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Measuring the speed of light
Alan Davies

1 Introduction

Einstein’s famous equation, E = mc2, relates energy and mass. To cal-
culate the energy we need to know c, the speed of light. Most early ob-
servers thought that light was transmitted instantaneously, i.e. with infinite
speed. Galileo was the first to attempt to measure the finite value. He was
hopelessly wrong but it started a story which we shall follow. After some
discussion of the early ideas we shall describe the first reasonably accurate
measurement by Ole Rømer using astronomical observations and follow with
the first time-of-flight experiments of Fizeau et al. These then lead on to
the nineteenth century and James Clerk Maxwell’s development of light as
an electromagnetic wave. The next part of the story then uses ever more
accurate measurements of the electromagnetic parameters leading to the
super accurate measurements using the wave nature of light and interfer-
ometry. We arrive in 1983 when the measurement of the speed was more
accurate than the value of the standard metre of platinum-iridium held in
Paris. Consequently the value was set at 299,792,458 m s−1 and the metre
was redefined. Usually c is given using km s−1 and that’s what we shall use
rather than the SI value.

2 Early thoughts on the speed of light

Prior to the seventeenth century most observers thought that light was
transmitted instantaneously. However, some observers thought that light
speed was finite. The Greek philosopher Empedocles (495BC–435BC) is
best known as the Western World’s originator of the classical elements
earth, air, fire and water. He suggested “it must take time for light to
reach the Earth from the Sun” and so implies finite light speed. Euclid
(c.325BC–c.265BC) is best known for his work on geometry as presented
in the Elements. However, he also wrote a text, Optics, in which he as-
sumes that light travels in straight lines and he can use geometrical ideas
to describe perspective. He didn’t have anything to say about the speed
of light. Like many of his contemporaries, he assumed that light travels
from the eye to the object so that it can be seen. Ptolemy (c.85–c.165)
built on Euclid’s ideas producing a text on optics in which he describes the
processes of reflection and refraction. Hero (c.10–c.70) also believed that
light travelled from the eye and that since we can see stars as soon as we
open our eyes, light speed must be infinite. He proposed that light travels
along the shortest path between two points so concluding that it travels in
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straight lines.

We move on some nine hundred years to scholars of the Golden Age
of Islamic science such as Ibn al-Haytham (Alhazan) (c.965–c.1040) who
believed that light did not come from the eye but from a source which
illuminates the object. He was the originator of what we call the Scientific
Method – systematic observation, measurement and experiment together
with formulation, testing and modification of hypotheses. He used this
approach to show that light travelled in straight lines from an object to
the eye. Alhazan believed that light speed is finite and that it travels more
slowly in water than in air.

The Franciscan friar, Roger Bacon (1214–1292), probably best known
for measuring the angle of the rainbow as 420, built on Alhazan’s work
and also proposed that light speed is finite. The thirteenth century Polish
physicist Witelo (c.1230–c.1275) was largely unknown in Western Europe
but he made important contributions to optics. He believed that light trav-
elled at infinite speed in a vacuum and slowed down when entering a denser
medium.

The seventeenth century saw superstars such as Johannes Kepler (1571–
1630) and René Descartes (1596–1650) proposing that the speed of light
was infinite. Kepler argued that since there was nothing in space to slow
it down, light would travel with infinite speed. Descartes had philosophical
arguments as to why the speed of light was infinite. He also believed that
light increased speed as it entered denser media. It was Galileo Galilei
(1564–1642) who believed that light speed was finite and he described an
experiment to measure this finite speed. Two lantern bearers would stand
on hilltops some distance apart, the lanterns being covered. The first lantern
bearer would uncover the lantern and on seeing the signal the second bearer
would uncover that one. The time difference would allow the calculation
of the speed of light. Galileo claimed to have performed the experiment
but was unable to determine the speed. He did, however, conclude that
the speed of light must be extraordinarily rapid, at least ten times the
speed of sound. Similar attempts by the Dutch astronomer Isaac Beeckman
(1588–1637) using a gunpowder flash were equally unsuccessful. The French
mathematician Pierre de Fermat (1607–1665) certainly believed that light
speed was finite and depended on the material through which it passed. It
is this property which is responsible for refraction and he determined the
appropriate law using his Principle of Least Time, which states that ‘light
travels along that path for which the time of travel is a minimum’. He
was able to use this principle to develop the law in the well-known form
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sin i/ sin r = k, where k is the refractive index, the ratio of the speeds of
light in the two media.

