the type
where you change its state by pressing a spring-loaded cylindrical button
set into the upper end of the body. The process is usually accompanied by
two plainly audible clicks. The pen’s mass is m. The parameters h1 and h2
are the minimum heights from which the pen must be dropped on to a hard
surface, upper end downwards, for its state to change, either from retracted
to open (i.e. ready to write with), h2, or from open to retracted, h1. Simple
experiments should confirm that h2 > h1. We would be interested in actual
values if you are willing to experiment.
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Solution 266.2 – Snooker without friction
Is it sensible to play snooker on a frictionless table? If it is,
devise a strategy for winning a frame in a finite amount of time.

Kim Forbes and Tony Forbes
Here we describe a possible strategy, which should almost certainly work.
Remarkably, by some kind of bizarre coincidence, the game is actually un-
biased. First, we remind the reader of some reasonable interpretations of
the rules of snooker.

(i) The cue ball must appear to move after being struck by the cue.

(ii) Reds that end up in pockets legitimately or by foul play are not re-
turned to the table.

(iii) A shot is completed when every ball on the table has come to rest.

(iv) A ball on the table has come to rest if, relative to the table, its speed is
less than 10−10 m s−1 and its spin angular velocity has absolute value
less than 10−10 s−1.

We believe (iv) applies in real matches. It also permits frictionless games
to be played on tables that are not truly horizontal.

As in the official Rules, [https://wpbsa.com/wp-content/uploads/
WPBSA-Official-Rules-of-the-Games-of-Snooker-and-Billiards-2020.

pdf], we use the verb ‘pocket’ when a ball ends up in a pocket as a result of
a foul shot. The verb ‘pot’ is reserved for legitimate shots. Let the players
be P and Q. Perfect play proceeds thus.

(1) Player P pockets all 22 balls with a single foul shot. This looks like
a strange way to start a frame, but there doesn’t seem to be any reasonable
alternative. There is no way for P to pot a red. Nor is it possible to make a
legitimate no-score shot. Once significant energy has been introduced into
the system perpetual motion takes over and all the players can do is wait
until each ball finds a pocket to drop into. Of course, it is theoretically
possible for a ball to go into an orbit that never ends in a pocket. However,
that has probability 0 of happening and therefore its possibility can be
ignored.

A red-avoidance option, such as pocketing the cue ball for a penalty of
4, will not be good. For then Q would clear the table and consequently be
in the same position as if P had done so but with the advantage of a 4-point
lead. In fact, to have any chance of winning the frame P should clear the
table now and hope future breaks provide opportunities to recoup the lost
points. The current score is 0–7.

https://wpbsa.com/wp-content/uploads/WPBSA-Official-Rules-of-the-Games-of-Snooker-and-Billiards-2020.pdf
https://wpbsa.com/wp-content/uploads/WPBSA-Official-Rules-of-the-Games-of-Snooker-and-Billiards-2020.pdf
https://wpbsa.com/wp-content/uploads/WPBSA-Official-Rules-of-the-Games-of-Snooker-and-Billiards-2020.pdf
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(2) Yellow, green, brown, blue, pink and black are respotted. With
careful placement of the cue ball and careful aim, Q pots the yellow and
the cue ball comes to rest at the point where it struck the yellow and
without disturbing any other ball. If the aim is perfect, by conservation
of momentum there is a simple exchange of velocities: (v, 0) → (0,v).
With our rule (iv) it is permissible for aiming accuracy to be merely very
good rather than perfect, and it won’t matter if the collision results in an
undetectable residual velocity for the cue ball.

Unfortunately Q does not seem to be in a position for potting the green
and bringing the cue ball to rest. The problem is that the location of the
cue ball is now fixed. We do not have the continuous range of placements
available in the D. For a perfect collision that truly halts the cue ball,
the number of possible orbits is probably finite but certainly countable.
They correspond to the various ways one can bounce the cue ball off the
sides of the table before it strikes the green. The number increases to
uncountably infinite—but only slightly—by rule (iv), which allows some
additional flexibility. Around each perfect orbit there is a tiny range of valid
imperfect ones, where the cue ball merely comes to rest after the collision.
However, in any orbit, perfect or otherwise, the green would have to avoid
collisions with the other balls on the table. It is not clear that a suitable
orbit can be found. A reasonable strategy for Q is to finish the break by
pocketing the cue ball. Although the deliberate giving away of four points
would be an unusual tactic in normal games, on a frictionless table this
play is actually quite sensible. Any other option will almost certainly incur
a penalty of 7 by clearing the table. 4–9.

