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Solution 302.5 – Eigenvalues
(i) Find a closed formula for the function µ(m,n) defined for
integers m,n ≥ 3 by

µ(m, 3) = 0, µ(m,n+ 1) = µ(m,n) +m, n ≥ 3.

(ii) Let m,n ≥ 3 be integers. Take m copies of the complete
graph Kn and join them together to form a cycle where two
adjacent Kn graphs have precisely one vertex in common. Show
that the multiplicity of eigenvalue −1 of the graph’s adjacency
matrix is µ(m,n). Or find a counter-example.

For example, ΜH4,5L = 8.

Tommy Moorhouse
The solution to the recurrence relation is easily deduced, namely µ(m,n) =
(n − 3)m. The second part of the problem describes the construction of
a family of graphs. We can iteratively construct the incidence matrices of
subfamilies as follows. Fix m. Each graph of the family, denoted K(m,n)
for given n, is based on a cyclic graph Cm, which we will call the skeleton
of K(m,n). The incidence matrix of Cm will be denoted M0, and this is
shown below. 

0 1 0 0 · · · 0 1
1 0 1 0 0 · · · 0
0 1 0 1 0 · · · 0
· · ·
0 0 0 · · · 1 0 1
1 0 0 · · · 0 1 0


We label the vertices of the skeleton clockwise from 1 to m. We build the
graph K(m,n) in stages. First we construct K(m, 3) by joining new vertex
m + 1 to vertex 1 and vertex 2, joining new vertex m + 2 to vertex 2 and
vertex 3 and so on, finishing by joining new vertex 2m to vertex m and
vertex 1. The new vertices are connected only to the adjacent vertices of
the skeleton. The incidence matrix of K(m, 3) is then, in block form,[

M0 h
ht 0

]
.
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Here h stands for the m×m matrix
1 0 0 0 · · · 0 1
1 1 0 0 · · · 0 0
0 1 1 0 0 · · · 0
· · ·
0 0 0 · · · 1 1 0
0 0 0 · · · 0 1 1


and ht stands for its transpose. This can be deduced from the structure of
the graph around the skeleton. Here and in what follows 1 and 0 stand for
the m×m unit and zero matrices respectively.

We now add another vertex between each of those of the skeleton. Vertex
2m+1 is connected to vertex 1, vertex 2 and vertex m+1 but to no others,
and similarly for vertices 2m + 2, . . . , 3m. In general vertices congruent to
k (mod m) are connected to each other and to vertex k+ 1 of the skeleton.
This leads to the block incidence matrix M(m, 4) (for K(m, 4))M0 h h

ht 0 1
ht 1 0

 .
The next iteration is 

M0 h h h
ht 0 1 1
ht 1 0 1
ht 1 1 0


and for K(m,n) we have the m(n−1)×m(n−1) incidence matrix M(m,n)

M0 h h h · · · h
ht 0 1 1 · · · 1
ht 1 0 1 · · · 1
· · ·
ht 1 1 1 · · · 0

 .
We could proceed by finding the eigenvalue equation det(M − λ) = 0 for
λ and showing that it has multiple factors of λ + 1. However, the block
form allows us to take a different approach. We take the simplest case first,
computing

(M(m, 3) + 1)V = 0
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where V is a column vector of length 2m, with the first m rows forming a
vector denoted u and the last m rows being denoted v. Multiplying out the
blocks we find

M0u+ hv = −u,
htu = −v.

Multiplying the second equation by h and substituting for hv in the first
equation gives (M0 − hht + 1)u = 1u = 0. Here hht is

2 1 0 0 · · · 0 1
1 2 1 0 · · · 0 0
0 1 2 1 · · · 0 0
· · ·
0 0 0 · · · 1 2 1
1 0 0 · · · 0 1 2

 .

Thus u = v = 0 and so V = 0 and M(m, 3) has no repeated eigenvectors
associated with the eigenvalue −1.

In the general case if we write the m(n − 1) vector V as the ‘block’
vector (u, v(1), v(2), · · · , v(n−2)) the eigenvalue equation M(m,n)V = −V
gives rise to n− 1 equations for the block vectors. In fact only two of these
are independent:

M0u+ h

n−2∑
i=1

v(i) = −u,

htu+
∑
j>1

v(j) = −v(1).

Reasoning as above this leads to the conclusion that u = 0 and that the
n− 2 m-vectors v(i) are linearly dependent (as m-vectors). Since there are
only m linearly independent m-vectors the vectors v(i) can be arranged to
form the m(n − 3) = µ(m,n) linearly independent λ = −1 eigenvectors of
M(m,n).