It is worthwhile saying something here about refraction. Ptolemy devel-
oped a quadratic law which was not very accurate. The concept of trigono-
metric ideas was just developing in his time and he knew them but couldn’t
relate them to refraction. Kepler had an approximation to the sine law
in 1620 which was good for small angles and Willebrord Snell (1580–1626)
used geometrical arguments to obtain the eponymous sine law in 1621. It is
interesting to note that the English mathematician Thomas Harriot (1560–
1621) developed the sine law in 1601 but he did not publish it. Also the
Islamic scholar Abu Said Ibn Sahl (940–1000) published On the burning in-
struments in which he developed what we would recognise as the sine law.
This manuscript was translated by Alhazan but he missed the correct law.
He also translated Ptolemy’s work and perpetuated the wrong law for some
six hundred years.

3 Measuring the speed of light in the 17th and 18th centuries

Terrestrial measurements would always be very difficult because distances
are too short for times to be measured with devices available at the time.
Light takes about eight minutes to travel from the Sun to the Earth and
so the Sun-Earth distance provides a suitable baseline for light speed mea-
surements.

A very serious navigation problem at this time was the necessity to
measure longitude at sea and it was suggested that one possible method
could use the eclipses of Jupiter’s innermost moon, Io. It was known that
Io orbits once every 421/2 hours and it was thought that a table of eclipses
could be used as a navigational aid. The Danish astronomer Ole Chris-
tensen Rømer (1644–1710) was working at the Royal Observatory in Paris
observing these eclipses. Rømer noticed that when the Earth is between
the Sun and Jupiter the time of eclipses is shorter than when the Earth is
on the opposite side of its orbit. The period of Io was well-known at that
time so the discrepancy must be due to something else. Since the distances
d1 and d2, see Figure 1, are such that d1 < d2 the only explanation is
that light speed is finite. Observing Io’s eclipses has many difficulties, e.g.
Jupiter is a large planet and often obscures the view from Earth, so Rømer
needed about thirty observations before he was convinced and presented his
results to the Paris Academy of Sciences in 1676. He didn’t actually give a
value for the speed of light but he did say that it takes about twenty-two
minutes to cover the diameter of the Earth’s orbit; i.e. it takes light eleven
minutes to travel from the Sun to the Earth.



Page 4 M500 295

Rømer’s findings were by no means universally accepted. In particular
the Director of the Observatory, Giovanni Cassini (1625–1712), was very
sceptical and he never accepted that light speed is finite. However, Rømer
did have one very strong supporter, Christiaan Huygens (1629–1695). Using
Rømer’s data, Huygens calculated the light speed to be 162/3 Earth diam-
eters per second. With the then-known value of the Sun-Earth distance he
obtained the approximate value 214,000 km s−1. Compared with the mod-
ern values this is in error by more than twenty-five percent and this error
is undoubtedly due to the error in the accepted value for the distance from
the Sun to the Earth. Nevertheless, Huygens was pleased with the result in
that he was interested only in the order of magnitude.

Over the next few decades many more observations were made and
in 1817 the French mathematician Jean Baptiste Delambre (1749–1822)
published a summary of about a thousand measurements to arrive at a
value 303,000 km s−1.

Figure 1: Earth and Jupiter at two points six months apart

Rømer’s work was well-accepted in the early eighteenth century. Im-
provements were made using the transits of Venus in 1761 and 1769 but
these were overshadowed by another completely independent form of extra
terrestrial measurement in 1728 courtesy of James Bradley (1693–1762).
The technique is often compared with walking in the rain. If the rainfall
is vertical then, due to horizontal motion, the rain appears to come at an
angle. Bradley realised that because the Earth is in motion about the Sun
the light from the star would come from an apparent position, see Figure 2.

This apparent motion is called aberration. He based his work on the
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Figure 2: True and apparent position of γ-Draconis

star γ-Draconis and was able to measure the angle α to an accuracy which
was amazing for the time. Bradley took observations over a whole year, the
value of α varies depending on the relative direction of the Earth’s orbital
motion compared with the true direction of the star. His value of 20.25
seconds of arc was his best estimate of the average value. c.f. the modern
value 20.47 seconds of arc, his error is approximately one percent.

If we consider the diagram in Figure 2 we see that

tanα =
v

c
= β. (1)

At that time the interest seemed to be finding the time, TSE , that it takes
light to travel from the Sun to the Earth and Bradley had the brilliant idea
that this time could be calculated without knowing the speed of light nor
the Sun-Earth distance, d. The calculation goes as follows:

TES =
d

c
. (2)

The speed, v of the Earth in its orbit about the Sun is given by

v =
2πd

n
, (3)
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where the number of seconds in a year is given by n.

