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Solution 296.3 – Elliptic curve
Let a be a positive real number. Then the elliptic curve y2 =
x(x2−a2) has two components, an unbounded curve that passes
through (a, 0) and a closed bubble that passes through (0, 0) and
(−a, 0). What area does the bubble enclose?
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J. M. Selig
In the solution to Problem 296.3 – Elliptic curve, by Ted Gore, published
in M500 302, TF comments that the exact solution is

√
π

5

Γ(3/4)

Γ(5/4)
,

but declares that he doesn’t know where the exact value comes from. I
think I may be able to explain.

By symmetry, the area under the curve y =
√
x(x2 − a2) gives half the

area of the bubble. So the area, A, is given by the integral

A = 2

∫ 0

−a

√
x(x2 − a2) dx.

Now, we perform a couple of simple substitutions to put this into a standard
form. First, let z = −x/a. This turns the integral into

A = 2a5/2
∫ 1

0

√
z(1− z2) dz.

Next, we set z2 = t, and the integral becomes

A = a5/2
∫ 1

0

t−1/4(1− t)1/2 dt.
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This standard integral is known as the beta function B(x, y), and in general
we have

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt.

Hence the area of the bubble is just

A = a5/2B

(
3

4
,

6

4

)
.

Of course, this doesn’t really solve the problem; we have just recognised
the coefficient of a5/2 has a nice name. What we really want to find is a
value for the number. We could just use a computer application such as
Mathematica or Matlab to evaluate this number:

B

(
3

4
,

6

4

)
= 0.95851218778847376595.

This doesn’t help TF though. Note, however, that the beta function has
several useful properties. The two we need are

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,

and a recurrence relation,

B(x+ 1, y) =
x

x+ y
B(x, y).

This is easily derived from the relation Γ(z+1) = zΓ(z). The beta function
is also symmetric in its arguments, so that B(x, y) = B(y, x), and hence
we also have that

B(x, y + 1) =
y

x+ y
B(x, y).

See the solution to Problem 299.2 by Tommy Moorhouse in M500 303 for
a similar application of the beta and gamma functions.

We get that

B

(
3

4
,

6

4

)
= B

(
3

4
,

1

2
+ 1

)
=

1/2

5/4
B

(
3

4
,

1

2

)
=

2

5

Γ
(
1
2

)
Γ
(
3
4

)
Γ
(
5
4

) .

Finally, since Γ(1/2) =
√
π we get the stated solution,

A = a5/2B

(
3

4
,

6

4

)
=

2
√
π

5

Γ(3/4)

Γ(5/4)
a5/2.
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(I think TF has possibly forgotten to multiply by two, to get the area of
the bubble above and below the x-axis.)

I suspect that TF found this solution by using a symbolic algebra pro-
gram such as Mathematica to find the original integral. There are several
other ways to express this result and it is not clear how these programs make
their choice, at least not clear to me. For example, applying the recurrence
relation once more and Euler’s reflection formula,

Γ(1− z)Γ(z) =
π

sin(πz)
, when z is not an integer,

the area can be written using one application of the Gamma function,

A =
4(2π)3/2

5 Γ(1/4)2
a5/2.

In fact, we can write the area as an elliptic integral and in this form the
area can be evaluated very simply. To see how to do this we go back and
write the area in terms of the beta function,

A =
27/2π

5B(1/4, 1/4)
a5/2,

since Γ(1/4 + 1/4) =
√
π.

Now,

B(1/4, 1/4) =

∫ 1

0

t−3/4(1− t)−3/4 dt = 2

∫ π/2

0

dθ√
sin θ cos θ

.

The final relation here is the result of substituting t = sin2 θ in the first
integral. Next we can make the substitution, tan θ = tan2(φ/2). This is
facilitated by using trigonometric identities to write the integral as

B(1/4, 1/4) = 2

∫ π/2

0

sec θ√
tan θ

dθ,

and the derivative,

dθ

dφ
= cos2 θ tan(φ/2) sec2(φ/2).