To see how this works consider K(m, 4), when we find u = 0, v(1) =
−v(2). Thus the eigenvectors associated with λ = −1 form anm-dimensional
subspace of R3m. Putting it all together we conclude that the number of
repeated λ = −1 eigenvectors of M(m,n) is µ(m,n).
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Wanchancy and Game of Primes
Douglas Clarkson

Introducing Wanchancy

The game of ‘Wanchancy’ is based on a 16 × 16 matrix play board which
is used to set down integer number sequences in a manner resembling a
crossword puzzle. Thus sequences should therefore interlock appropriately
without disturbing previous sequences. A total of 100 number tiles with
distribution of values between 1 and 37 inclusive are available for play.
During rounds of the game up to four players each use nine tiles to place
integer sequences on the play board and where the minimum length of a
sequence thus played is three tiles. The scoring of each sequence is based
on the sum of the individual tile values of the sequence, and where also the
play board can include factors to multiply the individual tile values (double,
triple, quad) and also the entire sum of the sequence (double, triple).

Not being a mainstream mathematician, but rather with experience in
applied physics, I restricted the scope of integer sequences to arithmetic
and geometric types and also to polynomials of a single variable. This was,
however, a vast underestimation of the complexity of the world of integer
sequences. Limiting factors relating to allowed sequences include the fact
that the maximum tile value is 37 and the restriction on the number of tiles
of any specific value available. The game itself has developed incrementally
over a number of years and with the various physical components of the
game—the play board, number tiles and tile holders—being obtained from
diverse sources. The documentation has also become more complex. Figure
1 indicates an example of a completed Wanchancy game.

Table 1 outlines the structure of a subset of sequences based on arith-
metic and geometric relationships and Table 2 sequences based on polyno-
mial of a single integer variable. The scope for geometric sequences is in
fact rather limited compared with arithmetic types.

Sequence Type

13, 17, 21, 25, 29, 33 arithmetic
16, 22, 28, 34 arithmetic
5, 10, 15, 20, 25 arithmetic
1, 3, 9, 27 geometric
2, 4, 8, 16, 32 geometric

Table 1: Examples of arithmetic and geometric sequences
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Formula Sequence n

n2 + 1 5, 10, 17, 26, 37 n = 2, 3, 4, 5, 6
n2 − 1 3, 8, 15, 24 n = 2, 3, 4, 5
n2 − 3 1, 6, 13, 22 n = 2, 3, 4, 5
2n2 − 3n+ 7 6, 9, 16, 27 n =1, 2, 3, 4
n3 + 4n− 4 1, 12, 35 n = 1, 2, 3
n3 − n2 + n+ 7 8, 13, 28 n = 1, 2, 3

Table 2: Examples of polynomial sequences of a single integer variable

It is certainly possible to define sequences based on relationships be-
tween the terms of an integer sequence. A well-known example of this is
the Fibonacci sequence, which can be defined as the sequence 0, 1, 1, 2,
3, 5, 8, 13, 21, 34, etc. where a(n) = a(n − 1) + a(n − 2). A related se-
quence is that known as Narayana’s Cows sequence of 1, 1, 1, 2, 3, 4, 6,
9, 13, 19, etc. where a(n) = a(n − 1) + a(n − 3). A rule is suggested that
sequences are structured in this way using at most two sequence elements as
in the Fibonacci and Narayana’s Cows sequence since it is almost possible
to structure any integer sequence based on specific relationships between
included individual elements if enough are included. A considerable num-
ber of integer sequences of this type are possible with definition of the first
two or three terms and application of rules to combine them – as indicated
in Table 3.

First terms rule sequence

1, 4 a(n+ 1) = a(n) + a(n− 1) 1, 4, 5, 9, 14, 23, . . .
1, 4 a(n+ 1) = a(n) + 2a(n− 1) 1, 4, 6, 14, 26, . . .
1, 5, 6 a(n+ 1) = 2a(n− 1) + (n− 3) 1, 5, 6, 13, 31, . . .
3, 5, 8 a(n+ 1) = 3a(n− 3) + a(n− 2) 3, 5, 8, 14, 23, . . .

Table 3: Additional notional sequences based on term combinations

As the game developed, however, it was considered appropriate to in-
clude integer sequences which would reflect more diverse maths properties
and this would significantly expand the scope of the game. A key example
of this would be prime numbers—with a total of 12 prime numbers being
available in the number range of 1 to 37. Prime numbers lend themselves
to subgroups with specific identities such as twin primes, cousin primes and
permutable primes as outlined in Table 4.

Of the various ‘families’ of primes, perhaps the most intriguing is that of
the Mersenne Primes, based on formula 2n−1, named after the French monk



Page 6 M500 307

Marin Mersenne, who proposed in 1644 that the sequence would include
values of n of 31, 67, 127 and 257. It was subsequently discovered, however,
that the next terms of the sequence would continue 31, 61, 89, 107, 127 and
521. Currently Mersenne primes lead the charge to discover larger and larger
new prime numbers based on the Great Internet Mersenne Prime Search
(GIMPS) as coordinated by the University of Tennessee at Martin in the
USA. It is perhaps the present lack of understanding of the theory of prime
numbers that still makes progress in searches such as GIMPS a necessity.
Annoyingly simple sequences can also be derived from combinations of prime
number elements, such as the sum of successive pairs of prime numbers.