Hence from equations (1), (2) and (3) it follows that

TES =
1

c

nv

2π

=
βn

2π

and with β = tanα ≈ 9.817× 10−5 and n = 3.536× 107 we find

TES = 492,

i.e. 8 min. 12 sec., an astoundingly accurate result compared with the mod-
ern value 8 min. 20 sec. With the modern value of d (1.493 × 1011 m) we
obtain the speed of light as 303,500 km s−1.

4 Into the 19th century

During the seventeenth and eighteenth centuries timing devices were not
accurate enough to make a terrestrial measurement of the value of c. Dis-
tances would be just a few kilometres and the so-called terrestrial time-of-
flight methods would require measuring times of the order of 10−5 s. It
took a brilliant idea by the French physicist Hippolyte Fizeau (1819–1896)
to develop a device which, while not actually measuring a time interval,
enabled him, in 1847, to calculate the time taken for a beam of light to
travel across the rooftops of Paris. The basic idea is that a beam of light is
sent passing through a gap in a rotating toothed wheel. This rotating wheel
‘chops’ the light into short pulses and each pulse is reflected back. The ro-
tation is set so that the returning pulse is blocked by the adjacent tooth.
The apparatus was set up in his father’s house in Suresnes and the pulse
was reflected from a mirror in Montmartre 8.63 km away. There are certain
technicalities which don’t affect us here, e.g. the light beam is concentrated
using a lens system and the outgoing and incoming rays are separated using
a half-silvered mirror.

Fizeau’s wheel had 720 teeth rotating at 12.6 rps so the time for the
return journey is given by

1

2× 720× 12.6
≈ 5.5× 10−5, (4)

i.e. a time of approximately five one-hundred-thousandths of a second. No
timing device of that era could come close to measuring that.
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Since the distance between the mirrors is 8.63 km, (4) gives the speed
of light as 313,000 km s−1.

The idea of using a rotating device with rotational speeds in excess of 500
rps to ‘chop’ the light beam was further developed in 1862 by Léon Foucault
(1819–1896). He used rotating mirrors to obtain a value 298,000 km s−1.
In 1879 Albert Michelson (1852–1931) used a rotating prism to obtain a
value 299,910 km s−1. Foucault and Michelson are probably better known
for the Foucault Pendulum and the so-called Michelson Morley experiment
respectively. By the end of the nineteenth century a breakthrough in the
understanding of electromagnetic theory led to the possibility of indirect
ways of obtaining light speed values. Nevertheless Michelson carried on with
time-of-flight measurements obtaining a value 299,796 km s−1 (c. 1930) in
a one-mile long vacuum tube.

5 Electromagnetic waves

In 1821 Michael Faraday (1791–1867) proposed the idea of lines of force
leading to the concept of the magnetic field. This was a revolutionary idea
in which a magnet affects all space and was in direct opposition to what was
then the conventional wisdom: action at a distance in which forces acted in-
stantaneously at the point of application. Many of his contemporaries were
sceptical but his 1851 experiment with iron filings provided a very com-
pelling demonstration (Faraday 1851). Usually at this stage of discussion of
the development of the understanding of electromagnetism we would jump
directly to James Clerk Maxwell (1831–1879). However, we acknowledge
the pivotal work of George Green (1793–1841). He took the geometrical
ideas of the field and cast them in a calculus setting, ripe for exploitation
by Maxwell.

In 1861 Maxwell published, in the Philosophical Magazine, a set of
twenty equations written in component form. He developed the ideas fur-
ther in his monumental Treatise (1873). The four equations, in free space,
that are familiar to us now is due to Oliver Heaviside (1850–1925), who
wrote them in vector calculus terms as follows:

∇·E =
ρ

ε0
, ∇·H = 0,

∇×E = − µ0
∂H

∂t
, ∇×H = ε0

∂E

∂t
,

where E and H are the electric and magnetic field vectors respectively and ε0
and µ0 are the electric permittivity and magnetic permeability respectively
of free space.
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It is a standard piece of undergraduate work using the properties of the
vector operators to show that these equations lead to the following equation:

∇2E = ε0µ0
∂2E

∂t2
(5)

together with a similar equation for H. We see that we have a wave equation

with wave speed a =
(√
ε0µ0

)−1
.