The integral becomes

B(1/4, 1/4) = 2

∫ π

0

cos θ sec2(φ/2) dφ = 2

∫ π

0

dφ√
cos4(φ/2) + sin4(φ/2)

.
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Using Pythagoras’ theorem and a double angle formula the expression under
the square root sign can be simplified,

B(1/4, 1/4) = 2

∫ π

0

dφ√
1− 1

2 sin2 φ
.

Apart from the value of the top limit, this is the standard form of an elliptic
integral of the first kind,

K(k) =

∫ π/2

0

dφ√
1− k2 sin2 φ

.

Here, k is known as the elliptic modulus. Notice that the graph of the

integrand 1/
√

1− k2 sin2 φ over the range 0 to π has a reflection symmetry
in the line φ = π/2. Hence our integral must be twice the standard integral,
the one with top limit π/2. That is we have that

B(1/4, 1/4) = 4

∫ π/2

0

dφ√
1− 1

2 sin2 φ
= 4K

(
1√
2

)
.

Only certain values of k give elliptic integrals K(k) that can be expressed
in terms of gamma functions. See the Wikipedia article ‘Elliptic integral’.

The area of the bubble is thus

A =
23/2π

5K(1/
√

2)
a5/2.

The point of these gymnastics is that there is a very efficient way to compute
the elliptic integral using the arithmetic-geometric mean. We have

K(k) =
π

2 agm(1,
√

1− k2)
.

Here, the arithmetic-geometric mean agm(a0, g0) of a pair of numbers a0 >
g0 is given by repeatedly taking the arithmetic mean and geometric mean
of the numbers and the results. Specifically we set up a pair of sequences,

ai+1 = (ai + gi)/2, gi+1 =
√
aigi,

with starting values a0 and g0. It is not too difficult to show that

a0 ≥ a1 ≥ a2 ≥ a3 ≥ · · · ≥ g3 ≥ g2 ≥ g1 ≥ g0.
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In fact, both sequences converge to the same limit and this limit is defined
as the value of agm(a0, g0).

Moreover, it is clear from the definition that agm(ca, cg) = c agm(a, g)
for any constant c. The area of the bubble is thus

A =
4
√

2 agm(1, 1/
√

2)

5
a5/2 =

4

5
agm(

√
2, 1) a5/2.

The sequences for the arithmetic geometric mean converge very quickly;
below is a table of the first few values of the sequences converging to
agm(

√
2, 1).

i ai gi

0 1.414213562373095048801689 1.000000000000000000000000
1 1.207106781186547524400844 1.189207115002721066717500
2 1.198156948094634295559172 1.198123521493120122606586
3 1.198140234793877209082879 1.198140234677307205798384
4 1.198140234735592207440631 1.198140234735592207439214
5 1.198140234735592207439922 1.198140234735592207439922
6 1.198140234735592207439922 1.198140234735592207439922

Notice, we get 24 decimal places after just 5 iterations. So, finally we have
our result for the area of the bubble,

A =
4

5
agm(

√
2, 1) a5/2 ≈ 0.9585121877884737659519380 a5/2,

which agrees with my computer’s evaluation using gamma functions.

Problem 308.1 – Powers of 2 and 3
Write down the powers of 2 in a long line. Underneath them write down
the powers of 3 according to the rule: 3n is written under 2j , where j is
chosen such that 2j < 3n < 2j+1.

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072
9 27 81 243 729 2187 6561 19683 59049 177147

Is this always possible?
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Irregularity of the calendar

Terry S. Griggs

Methodist churches are organised into circuits. In the one to which I belong
it was decided that on every fifth Sunday of a month, there would not be
services in each church but two joint circuit services. The aim of this is so
that people from different congregations would be able to worship together
approximately quarterly. If a year consisted of 364 days and was divided
into four quarters of 91 days with months of 30, 30 and 31 days always in
the same order in each quarter, this is what would occur; a perfect schedule.
But an ordinary year contains 365 days and a leap year 366 days and the
distribution of the number of days in each month is irregular.