Description Sequence Elements

Prime Numbers 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37
Mersenne Primes 3, 7, 31
Twin Primes (3, 5), (5, 7), (11, 13), (17, 19), (29, 31)
Cousin Primes (3, 7), (7, 11), (13, 17), (19, 23)
Permutable Primes 2, 3, 5, 7, 13, 17, 37
Circular Primes 2, 3, 5, 7, 11, 13, 17, 37
Pierpont Primes 2, 3, 5, 7, 13, 19, 37
Emirps 13, 17, 31, 37
Lucas Primes 2, 3, 7, 11, 29
Fermat Primes 3, 5, 17
Sophie Germain Primes 2, 3, 5, 11, 23, 29

Table 4: Summary of ‘interesting’ Sequences within the
Wanchancy number range based on prime numbers

The history of the Mersenne primes also touches upon the contributions
of the Ancient Greeks, who were well versed in their structure and recog-
nised the number 127 as a Mersenne prime. However, the discovery and
unravelling of the workings and function of the Antikythera mechanism,
estimated to date from around 2200 BC, and identified now as an accurate
gear analogue computer based on an array of astronomical cycles, has led to
a complete revision of both the Ancient Greeks’ understanding of the phys-
ical world and the means to compute cycles and parameter relationships.

In the subset of primes known as ‘emirps’, an ‘emirp’ has the property of
remaining a prime when its digits are reversed. The first few ‘emirps’ in this
subset are 13, 17, 31, 37, 73, etc. Another interesting prime number subset is
that of ‘unique primes’, where the reciprocal of a prime number expressed
as a decimal fraction has a unique repeat period. There are surprisingly
few primes with this property, and investigation has indicated there are 18
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unique primes less than 1050.

Permutable primes are primes which remain prime for every rearrange-
ment of their digits. Circular primes are primes which remain prime after
cyclic rotation of their digits. Pierpont primes are based on the numbers
of the format 2k3l + 1 where k, l are integers. The sequence reflects the
number of ways in which a circle can be divided using origami paper fold-
ing techniques. Lucas primes are closely aligned with the Fibonacci series
where the Lucas number sequence is given by a(0) = 2, a(1) = 1, a(2) = 3
and a(n+ 1) = a(n) + a(n− 1).

Other ‘interesting’ integer sequences have also been identified for use
within Wanchancy and are indicated in Table 5. This would be, however,
but a small fraction of the possible sequences that could be included.

Description Sequence Elements

Powerful Numbers 1, 4, 8, 9, 16, 25, 27, 32, 36
Thabit Numbers 2, 5, 11, 23
Fortunate Numbers 3, 5, 7, 13, 17, 19, 23, 37
Palindromic Numbers 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33
Square Pyramidal 1, 5, 14, 30
Triangular Tetrahedral 1, 4, 10, 20, 35
Toothpick Sequence 1, 3, 7, 11, 15, 23, 35
Diagonal Intersects 1, 5, 13, 35
Pronic Numbers 2, 6, 12, 20, 30
Partitions 1, 2, 3, 5, 7, 11, 15, 22, 30
Narayana’s Cows 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28
Pythagorean Triples 3, 4, 5; 5, 12, 13; 8, 15, 17; 7, 24, 25; 20, 21, 29
Semiprimes 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35
Fibonacci Numbers 1, 1, 2, 3, 5, 8, 13, 21, 34
Abundant Numbers 12, 18, 20, 24, 30, 36

Table 5: Summary of additional ‘interesting’ sequences within the
Wanchancy number range

These sequences are, for the most part, relatively straightforward in
their structure. One of the more famous integer sequences is that of ‘parti-
tions’, which is based on the number of ways to express a given number. As
an example, the number 4 has five partitions since it can be represented as
(1+1+1+1), (2+1+1), (2+2), (3+1) and (4). This particular topic was
given prominence in the film The Man Who Knew Infinity, based on the life
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of the Indian mathematician Srinivasa Ramanujan and his cooperation with
the Cambridge mathematician G. H. Hardy as documented in the book by
Robert Kanigel of the same title as the film.