At this point we need to say something about units. At Maxwell’s time
there were two systems of units for electricity, electrostatic and electromag-
netic. The wave equation developed by Maxwell involved a speed which
is given by a2 = ke / km. This ratio of the electrostatic to the elec-
tromagnetic units of electric charge was measured in an 1856 experiment
by Wilhelm Weber (1804–1891) and Rudolf Kohlrausch (1809–1858). With
their measured values Maxwell found his wave speed to be 310,740 km s−1.
He was aware of Fizeau’s measurement of c as 313,000 km s−1 and deduced
that his wave speed was so close to that of Fizeau that a must be the speed
of light. There has been much written about the vagaries of the different
systems and we shall not pursue that further here; the interested reader
can see the article by Clarke (2019). It is interesting to note here that even
though infrared and ultraviolet were discovered by William Herschel (1738–
1822) in 1800 and Johann Wilhelm Ritter (1776–1810) in 1801 respectively,
Maxwell considered only the speed of visible light.

Radio waves were discovered by Heinrich Hertz (1857–1894) in a series
of experiments between 1887 and 1889 and hence provided the evidence
needed to establish the wave nature of electromagnetism.

As we move into the twentieth century, measuring the parameters in
equation (5) would yield a value for c : µ0 is defined from the definition of
the ampere as it stood prior to 20 May 2019 giving µ0 = 4π×10−7 with the
SI unit H m−1 and ε0 is measured experimentally with SI unit F m−1. More
than twenty different experiments were performed and published using a
variety of capacitors to yield values for ε0. In particular in 1907 Edward
Rosa (1873–1921) and Noah Dorsey (1873–1959) at the National Bureau of
Standards (NBS) in Maryland, USA, ran a series of very precise experiments
and produced the value 299,788 km s−1, the most accurate value at that
time.

The speed c of an electromagnetic wave of frequency f and wavelength
λ is given by

c = λf. (6)

The so-called cavity resonator working at microwave frequencies was used
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in the mid twentieth century at the National Physical Laboratory (NPL) in
Teddington by Louis Essen (1908–1997) and A. C. Gordon–Smith. Using
waves of a known frequency and measuring the wavelength of standing waves
in the resonator, equation (6) yields a value for c. They obtained a value
299,792 km s−1. A very good description of these methods is given by Essen
(1952).

Improved values of wavelength can be obtained by the technique of inter-
ferometry in which waves interact and form interference patterns from which
very accurate measurements can be obtained. In 1958, Keith Froome (1921–
1995) at the NPL used this technique to obtain a value 299,792.5 km s−1.
With the development of lasers and atomic clocks in the nineteen-sixties
even more accurate values were obtained. In particular, in 1973, Kenneth
Evanson (1932–2002) et al. at the NBS, obtained the value 299,792.4574
km s−1. In Table 1 we give a brief chronology of the development of the
value of the speed of light.

Result Error
Date Author Method (km s−1) (km s−1)

1676 Rømer Eclipse of Io 214,000

1726 Bradley Stellar aberration 301,000

1849 Fizeau Toothed wheel 315,000

1862 Foucault Rotating mirror 298,000 500

1879 Michelson Rotating prism 299,910 50

1907 Rosa & Dorsey Electromagnetic
constants

299,788 30

1926 Michelson Rotating prism 299,796 4

1947 Essen &
Gordon–Smith

Cavity resonator 299,792 3

1958 Froome Interferometer 299,792.5 0.1

1973 Evanson et al. Lasers/atomic clocks 299,792.4574 0.001

Table 1: A brief chronology of the progress, from 1676, in measuring c

The list in Table 1 is a list of the major contributions in terms of new
approaches. Raynaud (2013) describes 268 different experiments arranged
in twelve categories.
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6 Post 1983

In 1967/68, the SI unit of time, the second, which had been defined in terms
of the Earth’s orbital motion around the Sun, was redefined using a quantum
mechanical description of the caesium-133 atom transition frequency, ∆ν.
Up until the nineteen-seventies the uncertainty in the measurement of c was
greater than that in the measurement of the metre which was defined by the
length of a platinum-iridium bar in Paris. However, by the late nineteen-
seventies that had changed and the possibility of using a new definition
became possible. By 1983 the following values of c had been obtained:

US: NBS 299,792.4574 ± 0.0011 km s−1,
UK: NPL 299,792.4590 ± 0.0008 km s−1

and the SI value 299,792,458 m s−1 was adopted.