(3) With careful placement of the cue ball and careful aim, P pots the
green and the cue ball comes to rest at the collision point and without
disturbing any other ball. Unfortunately P probably cannot pot the brown,
and finishes the break by pocketing the cue ball. 7–13.

(4) Similarly, Q pots the brown and then pockets the cue ball. 11–17.

(5) Player P pots the blue and then pockets the cue ball. To make this
shot, P can place the cue ball at a precisely defined position somewhere in
the vicinity of a point 0.128196 m west of the yellow spot, and aim directly
at the blue. The blue rebounds off the north side of the table into the
south-west pocket. 16–21.

(6) Player Q pots the pink and then pockets the cue ball. A suitable
location for the cue ball is approximately 0.0884284 m west of the yellow
spot. The pink rebounds from the north and south sides to go into the
north-west pocket. 20–27.
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(7) Player P pots the black. An orbit can be found such that after
the collision the black ball narrowly avoids the cue ball on rebounding from
the north side of the table and ends up in the south-west pocket after a
two further rebounds. A suitable position for the cue ball is approximately
0.100698 m west of the yellow spot. You can verify this by drawing a scale
model of a snooker table like the one on the next page. 27–27.

(8) The scores are equal! The black is respotted, a coin is tossed, the
winner pots the black.

Surprisingly, the game is fair. In the ideal case, where both players are
sufficiently skilful, it is the coin toss at the end that decides the winner of
the frame. In the real world, however, frictionless snooker is a game of skill
because less than perfect players might make mistakes. And whenever there
is a mistake it will almost surely clear the table.

As we have seen, frictionless snooker is a very sensible option for an in-
teresting competitive sport and it clearly deserves greater recognition than
it currently enjoys. We believe that the main reason for its relative unpop-
ularity is the unavailability of suitable tables. However, we can easily get
around this difficulty by simulating frictionlessness on a real table. All we
need is a small amendment to the way in which snooker is normally played.
We allow only three types of shot.

(A) Table clearance. This is conveniently achieved by just informing the
referee of your intention. The referee removes everything from the
table, returns the colours in play to their correct spots, awards you a
penalty of 7, and hands the cue ball to the other player, who is then
free to place it anywhere in the D.

(B) Pocket the cue ball. You get a penalty of 4 if the shot is ‘successful’.
Otherwise it is treated as a table clearance, type (A).

(C) Pot a colour in such a manner that the cue ball comes to rest at the
collision point. Proceed as in normal snooker if the shot is successful.
Otherwise—in particular, if the cue ball fails to come to rest at the
site of the collision—it’s a table clearance.

For simplicity, any deviation from these three types, such as what would be
a no-score shot in normal snooker, is to be treated as a table clearance.

The cue ball placements described in (5)–(7), above, should still apply,
at least approximately. If the shots are performed correctly, the orbits are
the same as in the frictionless case except that you might need a more
powerful cue stroke, especially for the black, to overcome friction.
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0.0525 m

Table length 3.562 m

Table width 1.781 m

0 m

0.44 m

0.737 m

1.781 m

2.6715 m

3.238 m

3.562 m
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Tiling a torus – suggested solution
Tommy Moorhouse
Consider the unit square with corners (0, 0), (0, 1), (1, 0) and (1, 1). We iden-
tify the opposite sides in pairs to make a torus T . A (closed) line on this
torus is the image of a line from (0, 0) to (m,n) where m and n are relatively
prime positive integers. We will call this image line L(m,n). Recall that
in my article, ‘Tiling a torus’, M500 300, we finished with a problem. Two
distinct lines on the torus give rise to a tiling of the torus. How many tiles
are there for two distinct lines L(m,n) and L(m̂, n̂)? The answer is related
to the number of times the lines intersect on the torus.