Figure 1: Image of completed game of Wanchancy

A positive integer n is described as powerful if for every prime p dividing
n, p2 also divides n. Powerful numbers can also be expressed as a2b3 where
a and b are positive integers. Thabit numbers (also called 321 numbers)
are given by the expression 3 · 2n − 1 where n is the series of integers 1, 2,
etc. This set of numbers was first studied in the 9th century by the Arabic
scholar Thâbit ibn Quarra (836–901), who was a significant innovator in
the world of mathematics centred in Baghdad. He also made important
contributions to Arabic translations of Greek manuscripts, notably Euclid’s
Elements. The diagonal intersect sequence relates to the number of diago-
nals of regular polygons. Pronic numbers are the product of two consecutive
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integers and were initially studied by Aristotle. Semiprimes are numbers
which are the product of two prime numbers, allowing also for squares of a
single prime. An abundant number is described as a number where the sum
of its (proper) divisors is greater than the number itself. As an example,
in the first abundant number, 12, the sum of divisors (1 + 2 + 3 + 4 + 6) is
16. The literature on the properties of numbers is extensive. The publica-
tion The Magic Numbers of Dr Matrix by Martin Gardner, once long-term
columnist of Scientific American, gives the appearance of an honest account
of dealings with a mysterious Dr Matrix, though the entire account is purely
fictional though nonetheless intriguing. The extensive series of books pub-
lished by Ian Stewart is especially useful since they are of excellent academic
pedigree.

Enter the OEIS

Any investigation of integer number sequences sooner or later comes across
the OEIS – the On-Line Encyclopaedia of Integer Sequences. This resource
was founded by the British–American mathematician Neil Sloane and has
grown from an initial list of 6000 sequences to a resource which currently
identifies in excess of 340,000 sequences. This on-line resource has a very
useful feature where the terms of a sequence can be entered into an enquiry
box and the system will attempt to provide a reference number for the se-
quence or at least identify an equation to define it. The resource provides
therefore a convenient method of checking if an integer sequence can be
expressed as a valid numerical equation or as a recognised mathematical
identity—these being the requirements for sequences played in Wanchancy.
This allows sequences set down on the play board by one player to be ex-
panded subsequently by other players where this knowledge of the derivation
of a sequence is required to be shared as a feature of the game. When using
the OEIS to identify a sequence, it is of benefit to include additional terms
beyond the value 37 since this will assist in the process of sequence identi-
fication. The resource of the OEIS is in a way an expression of the eternal
allure of integer number sequences within mathematics. The enthusiasm for
this can be observed in the various video clips in YouTube featuring Neil
Sloane. As a convenience, OCR images of the OEIS website and a Wolfram
Alpha web page are included in the game documentation to allow ease of
access to these sites using a smartphone.

Documentation has been a key element of the Wanchancy project where
the game requires relevant guidance to allow players to play the game ap-
propriately. The resource of Amazon’s Kindle Direct Publishing has been
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used to provide affordable paperback copies of such instructions. Over time
the page count has grown from a mere 20 pages to now over 50 and with
the potential to keep expanding. There is a more general lesson here, for all
those individuals with unpublished manuscripts, where with Kindle Direct
Publishing there are no up-front costs to publish a paperback (and now
hardback) edition. Just supply a file in appropriate format in Microsoft
Word and a pdf cover design. Individual paperback author copies can be
produced for use with Wanchancy by Amazon’s Kindle Direct Publishing
for less than the cost of a high street coffee. Potential authors seeking mea-
surable return in sales of such self published material should be aware of
the brutal reality of such publishing in this way without a plan for paid ad-
vertising as offered by Kindle Direct Publishing or a well configured social
media exposure. Looking back on the history of mathematics, however, a
very real factor limiting its progress has been the loss or delay in publish-
ing of key manuscripts. Modern publishing technology, as demonstrated by
Kindle Direct Publishing, however, identifies a very practical way to reduce
this loss of resources. Such material, however, is of course not peer reviewed.

Enter Game of Primes

It was during the development of the board game Wanchancy that the
idea of ‘Game of Primes’ emerged. Rather than place integer sequences on
the play board, this game would focus instead on prime numbers—using
number digits 0 to 9. Based on the selected board size, this allowed the
placement of prime numbers up to 16 digits long. With a set of 7 tiles in
range 0 to 9 available for each player, this allowed successively large prime
numbers up to a length of 16 digits to be established on the play board.
The use of either smartphone apps or Internet resources are required to
check presented numbers for prime number status. For each prime number
presented, the potential for scoring increases with the length of the specific
prime number where the basic score is the sum of all of the digits in the
prime number. Rather than adopt a conventional board scoring pattern as
used with Wanchancy, a scoring pattern based on the Ulam Spiral has been
adopted where higher scoring patterns are identified with the sequence of
prime numbers between 1 and 256. The Ulam Spiral is of course based on the
‘doodle’ created by the Polish born mathematician Stanislav Ulam during
a boring lecture. For a tile number placed on a square which is a prime
number, a ‘simple’ prime adds + 10 to the score, while a twin prime adds
+ 20 and a cousin prime adds + 30. A cousin prime which is a neighbour
of a twin prime adds + 40 to the score. This in a way communicates the
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apparent randomness of the distribution of prime numbers.