This value of c means that we can now define the metre in terms of
two non-terrestrial constants, c and ∆ν. Moving forward, physicists wished
to define the seven SI base units in terms of universal constants and these
were announced at the Convocation de la Conférence générale des poids et
mesures (26e réunion), Versailles, 13–16 novembre 2018. They came into
force on 20 May 2019 and that’s another story.
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Solution 280.6 – Four numbers
Find all solutions in positive integers a, b, c, d of

a

b+ c
+

b

a+ c
+

c

a+ b
= d.

Peter Fletcher
If we run the following MATLAB® code

n = 30;

for a=1:n

for b=a:n

for c=b:n

d = a/(b+c)+b/(a+c)+c/(a+b);

if d-floor(d)<eps;

[a,b,c,d]

end

end

end

end

the output is

1 1 3 2

2 2 6 2

3 3 9 2

...
...

10 10 30 2

from which we can see that since the labelling of a, b and c is arbitrary, for
n = 1, 2, . . .,

a = b = n, c = 3n, d = 2, or

a = c = n, b = 3n, d = 2, or

b = c = n, a = 3n, d = 2.
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Solution 259.3 – Discriminants
The discriminant of the cubic

f(x) = x3 + ax2 + bx+ c

is
∆ = a2b2 − 4b3 − 4a3c+ 18abc− 27c2.

Show that the discriminant of

g(x) = 3x4 + 4ax3 + 6bx2 + 12cx+ 4ac− b2

is −6912∆2.

Peter Fletcher
There is more than one way of finding the discriminant of a polynomial; for
example, from

http://mathworld.wolfram.com/PolynomialDiscriminant.html,

we can write down the discriminant of g(x) as

∆g =
(−1)4·3/2R

(
g, g′

)
3

=
R
(
g, g′

)
3

,

where the numerator is the resultant of g(x) and its derivative. There’s an
explanation and another example of the resultant’s use here:

https://www.encyclopediaofmath.org/index.php/Resultant (the
third equation should begin ‘g(x) = . . .’ rather than ‘fg(x) = . . .’). That
page also gives a matrix whose determinant is the resultant.

In our case, g′(x) = 12x3 + 12ax2 + 12bx+ 12c, so we can write

R
(
g, g′

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

12 12a 12b 12c 0 0 0
0 12 12a 12b 12c 0 0
0 0 12 12a 12b 12c 0
0 0 0 12 12a 12b 12c
3 4a 6b 12c 4ac− b2 0 0
0 3 4a 6b 12c 4ac− b2 0
0 0 3 4a 6b 12c 4ac− b2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We could go through a series of row and column operations to make this
easier to evaluate, but instead we shall cheat and use Maple. The answer

http://mathworld.wolfram.com/PolynomialDiscriminant.html
https://www.encyclopediaofmath.org/index.php/Resultant
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is a horrible-looking eighth-order polynomial in a, b, and c with 13 mixed
terms, which we can factor in Maple to give

R
(
g, g′

)
= − 20736

(
4a3c− a2b2 − 18abc+ 4b3 + 27c2

)2
.

The squared term is obviously
(
−∆f

)2
, so therefore

∆g =
−20736∆2

f

3
= − 6912∆2

f .

Problem 295.1 – Sequences
(i) Two persons, A and B, play a game. Player A creates a uniformly dis-
tributed random sequence, SA, of three symbols from {0, 1} (by tossing a
coin, for example). Player B creates SB in the same manner. If SA = SB ,
the game is void. Otherwise the game’s referee generates a long, uniformly
distributed random sequence, S, of 0s and 1s (by tossing a coin, for exam-
ple). The winner is the player whose sequence first occurs in S.

For example, suppose SA = (0, 1, 1), SB = (1, 1, 0), which are obviously
not equal. So the host generates a random sequence, say S = (0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
1, 1, 0, 1, 0, . . . ), and the winner is A because (0, 1, 1) occurs in S before
(1, 1, 0), but only just. In fact, B is doomed from the first 0, except that
both players will die before the outcome is resolved if the pair (0, 1) repeats
for too long. Anyway, it’s a fair game, would you not agree? But now we
change the rules.

(ii) As (i) except that the players are allowed to choose SA and SB ,
revealing them only to the referee.

Is the game still fair? In case we have not achieved very much, we
change the rules again. . . .

(iii) As (ii) except that A chooses his1 sequence first and is obliged to
show it to B before B makes his2 choice.

. . . And again.

(iv) As (iii) except that after B has made his choice, he shows SB to
A, who can then choose a different SA if he wishes to do so.