In the plane two distinct lines L1 and L2 form two sides of a parallel-
ogram P (L1, L2). This parallelogram has integer area A which is easy to
calculate. We take L1 to be given by (m,n) and L2 to be given by (m̂, n̂),
say. You can use a linear map from T to T (P ) or a direct calculation but
there is a pleasing, simple geometric construction involving sliding trian-
gles. The conclusion is that A = mn̂− m̂n. Note that A can be positive or
negative, but this is not important for this problem.

We identify opposite sides of P in pairs so that P becomes a torus,
denoted T (P ) simply to emphasise the change of viewpoint. It is simple to
check that every point of the unit torus corresponds to exactly A points in
the torus T (P ). We will say that a point of T ‘lifts’ to A points of T (P ).

We will denote the image line of L1 in the unit torus T by t1 and so
on. Since every point in T is covered by A points of T (P ) the line t1 on T
lifts to a set S1 of A distinct lines on T (P ) each parallel to L1. Similarly t2
lifts to a set S2 of A lines on T (P ), each parallel to L2. On the ‘dual’ torus
T (P ) these distinct lines are circles around the torus. Each line in S1 meets
the set of lines S2 exactly A times in T (P ), so in T (P ) there are exactly
A2 intersection points. These cover points of T in sets of size A so we have
found that I(t1, t2) = A2/A = A.

The lines t1 and t2 cut T into identical tiles similar (in the geometric
sense) to P . We can count the tiles in terms of I(t1, t2), since every tile has
a unique ‘bottom left’ corner, and we conclude that the number of tiles is
|mn̂− m̂n|.

Reference

Barton Zwiebach, A First Course in String Theory, Cambridge University
Press, Chapter 21 outlines the derivation of the intersection number for a
particular application.
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Problem 302.5 – Eigenvalues
Tony Forbes
(i) Find a closed formula for the function µ(m,n) defined for integers m,n ≥
3 by

µ(m, 3) = 0, µ(m,n+ 1) = µ(m,n) +m, n ≥ 3.

(ii) Let m,n ≥ 3 be integers. Take m copies of the complete graph Kn

and join them together to form a cycle where two adjacent Kn graphs have
precisely one vertex in common. Show that the multiplicity of eigenvalue
−1 of the graph’s adjacency matrix is µ(m,n). Or find a counter-example.

For example, ΜH4,5L = 8.

Problem 302.6 – Numbers avoided by phi
As usual, let φ(n) be the number of integers k such that 1 ≤ k ≤ n and
gcd(k, n) = 1. Show that for every positive even integer m there is a prime
p such that φ(n) 6= pm for any n.

In case it helps, here are the first few even numbers that φ(n) avoids:
14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, 98, 114, 118, 122, 124, 134, 142,
146, 152, 154, 158, 170, 174, 182, 186, 188, 194, 202, 206, 214, 218, 230,
234, 236, 242, 244, 246, 248, 254, 258, 266, 274, 278, 284, 286, 290, 298,
302, 304, 308, 314, 318, 322, 326, 334, 338, 340, 350, 354, 362, 364, 370,
374, 376, 386, 390, 394, 398, 402, 404, 406, 410, 412, 414, 422, 426, 428,
434, 436, 446, 450, 454, 458, 470, 472, 474, 482, 484, 488, 494, 496, 510,
514, 516, 518, 526, 530, 532, 534, 538, 542, 548, 550, 554, 558, 566.

Thus for m = 2, we can let p = 7 and indeed φ(n) 6= 14 for any n. Of
course, we already knew that—see Proposition 1 on page 7. Thereafter we
have the following (m, p) pairs, and you will probably notice that multiples
of 12 seem to give trouble.

m 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
p 17 19 19 5 43 7 19 5 17 7 167 7 11 3 19 2 67 2 17 17 7 5 211 7
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Problem 302.7 – Raffle
You and 99 other people buy raffle tickets, one each. There is only one
prize and it is a rule that only persons present where the draw takes place
are eligible to win it. At the time of the draw only 10 people turn up. So
the organizer discards 90 randomly chosen tickets. Then tickets are drawn
at random from the remaining 10 until one of the persons present wins the
prize. What’s your probability of getting the prize?

Front cover A graph where the eigenvalue −1 occurs with multiplicity
42 in its adjacency matrix. See problem 302.5.