Suitable smartphone Apps for checking of prime numbers are avail-
able with free download for both Android and iPhone devices. As regards
the Internet, the facility available through the University of Tennessee at
Martin is a convenient site https://primes.utm.edu/curios/includes/

primetest.php, which can be used for numbers up to the 16 digit number
9007199254740991. For values greater than this the resource created by
Dario Alpern can be used https://www.alpertron.com.ar/ECM.HTM. Ba-
sic documentation about playing the game is available in paperback form,
again using the convenience of Kindle Direct Publishing to produce copies
economically. The documentation includes references to a subset of ‘in-
teresting’ prime number sets essentially as outlined previously in Table 4.
Figure 2 indicates an example of a completed game of Game of Primes.

Figure 2: Image of completed game of Game of Primes

https://primes.utm.edu/curios/includes/primetest.php
https://primes.utm.edu/curios/includes/primetest.php
https://www.alpertron.com.ar/ECM.HTM
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In Conclusion

It has been an interesting process developing both games and along the way
various fascinating areas of mathematics have been encountered. As two
novel games have been ‘discovered’, there is curiosity if a third one awaits
uncovering.
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Solution 303.7 – Thirtieth powers
Either show that the only solution in positive integers a, b and
c of

a(a+ b)(a+ 2b) + 1 = c30

is a = 331, b = 1028, c = 2, or find another.

Dave Wild
Lat n be a positive integer and a and b the positive integers 2 and 4n3 +
6n2 + 3n− 1 respectively. Then

a(a+ b)(a+ 2b) + 1 = (2n+ 1)6.

If c > 2 is an odd integer then we can find an n such that 2n + 1 = c5. In
this case

a(a+ b)(a+ 2b) + 1 = (2n+ 1)6 = c30.

Therefore a solution can be found if c is an odd integer greater than 1.

Problem 307.1 – Eigenvalues of graphs
Let G be a simple graph with n vertices, n ≥ 2. Remove a vertex and its
incident edges from G to get a graph H with n − 1 vertices. Let λ1, λ2,
. . . , λn be the eigenvalues in non-decreasing order of the adjacency matrix
of G. Let µ1, µ2, . . . , µn−1 be the eigenvalues in non-decreasing order of
the adjacency matrix of H. Show that

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ . . . ≤ λn−1 ≤ µn−1 ≤ λn.
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Solution 270.4 – Limit
Show that

(2 n!)1/n

n
→ 1

e
as n→∞.

Peter Fletcher
Let

L = lim
n→∞

(
(2 n!)

1/n

n

)
so that

log(L) = lim
n→∞

(
1

n
log (2 n!)− log(n)

)
.

We can write log(n) as (1/n) log (nn). Doing this, we get

log(L) = lim
n→∞

(
1

n

(
log(2) + log(n!)− log(nn)

))
.

Since

lim
n→∞

(
log(2)

n

)
= 0,

expanding the remaining terms gives

log(L) = lim
n→∞

(
1

n

(
log(1) + log(2) + · · ·+ log(n)

− log(n)− log(n)− · · · − log(n)
))

.

This can now be written as

log(L) = lim
n→∞

(
1

n

(
log(1/n) + log(2/n) + · · ·+ log(n/n)

))
,

which is just the definition of the area between the x-axis and log(x) from
x = 0 to x = 1, i.e.

log(L) =

∫ 1

0

log(x) dx =
[
x log(x)

]1
0
−
∫ 1

0

dx = − 1.

Therefore

L =
1

e
.
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Solution 281.3 – Powers of 2
Show that for any positive integer there is a non-negative power
of two which starts with this integer. For example, we have the
following.

Integer 1 2 3 4 5 6 7 8 9 10 500
Power of 2 0 1 5 2 9 6 46 3 53 10 1650

This problem was mentioned in the Coursera course ‘What is a
Proof?’

Dave Wild
Let M be a positive integer which is not a power of 10. If there is a positive
integer n such that Mn starts with a positive integer N then there is a
non-negative integer T such that N ≤Mn10−T < N + 1.

Let x be a real number which satisfies 1 < x < 1 + 1/N . Then there is
a positive power of x which lies in the interval [N,N + 1), since

N · x < N · (1 + 1/N) = N + 1.

If an x can be found in this range which has the form Mm · 10t where m is
a positive integer, and t is an integer then we know there are values n and
T that satisfy the above inequality.

To find an appropriate value of x use the following algorithm.

1. Let the upper limit U = M1 · 10−k where k is an integer chosen so
that 1 < U < 10. Let the lower limit L = U/10 so 0.1 < L < 1. Both
U and L are of the form M i · 10j where i is a positive integer and j is
an integer.

2. If U < 1 + 1/N then x = U is the value sought and a value of Mn

which starts with N exists. Otherwise go to the next step.