January 1st Alternate months with five Sundays

Sunday October and December
Monday July and September
Tuesday
Wednesday June and August
Thursday March and May
Friday August and October
Saturday May and July

Table 1: Alternate months with five Sundays, ordinary year

January 1st Alternate months with five Sundays

Sunday July and September
Monday
Tuesday June and August
Wednesday March and May
Thursday August and October
Friday May and July
Saturday October and December

Table 2: Alternate months with five Sundays, leap year

It is the aim of this short note to explore to what extent this causes the
schedule to deviate from the ideal. In particular it was a surprise to some
that recently there were five Sundays in two months separated only by a
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single month (May and July). Call these alternate months. Note that it is
impossible for two consecutive months both to contain five Sundays. For
this to happen the total number of days in the two months would have to
be at least 64 = 9 × 7 + 1. So it is relevant to ask whether the occurrence
of five Sundays in alternate months will be a common feature or one that
is comparatively rare?

There are either 52 or 53 Sundays in a year. In the former case eight
months contain 4 Sundays and four months contain 5 Sundays, and in the
latter case seven months contain 4 Sundays and five months contain 5 Sun-
days. Consider first the former case. Constructing a sequence of eight 4s
and four 5s in which all occurrences of the 5s are at least two apart can only
be achieved if the sequence is regular, i.e. 544544544544 or 454454454454
or 445445445445. In the latter case the construction of such a sequence is
impossible. This suggests that the phenomenon of five Sundays in alternate
months might be more common than originally thought.

January 1st Four months between five Sundays

Sunday December, and April of the next year
Monday
Tuesday
Wednesday November, and March of the next year
Thursday
Friday January and May *
Saturday January and May *

Table 3: Four months between five Sundays, ordinary year

January 1st Four months between five Sundays

Sunday
Monday
Tuesday November, and March of the next year
Wednesday
Thursday
Friday January and May
Saturday December, and April of the next year

Table 4: Four months between five Sundays, leap year
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A complete analysis can be done by drawing up two tables, one for an
ordinary year and one for a leap year, showing the number of Sundays in
each month when January 1st is each day of the week. The reader is invited
to do this for herself but in Tables 1 and 2 on page 6 we present the results,
which can easily be verified.

In addition, five Sundays occur in months November and January of
the next year when January 1st is on a Thursday in an ordinary year and a
Wednesday in a leap year. Thus the phenomenon that there will be alternate
months both containing five Sundays is common, not occurring only when
an ordinary year begins on a Tuesday and a leap year on a Monday. In both
of those years five Sundays occur regularly every three months. In fact in an
ordinary year which is both preceded and followed by ordinary years, this
regularity extends from the September of the previous year to the June of
the next year, a period of 22 months, giving a false impression of the actual
situation.

The analysis also allows us to identify when there are four months be-
tween those with five Sundays; see Tables 3 and 4 on page 7. It is impossible
for there to be more than four months. Table 3 assumes that an ordinary
year is followed by an ordinary year. When it is followed by a leap year
only the two asterisked entries occur.

Our calendar is indeed irregular.

Problem 308.2 – Minifigures
Jeremy Humphries
Jonathan told me about a problem he and Felix had been discussing, con-
cerning LEGO Minifigures. There are 12 Minifigures in a set, and you can
buy them in packs of six. The packs consist of six different Minifigures, ap-
parently randomly selected from the 12 available. If we assume that is true,
how many six-packs would you expect to buy in order to get a complete set
of all 12 Minifigures?

Problem 308.3 – Arithmetic progression
Show that

x+ y = − cos(π/9)

if x+ y < 0 and
1

1 + x
,

1

1− y
,

1

x
,

1

y
are in arithmetic progression.
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Solution 303.2 – Regular graphs with girth 6
Given integer n ≥ 2, show that an (n + 1)-regular graph with
2(n2 + n + 1) vertices and girth 6 must be the incidence graph
of a projective plane of order n. Or find a counter-example.

Recall that in a projective plane of order n, there is a set P of
n2 + n+ 1 points and a set L of n2 + n+ 1 lines such that:

(i) each line is incident with n+ 1 points,

(ii) each point is incident with n+ 1 lines,

(iii) for any two distinct points, there is a unique line incident
with both points, and

(iv) for any two distinct lines, there is a unique point incident
with both lines.