1Let’s assume A is male . . .
2. . . and B
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A child’s ‘proof’ that most numbers are irrational
Mike Grannell
This note was prompted by Ben Mestel’s article in M500 294 concerning
proofs of irrationality. There are proofs that almost all real numbers are
irrational, but these depend on things like cardinal numbers and measure
theory. So how would you convince someone with only basic arithmetic skills
and no advanced mathematical knowledge? Well, here is a fairly compelling
argument that only relies on the person being able to convert fractions to
decimals. Because this is aimed at these people, I will refer to rational
numbers as fractions, and real numbers as decimals (I can almost hear you
wince). So here is how you should be able to convince a child (or an adult)
that most decimals are not fractions in disguise.

Let’s start with the example of converting the fraction 79
7 to decimal

form. We begin by calculating the integer part, which in this case is 11 (7s
into 79 go 11 times with remainder 2). Thus 79

7 = 11 + 2
7 . It should be

clear that we can always do this sort of thing, so the only fractions that we
really need to consider are proper fractions, in this case 2

7 . To convert this
proper fraction to a decimal, we write the 2 as 2.00000000 . . . and start the
division process, in this case dividing by 7. We get

2

7
= 0.285714 285714 285714 . . .

Of course this is a recurring decimal and the reason becomes clear with a
bit of thought. There are only 7 possible remainders at each stage in this
division, namely 0, 1, 2, 3, 4, 5 and 6. Once you get a remainder that you
have previously encountered, the decimal will start to recur. Here are the
details for this particular example. The initial remainder was 2 (that’s how
we got the fraction 2

7 ). Then 7 into 20 gives 2 with remainder 6, 7 into 60
gives 8 with remainder 4, 7 into 40 gives 5 with remainder 5, 7 into 50 gives
7 with remainder 1, 7 into 10 gives 1 with remainder 3, and 7 into 30 gives
4 with remainder 2, which is the remainder with which we started, so the
pattern now repeats with quotients 2, 8, 5, 7, 1 and 4.

The same sort of thing will happen with any denominator, so a denomi-
nator 139 would have 139 possible remainders and the decimal will recur in
blocks of length at most 139. If a remainder of 0 is ever encountered, all the
subsequent quotients and remainders will also be 0, and so the decimal will
‘terminate’, but we can count this as recurring with digits 0. Thus every
fraction can be represented as a recurring decimal.

But now imagine that we have a machine capable of emitting an infinite
string of purely random digits from 0 to 9. Put ‘0.’ in front of such a string
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to get a decimal between 0 and 1. What’s the chance that this would be
a recurring decimal? Surely it is exceedingly unlikely. So the decimals you
get from this process will almost never correspond to proper fractions. Thus
most, indeed almost all, decimals are not fractions in disguise. Convinced?

Of course this isn’t a proof in the precise mathematical sense. It does
rely on a hypothetical random digit generator, which begs for an explanation
of what we might mean by an infinite string of random digits. But even so,
it is now easy to specify some irrational numbers such as 0.1010010001 . . ..
You just need a pattern that doesn’t recur in fixed length blocks.

Problem 295.2 – States
Tony Forbes
What is the probability of winning a game of Hangman where the words
are restricted to the names of six-letter USA states. Assume only one life.
Assume also that you and your opponent always play sensibly.

(At the start you choose a 6-letter USA state, S, say, and maybe draw
six dashes, . Then (∗) your opponent chooses a letter, α, say. If
α does not occur in S, the game ends and you win. Otherwise you reveal
the position(s) of α in S. If S is identified, the game stops and you lose.
Otherwise and the game continues from (∗).)

This is another watered-down version of Problem 184.9 – States; see M500,
184, 187 and 276. Apologies for recycling the subject yet again—and it
looks like I am not going to shut up until the original problem in issue 184
(where you can choose any USA state, not just 6-letter ones) is completely
solved.

For the general problem, I believe we have a complete solution in only
the following cases.

(i) You lose if there is only one USA state that matches the word pattern.

(ii) You lose if there are common letters that the solver can safely utilise
to home in on the answer, as is illustrated by the 9-letter states (Louisiana,
Minnesota, Tennessee, Wisconsin).

(iii) With you win with probability 1/3 (Iowa, Ohio, Utah).

(iv) With you win with probability 1/2 (North Dakota,
South Dakota, Rhode Island).