3. Calculate LU . This is of the same form as L and U . Also 0.1 < L <
LU < U < 10. LU cannot equal 1 since this would imply a positive
power of M equals a power of 10. Therefore either U < LU < 1 or
1 < LU < U .

4. If LU < 1 increase the lower bound to LU . If LU > 1 decrease the
upper bound to LU . Therefore on every iteration one of the bounds
is changed. Both will eventually be changed. If L = 1 − δL and
U = 1 + δU consider what happens to their product when δL � δU
and δU � δL. Return to step 2.
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As U tends to 1 then we will eventually find a value less than 1 + 1/N
whatever the value of N . Therefore there is always a power of M which
starts with N . In fact we have shown there is at least one solution for all
the integers from 1 to N .

As an example, a power of 2 will be found which starts with 38. Clearly,
1 + 1/38 is approximately 1.026. The values of the lower and upper bounds
will be

(0.2, 2.0), (0.4, 2.0), (0.8, 2.0), (0.8, 1.6), (0.8, 1.28), (0.8, 1.024).

As the upper bound is less than 1.026 then a value of the required form has
been found. In this case it is 210 · 10−3. If we now solve

xk = (210 · 10−3)k = 38

and round k up to the next integer, then k = 154. So 21540 starts with 38;
285 also starts with 38.

Problem 307.2 – Angles in an ellipse
Tony Forbes
An ellipse with radii a and b is centred at the origin and has its 2a diameter
on the x-axis. Let X, P and Y be three points on the circumference of
the ellipse such that the distances from P to X and from P to Y along
the ellipse are each d/2. That is, XPY is an arc of length d centred on P .
Find a formula for the function A(P, d) that gives the angle subtended at
the origin by X and Y .

A search on the internet reveals that this is a well-asked question, usu-
ally expressed as: ‘How can I have equally-spaced points around the perime-
ter of an ellipse?’ However, as far as I can see—and I would not be the last
to admit that it is not very far—all of the offered solutions—if indeed there
actually exist any—are far too shrouded in obfuscation for me to readily
understand—on the assumption that I can sometimes readily understand
things communicated to me without excessive use of long words. The front
cover illustrates an ellipse with 19 points.

If one can’t avoid non-elementary functions for an exact answer, a good
approximation will do, sufficient for drawing pictures when | log(a/b)| is not
too large. Note that this is not the same as drawing an equilateral polygon
with all of its vertices on the ellipse. That was M500 Problem 275.2 –
Elliptic polygon.
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Re: Problem 303.3 – Bin packing
There are infinitely many empty bins, each of capacity 100. At
each tick of the clock you are presented with a random integer
x in the range [1, 100]. You scan the partially filled bins that
can accommodate an extra x. If there are none, you put x into
an empty bin. Otherwise you put x into a bin that leaves the
smallest unused capacity when x is added to it.

For example, you can verify that the sequence

79, 21, 68, 90, 1, 1, 33, 78, 30, 65, 21, 10, 34, 96, 68, 59, 99, 24, 56, 42

requires 11 bins of which 2 are full and 9 are partly filled thus:
98, 92, 98, 99, 96, 92, 59, 99, 42.

If n is the number of trials, let b(n) be the number of bins re-
quired and f(n) the number of full bins. What are the expected
values of b(n)/n and f(n)/n as n tends to infinity?

Ted Gore
If there are n trials then each number will on average occur n/100 times.
No two numbers greater than 50 can be in the same bin so there must be
at least 50n/100 = n/2 bins.

In addition, there are n/100 occurrences of the value 50. These cannot
be placed in any of the bins mentioned above but it would be possible to
have two occurrences in one bin so we require another n/200 bins. The
minimum number of bins required is

n

2
+

n

200
=

101n

200
= 0.5050n.

I ran a simulation three times for each of the n values in the table on
the next page and averaged the results. In the table, b∗ and f∗ are the
number of bins and full bins beyond 0.5050n.

From the table we can make the following observations:

(i) b(n)/n is slowly decreasing as n increases; but it cannot get smaller
than 0.5050;

(ii) f(n)/n is increasing as n increases; but it cannot get larger than
b(n)/n;

(iii) b∗/b is decreasing as n increases; b∗ is making a smaller contribution
to b(n)/n;
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(iv) f(n)/b(n) seems to be approaching 1 as n increases, confirming that
eventually f(n) will equal b(n).