Its incidence graph has vertices P ∪L and there is an edge p ∼ `
whenever point p is incident with line `. Clearly the graph is
(n+1)-regular and has 2(n2+n+1) vertices. Moreover, it is not
too difficult to show that it has girth 6. Therefore it is sensible
to pose the stated problem.

Tommy Moorhouse

We will describe a construction of the (n + 1)-regular graph G of girth
six having 2(n2 + n + 1) vertices and show that it is isomorphic to the
incidence graph I(FnP2) of the projective plane of order n, FnP2. Although
the construction goes through for any integer n only prime power n will be
considered here, because the idea of projective space of finite order makes
sense over fields.

First we will get a better idea of the structure of the incidence graph
of FnP2. The points of FnP2 are triples [X,Y, Z], with each element in
Fn and the equivalence relation [X,Y, Z] ∼ [kX, kY, kZ] where k ∈ F∗n,
the multiplicative subgroup of Fn. We do not include the triple [0, 0, 0] so
naively there are n3− 1 points. The equivalence relation for prime power n
reduces this to (n3 − 1)/(n− 1) = n2 + n+ 1 distinct points.

The lines in FnP2 are again given by triples [a, b, c] and a point [X,Y, Z]
is coincident with a line if aX + bY + cZ ≡ 0 (mod n). A little thought
shows that the set of lines L has the same structure as the set of points
P , and there is a duality between the two, sending points to lines and vice
versa.

The graph I(FnP2) is bipartite, meaning that the vertices fall into two
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disjoint sets (here L and P ) where elements of one set are linked by an edge
to elements of the other set only. Thus the vertex-type sequence starting
from a point will be · · ·−p− l−p− l · · · . The girth of a graph is the length
of its shortest cycle, a closed path using a subset of the edges of the graph
once. In this case the girth is 6 and there are many cycles of length 6. An
important point to keep in mind is that all the vertices of G are on the same
footing: there are no distinguished vertices or groups of vertices.

Stage 1 – core and clusters We are given an (n + 1)-regular graph G
of girth six having 2(n2 + n + 1) vertices, and we want to relate it to the
incidence graph of FnP2. We will do this by construction. To start our
construction select any vertex from G. For later convenience we call this
the core P -vertex p0. We can imagine drawing a point p0 on paper (which is
a nice way to check the construction for small values of n). Join p0 by edges
to n + 1 vertices from G, say l0, l1, l2, · · · , ln, calling these ‘L-vertices’.
Join each of the L-vertices by an edge to n unused vertices from G, which
we also call P vertices. We have now placed n(n + 1) + 1 P -vertices and
n + 1 L-vertices. This part of the construction is clearly universal to all
(n+ 1)-regular graphs with no cycles of length less than 4 and we naturally
obtain two different types of vertex. Figure 1 shows this stage for n = 2.

Figure 1: First and final stages of construction for n = 2.

We call the n new P -vertices joined to lk ‘cluster k’, so that the different
clusters are connected by a ‘l − p − l’ bridge passing through the core. If
we join any non-core P -type vertex from cluster k to any non-core vertex of
cluster m 6= k through an intermediate L-type vertex we find that we have
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created a 6-cycle. This suggests that we can complete the construction by
placing n2 L-vertices and connecting every vertex from each cluster to every
other vertex from the other clusters, so that each of the new L-vertices has a
single connection to each of the n+1 clusters. This part of the construction
has an essentially unique outcome.

Stage 2 – linking clusters Label the non-core P vertices in each cluster
k ∈ {0, 1, · · · , n}, pk,1 to pk,n. Join vertex p0,1 to pk,1 of each other cluster
k > 0 through a new intermediate vertex l1,1. This vertex has degree n+ 1
and no cycles of length less than 6 are produced because the cycle must
pass through the core vertex. Note that joining two vertices on the same
cluster produces a cycle of length 3 and is not allowed.