The only unresolved cases occur when there are 6, 7 or 8 letters. For the
current problem the states are Alaska, Hawaii, Kansas, Nevada, and just
when you are thinking they all have an ‘a’ in them, Oregon.
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Planar graph smash
Tommy Moorhouse
This puzzle explores the smash product between graphs examined in a pre-
vious article [M500 294]. In particular we consider which smash products
give planar graphs. Reference should be made to the earlier article for the
terminology required. For convenience we recall that the smash product
G∨H between two graphs G and H is obtained by connecting every vertex
of G to every vertex of H by an edge, making no other changes. G + H
is the disconnected graph consisting of G and H. To denote that g is a
subgraph of G we write g �G.

If you have tried constructing smash products you may have noticed
that a lot of them can’t be drawn on the page without some of the edges
crossing. Graphs that can’t be so drawn are called nonplanar. We wish to
understand which smash products give rise to planar graphs. To this end
we need the lemma

Lemma 1 If g �G and h�H then g ∨ h�G ∨H.

Proof of Lemma 1 Since g ∨ h consists of g and h with all the vertices of
g joined by an edge to those of h we see that g ∨ h is a subgraph of G ∨H.

Now we make use of Kuratowski’s Theorem (see Chapter 3 of the ref-
erence, for example) that states that any nonplanar graph is a supergraph
of an extension of the ‘utility graph’ U or of the complete graph K5.

Figure 1: The graph U

We don’t worry too much about the extension part here. Now we look at
smash products that give rise to U or to K5. Previously we established that
Kn ∨ Km ' Kn+m, so K5 ' K1 ∨ K4 and K5 ' K2 ∨ K3. Observe that
K1 ' N1 where Nn is the graph with n vertices and no edges.
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Þ =

Figure 2: Smash product K2 ∨K3 = K5

Prove now that
U ' N3 ∨N3.

Deduce that if G and H both have three or more vertices then G ∨H
is nonplanar. Thus the planar smash products are among those where at
least one of the factors has two or fewer vertices. Can you find a more
precise statement? It will be necessary to consider several sub-cases. For
example, if T4 is the graph having one vertex of order three connected to
three vertices of order one (see below) then N2 ∨ T4 is nonplanar.

Figure 3: The graph T4

Reference

Richard J. Trudeau, Introduction to Graph Theory, Dover, 1993.

Problem 295.3 – Integers
Let a, b, k be positive integers with b ≥ a ≥ k − 2 ≥ 1. Show that

(ka)! (kb)!

kk a! b! (a+ b)!

is an integer except possibly when k = 3 and a = 1. Or find a counter-
example.
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Solution 228.2 – Arithmetic progression
An arithmetic progression contains only positive integer terms.
The sum of the first three terms is 51. The sum of the last four
terms is 332. Show that only two arithmetic progressions satisfy
these conditions and list those two progressions.

Peter Fletcher
Let the first term be a, the common difference be d and the number of terms
be n. Then

51 = a+ (a+ d) + (a+ 2d) = 3(a+ d)

so that a+ d = 17 and a = 17− d. Also,

332 = (a+ [n− 4]d) + (a+ [n− 3]d) + (a+ [n− 2]d) + (a+ [n− 1]d)

= 4a+ 4nd− 10d.

Substituting for a, we get

332 = 4(17− d) + 4nd− 10d = 68 + 4nd− 14d

so that
264 = 2d(2n− 7) and 132 = d(2n− 7),

which gives

d =
132

2n− 7
.

The denominator here is odd, so we are looking for odd factors of 132 =
2 · 2 · 3 · 11, which are 3, 11 and 33.

If 2n − 7 = 3 then 2n = 10 and n = 5. Also d = 44 and a = 17 −
44 = −27, which is not allowable because we are told that the arithmetic
progressions we want only have positive terms.

If 2n− 7 = 11 then 2n = 18 and n = 9. Also d = 12 and a = 5, giving

5, 17, 29, 41, 53, 65, 77, 89, 101.

If 2n− 7 = 33 then 2n = 40 and n = 20. Also, d = 4 and a = 13, giving

13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89.

As a check, 5 + 17 + 29 = 13 + 17 + 21 = 51 and 65 + 77 + 89 + 101 =
77 + 81 + 85 + 89 = 332.
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Solution 289.6 – 52 Cards
I take a standard deck of 52 playing cards, randomized and
placed on the table face down. One by one I turn over the
cards. Before a card is turned over I invite you to guess what it
is. Assuming you play intelligently, how many do you expect to
get right?

The game is played again, but this time you are to guess only
the rank of the card. The suit is irrelevant. Again, how many
do you expect to get right?

Ted Gore
For the first part of the question where both the rank and suit of the card
is guessed the best strategy is to keep track of all the cards that have been
disclosed up to now and to choose at random an undisclosed card.