Conclusion:
f(n)

n
and

b(n)

n
both tend to 0.5050 as n tends to infinity.

n b(n)
b(n)

n
f(n)

f(n)

n

f(n)

b(n)
b∗(n) f∗(n)

b∗

b

3000 1595 0.5316 1004 0.3348 0.6295 80 10 0.0501

5000 2594 0.5198 1756 0.3513 0.6769 69 11 0.0266

10000 5209 0.5209 3884 0.3911 0.7456 159 30 0.0305

20000 10314 0.5150 7527 0.3763 0.7298 214 61 0.0207

50000 25723 0.5145 21118 0.4224 0.8210 473 131 0.0184

100000 51204 0.5120 43539 0.4354 0.8503 704 216 0.0137

200000 102278 0.5114 90188 0.4509 0.8818 1278 515 0.0125

500000 255617 0.5112 235313 0.4706 0.9206 3117 1528 0.0122

Problem 307.3 – Partitioned permutations

Tony Forbes

Given positive integers r and s, how many of the (rs)! permutations of the
integers 1, 2, . . . , rs can be partitioned into r sets of s elements, where each
set covers all residue classes modulo s?

For example, when r = 3 and s = 2 we are asking for the number
of permutations of the form (a1, a2, b1, b2, c1, c2), where each of {a1, a2},
{b1, b2} and {c1, c2} consists of an even–odd pair.

The example illustrates a common real-life situation when s = 2. Sup-
pose you want to pair off your socks after taking them out of the dryer. If
you do so at random, you might be interested in the probability of getting
the left–right pairings correct. Of course, we are assuming that the socks
are identical except that half are marked ‘P’ and the other half ‘S’. Thanks
to Jed Baxter for suggesting the problem.
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Solution 304.6 – Trinomial factorization
Show that for every positive integer n except powers of 3, the
polynomial x2n+xn+1 has a non-trivial factorization into poly-
nomials with integer coefficients. For example,

x4 + x2 + 1 = (x2 − x+ 1)(x2 + x+ 1),

x8 + x4 + 1 = (x2 − x+ 1)(x2 + x+ 1)(x4 − x2 + 1),

x10 + x5 + 1 = (x2 + x+ 1)(x8 − x7 + x5 − x4 + x3 − x+ 1),

x12 + x6 + 1 = (x6 − x3 + 1)(x6 + x3 + 1), . . . .

Stuart Walmsley
For convenience, the polynomials will be denoted by Tn. It is noted that

(x2n + xn + 1)(xn − 1) = x3n − 1.

In this way, if Un = xn − 1 is a second set of functions, then

Tn = U3n/Un.

The functions Un are well known, the roots of the equation Un = 0 be-
ing n distinct roots of 1, which are in general complex having the form
exp(2πij/n).

It is known that if attention is restricted to the field of rational num-
bers, Un may be factored into polynomials with integer coefficients: the
cyclotomic polynomials, Cn. If each function Un is treated in turn starting
with n = 1, a new polynomial emerges at each step. In this way

U1 = (x− 1), U1 = C1,
C1 = x− 1,

U2 = (x2 − 1) = (x− 1)(x+ 1), U2 = C1C2,
C2 = x+ 1,

U3 = (x3 − 1) = (x− 1)(x2 + x+ 1), U3 = C1C3,
C3 = x2 + x+ 1,

U4 = (x4 − 1) = (x2 − 1)(x2 + 1), U4 = C1C2C4,
C4 = x2 + 1,

U5 = (x5 − 1) = (x− 1)(x4 + x3 + x2 + x+ 1), U5 = C1C5,
C5 = x4 + x3 + x2 + x+ 1.
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In general,
Un = C1 . . . Cj . . . Cn,

where j runs over all the factors of n. In the step by step procedure men-
tioned here C1, . . . , Cn−1 are known so that Cn may be determined.

Returning to the trinomials Tn,

Tn =
U3n

Un
=

C1 . . . Cj . . . C3n

C1 . . . Ck . . . Cn
,

where j runs over the factors of 3n and k runs over the factors of n. Thus
Tn is a cyclotomic polynomial if all terms cancel except C3n. This only
happens if n is 3j , j = 0, 1, 2, . . . , so that 3n is 3j+1.

In general, all terms which do not cancel correspond to multiples of 3.
In this way

T1 = C3,

T2 = C3C6,

T3 = C9,

T4 = C3C6C12,

T5 = C3C15,

T6 = C9C18,

T7 = C3C21,

T8 = C3C6C12C24.

The trinomials provide a means of determining the cyclotomic polynomials
corresponding to multiples of 3.

C3 = T1 = (x2 + x+ 1),
C6 = T2/C3 = (x2 − x+ 1),
C9 = T3 = (x6 + x3 + 1),
C12 = T4/C3C6 = (x4 − x2 + 1),
C15 = T5/C3 = (x8 − x7 + x5 − x4 + x3 − x+ 1),
C18 = T6/C9 = (x6 − x3 + 1),
C21 = T7/C3 = (x12 − x11 + x9 − x8 + x6 − x4 + x3 − x+ 1),
C24 = T8/C3C6C12 = (x8 − x4 + 1),
C27 = T9 = (x18 + x9 + 1).