Stage 3 – completing the construction, uniqueness Now join vertex
p0,1 to a new L-vertex l1,2 and connect this to vertex pk,2 of each other
cluster k > 0. Again no short cycles are produced. Connecting to vertex
pk,1 of any of the clusters would produce a 4-cycle, which is not allowed.
We have therefore essentially no choice but to connect to a different P -
vertex, which we have labelled vertex pk,2: recall that all the vertices in a
cluster are equivalent so the labels are just to help us keep track of things.
We continue the construction by linking vertex p0,m via the vertex lm,q to
each vertex pk,q, k > 0, until all the distinct P -vertices of each cluster have
degree n + 1. In this way we get n2 degree n + 1 vertices lk,m, and every
vertex has degree n+ 1. The construction is unique up to the equivalence of
the vertices, which naturally fall into two disjoint sets. It is easily checked
that the resulting graph is isomorphic to I(FnP2) for prime power n.

Conclusion We have set out the graph G in such a way as to map it
isomorphically to I(FnP2) for prime power n. Thus the (n+1)-regular graph
G of girth six having 2(n2 + n+ 1) vertices is unique up to isomorphism.

Problem 308.4 – Group construction
Tony Forbes
Let G be a finite group of even order. Let H be a subgroup of G of order
|G|/2. Let A = G \ H and assume there exists an element a of A that
commutes with every element of A. Show that (A, ◦) is a group, where the
operation ◦ is defined by

x ◦ y = xya.
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The value of the zeta function at zero

Mako Sawin

The zeta function is

ζ(s) =

∞∑
n=1

1

ns
,

where s is a complex variable, and when s = 0 we have,

ζ(0) =

∞∑
n=1

1

n0
=

∞∑
n=1

1.

Consider two identical sums:

∞∑
n=0

(2n+ 1) = 1 + 3 + 5 + 7 + 9 + 11 + 13 + . . .

and
∞∑
n=1

(2n− 1) = 1 + 3 + 5 + 7 + 9 + 11 + 13 + . . . .

Then
∞∑
n=1

(2n− 1) =

∞∑
n=0

(2n+ 1),

∞∑
n=1

2n−
∞∑
n=1

1 = 1 +

∞∑
n=1

2n+

∞∑
n=1

1,

−2

∞∑
n=1

1 = 1,

∞∑
n=1

1 = − 1

2
.

Therefore

ζ(0) =

∞∑
n=1

1 = − 1

2
.

By taking another two identical series such as

∞∑
n=2

(n− 1) =

∞∑
n=0

(n+ 1),

we obtain
∞∑
n=2

(n− 1) = 1 + 2 +

∞∑
n=2

(n+ 1).
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Then

−2

∞∑
n=2

1 = 1 + 2,

which leads to

∞∑
n=2

1 = −3

2
,

∞∑
n=3

1 = −5

2
, . . . ,

∞∑
n=k

1 = −2k − 1

2
, (1)

where k is a positive integer. Using (1), we deduce from

∞∑
n=2

(ζ(n)− 1) = 1

that
∞∑
n=2

ζ(n)−
∞∑
n=2

1 = 1,

∞∑
n=2

ζ(n)−
(
−3

2

)
= 1.

Thus
∞∑
n=2

ζ(n) = − 1

2
= ζ(0).

Similarly from
∞∑
n=1

(ζ(2n)− 1) =
3

4

and (1) we obtain
∞∑
n=1

ζ(2n) =
1

4
,

and from
∞∑
n=1

(ζ(4n)− 1) =
7

8
− π

4

e2π + 1

e2π − 1

we deduce that
∞∑
n=1

ζ(4n) =
3

8
− π

4

e2π + 1

e2π − 1
.

Received 1/4/22 — TF
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Solution 304.5 – A rectangle and an ellipse
This is like Problem
269.2 – Two rectan-
gles, except that one
of the rectangles is
not a rectangle. A
rectangle and an el-
lipse are packed in-
side a circle of ra-
dius 1, possibly but
not necessarily ac-
cording to the pat-
tern indicated on the
right. What’s the
largest area they can
occupy?

a
b

c

d

When you have solved the problem as stated, try again but this
time with the extra condition that the rectangle must be larger
than the ellipse.