The expected number of successful guesses would then be

52∑
n=1

1

n
= 4.538044.

Five simulations, each of a million repetitions of the game, were carried out
on a computer giving

4.535365, 4.533909, 4.525787, 4.538353, 4.527825.

The second part is more complicated since it depends on the order in
which cards are disclosed and there are 52! ways of that happening.

The best strategy is to keep a count of how many cards are left to be
disclosed for each rank and to choose a rank with the maximum.

For those sequences in which the first 13 cards disclosed are all of dif-
ferent ranks, and likewise the second, third and fourth blocks of 13 then the
expected number of successes would be

52∑
n=40

4

n
+

39∑
n=27

3

n
+

26∑
n=14

2

n
+

13∑
n=1

1

n
= 6.86408.

Five simulations, without this assumption, were carried out giving

6.847271, 6.863124, 6.85604, 6.865375, 6.86261.
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Θ

2m

Problem 295.4 – A line and a circle

There is a line L inclined at angle θ to the horizontal, 0 < θ < π/2, and
below L there is a circle C separated from L by 2 metres. A particle P
is dropped from somewhere on L that is vertically above C. Determine
the fastest time for P to reach the circumference of C under the action of
gravity, and hence or otherwise show that it is independent of the size of
the circle. Gravity is constant and acts vertically downwards.

Problem 295.5 – Graphs with girth at least 5
Given k ≥ 3 and sufficiently large v, it is often not too difficult1 to find a k-
regular graph with v vertices and girth at least 5 (i.e. contains no triangles or
4-cycles). Show that there is no such graph that has a cyclic automorphism
of order v (i.e. can be drawn with v-fold rotational symmetry). Or find one.

Note that the condition on k is necessary. For example, a hexagon is 2-
regular, has girth at least 5 and when drawn in the usual manner has 6-fold
rotational symmetry. Just in case anybody suggests it, the dodecahedron
doesn’t work; it is 3-regular, and has girth 5 but it does not have a cyclic
automorphism of order 20.

Problem 295.6 – Divisibility test
Tony Forbes
Show that the following divisibility test works in any number base, b. Con-
vert the base b digits of n to base c and add them up in base c. If the sum
is divisible by b− 1 in base c, then n is divisible by b− 1 in base b.

For example, take n = 999999999999999999999999514. Convert the dig-
its to binary (base 2) and add them up. There are 2410 = 110002 instances of
the symbol 9 and one 5; so we have 110002×10012+1012 = 110111012, which
is obviously divisible by 11012. Hence n is divisible by D14 = 11012 = 1310.

1It is actually impossible if kv is odd
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Mathematics in the kitchen – XI
Tony Forbes
Here is another in our series of mathematical experiments that one can
perform within the confines of one’s kitchen. Actually this one is more like
a problem the solution of which has more than academic interest.

A 0.56826125-litre glass drinking vessel of the type one can usually find in
one’s local pub is to be cleaned thoroughly in order to remove all trace of
viruses and other harmful living matter. It is filled with household bleach,
a solution of 50 g/l of sodium hypochlorite, left for a few hours after which
the bleach is poured away. Then the glass is repeatedly filled with tap water
and emptied.

How many times must this last operation be performed to be sure that
the glass is fit for use?

I have stated the capacity because I think it is relevant. You should get
different answers for different sizes due to the non-linear ratio of volume to
internal surface area.

WARNING. Do not try this at home. Sodium hypochlorite is a corro-
sive substance, which can cause severe skin burns and eye damage. Never
allow household bleach to enter your body, and please ignore anybody (even
someone in high office) who advises otherwise.

Letters
I (TF) am reminded that 2020 is the 151st anniversary of the Periodic Table.
So here is a possible answer to ‘Letters’ on page 20 of M500 294. The letters
a a a a a a a a A A A A A A A A b b b b b b b B B B B B B B c c c c C C C C C C C C C C C C d
d d d d D D D e e e e e e e e e e E E E f f f F F F F F g g g g g g G G G h h h h H H H H H H
i i i i i I I I k K K l l l l L L L L L m m m m m m M M M M M M n n n n n n N N N N N N N N N
o o o o o O O O p P P P P P P P P P r r r r r r r r r r r R R R R R R R R s s s s s s s S S S
S S S S S S t t t T T T T T T T T T u u u u u u U v V W X y Y Y Z Z are arranged thus.

H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
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Front cover A 5-regular graph with 166 vertices and girth 6, the defi-
ciency graph of a recently discovered pentagonal geometry PENT(5, 40)
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