A similar scheme can be devised to determine the cyclotomic polynomials
corresponding to multiples of any prime number.
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Hearst Castle
Jeremy Humphries
I was reading the Wikipedia entry for Hearst Castle, the former home of
the US publishing tycoon William Randolph Hearst, and I saw the following
statement:

In 1919 Hearst inherited some $11 million (equivalent to $171,
925,144 in 2021) . . .

Since I get annoyed when I see 2 s.f. approximations converted into 9 s.f.
equivalents, I thought I would edit the 2021 value to something more sensi-
ble, like $172 million. But when I went to the edit page, I found this:

In 1919 Hearst inherited some $11 million ({{Inflation | US |
11000000 | 1919 | fmt=eq}}) . . .

Ah, not so simple. I looked up that thing and I found out it’s the Wikipedia
inflation template. I also saw that you can add a parameter for rounding,
the one for ‘millions’ being ‘r=-6’. So I changed it to:

In 1919 Hearst inherited some $11 million ({{Inflation | US |
11000000 | 1919 | fmt=eq | r=-6}}) . . .

Now the entry page said:

In 1919 Hearst inherited some $11 million (equivalent to
$172,000,000 in 2021) . . .

Well, better than it was, but I didn’t like the mismatch in how the sums were
expressed. So I went back again and changed ‘$11 million’ to ‘$11,000,000’,
and I was done:

In 1919 Hearst inherited some $11,000,000 (equivalent to
$172,000,000 in 2021) . . .

Tony Forbes
While we are on the subject of significant figure inflation, I am reminded of
a ridiculous example in the book Recreations in Science and Natural Phi-
losophy. Dr. Hutton’s Translation of Montucla’s Edition of Ozanam. New
Edition Revised and Corrected, with Numerous Additions, by Edward Rid-
dle, by Jacques Ozanam (William Tregg & Co., London, 1851).

In Problem XII, Calculation of the time which Archimedes would have
required to move the earth, with the machine of which he spoke to Hiero
(page 202), Ozanam writes the following.
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The expression which Archimedes made use of to Hiero, king of
Sicily, is well known, and particularly to mathematicians, “Give
me a fixed point,” said the philosopher, “and I will move the
earth from its place.” This affords matter for a very curious
calculation, viz. to determine how much time Archimedes would
have required to move the earth only one inch, supposing his
machine constructed and perfect; that is to say, without friction,
without gravity, and in complete equilibrium.

For this purpose, we shall suppose the matter of which
the earth is composed to weigh 300 pounds the cubic
foot, . . . . If the diameter of the earth be 7930 miles, the
whole globe will be found to contain 261107411765 cubic
miles, which make 1423499120882544640000 cubic yards, or
38434476263828705280000 cubic feet; and allowing 300 pounds
to each cubic foot, we shall have 11530342879148611584000000
for the weight of the earth in pounds.

In the first step of Ozanam’s very curious calculation it is clear that the
whole globe is assumed to be a perfect one and that π = 3.14160000000.
Thus we have a sad case of scientific as well as mathematical nonsense.
However, we can eliminate the latter by using the correct value of π to
obtain 11530315916263181014451372.3 pounds. Unfortunately it is still sci-
entifically absurd. See also Eddie Kent, A simple lever, M500 269.

Incidentally, in M500 I usually adopt the rule that a quantity with
a decimal point is an approximation to the stated number of significant
figures. Conversely, if there is no decimal point, the value is often—but not
always—assumed to be exact, as in Ozanam’s assumptions concerning the
density and diameter of the Earth. This can sometimes lead to an element of
either clumsiness or confusion. The Earth’s radius, according to Wikipedia,
varies from 3950 to 3963 miles. As far as I can see, the only reasonable
way to express this as a number correct to 2 significant figures is to write
‘4.0×103 miles’. If you write ‘4000 miles’ without qualification, the number
of significant digits is either 1 (assuming only the 4 is significant), or z + 1
(assuming z zeros are also significant, z ∈ {1, 2, 3}), or infinity, depending
of how the reader chooses to interpret it. Also incidentally, I think M500
should adopt the standard that the planet is ‘Earth’. On the other hand,
an expression like ‘the weight of the earth in pounds’ would be appropriate,
for example, when referring to a delivery of soil for someone’s garden.
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Problem 307.4 – Ant
Tony Forbes
An elastic rope has length 1 m at time t = t0. It is being stretched in such
a manner that the velocity of one end relative to the other end is v(t) m/s.
At time t = t0 an ant starts at one end of the rope and walks towards the
other end at a constant velocity um/s relative to the rope.

It is well known that when v(t) is constant the ant will eventually reach
the other end. However, if u is small, say u = 0.01, and v(t) is not small,
say v(t) = 100, it will take quite a long time. You might like to determine
how long.

On the other hand, if the stretching is accelerating sufficiently rapidly,
the ant will never reach the other end.

So what we are asking for is a simple function v(t) where the said insect
only just manages to complete its journey.

Front cover Equally spaced points on an ellipse—see page 15.