Ted Gore
Let the height of the rectangle be 2c and the width 2d, where d =

√
1− c2.

Let the vertical semi diameter of the ellipse be b and the horizontal a.

The area of the rectangle is Ar = 4cd, the area of the ellipse is Ae = πab,
and the total area, A = Ar +Ae. There are certain constraints on a, b and
c:

c > 0, c < 1;
b > 0, b ≤ (1− c)/2;

a > 0, a ≤
√

1− f2,

where f = b + c. A computer program was used to calculate the area of
configurations using a range of values conforming to these constraints.

There was one further constraint. It was necessary to exclude configu-
rations where part of the ellipse fell outside the circle. These were identified
as follows. The equation for the ellipse is

x2

a2
+

(y − f)2

b2
= 1.
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The ellipse touches the circle where x2 = 1− y2 so that

y2(a2 − b2)− 2fa2y + b2 + a2f2 − a2b2 = 0

and after some manipulation,

y =
a2f ±

√
b2(a2 − b2)(a2 − 1) + a2b2f2

(a2 − b2)
.

Now the ellipse may touch the circle in 0, 1 or 2 points (considering only
the upper right quadrant of the figure).

For 0 points, the ellipse is completely inside the circle. For 2 points,
part of the ellipse falls outside the circle.

For 1 point, the ellipse touches the circle but does not continue outside it.
To ensure there is just one touching point we require that the discriminant
in the above equation for y is zero. That is,

b2(a2 − b2)(a2 − 1) + a2b2f2 = 0.

From this we calculate

a2 =
1 + b2 − f2 ±

√
(f2 − 1− b2)2 − 4b2

2
,

which gives two possible values of a. Let these be a+ and a−.

The following table shows the maximum area of various configurations
according to the value of a, whether the ellipse touches the point (0, 1) and
whether the area of the rectangle is greater than that of the ellipse.

c b a + or − (0, 1) Ar Ae A

0.639 0.1805 0.424853 + & − y 1.966092 0.240916 2.207008
0.622 0.171612 0.549696 + n 1.948147 0.296360 2.244507
0.201 0.3995 0.632060 + & − y 0.787591 0.793277 1.580869
0.218 0.36363 0.745789 + n 0.851027 0.851973 1.703000
0.635 0.1825 0.427000 − n 1.962181 0.244931 2.207112
0.199 0.4005 0.632851 − n 0.780080 0.796258 1.576337

In addition, there are solutions where there is no point of contact between
the ellipse and the circle. These occur when the discriminant in the equation
for y is negative. In these cases, a is the x coordinate of the ellipse when
the y coordinate is f . These ellipses lie completely within the circle. The
table below shows the maximum area for solutions of this type.
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c b a (0, 1) Ar Ae A

0.62 0.1729 0.548166 n 1.945812 0.297890 2.243702
0.21 0.3713 0.740573 n 0.821269 0.863724 1.684993

We can make the following observations:

(a) Using this approach, the greatest area found is approximately
2.244507 and the greatest area where Ae > Ar is approximately 1.703,
and these can be thought of as limits to the cases in the second table.

(b) The eight rows in the two tables can be put into four pairs that have
similar parameters and areas.

(c) Whenever the ellipse touches the point (0, 1) we know that f + b =
c + 2b = 1. We can substitute into the equation for a2 to show that
a+ = a− and b = a2.

All the above results are for a configuration in which the centre of the
rectangle is at the centre of the circle.

Alternatively, we could place the centre of the ellipse at the centre of
the circle.

Let the horizontal semi-axis of the ellipse be 1 and the vertical semi-axis
be 1 − ε, ε > 0. In this case the area of the ellipse is π(1 − ε). We could
fit a rectangle with area less than πε/2 above it. As ε approaches 0 the
combined area of ellipse and rectangle approaches π.

Problem 308.5 – Integral
Let a be a positive integer. Show that

∫ 1

0

√
1− xa√
1 + xa

dx =
√
π

Γ

(
2a+ 1

2a

)
Γ

(
a+ 1

2a

) − 1

a+ 1

Γ

(
3a+ 1

2a

)
Γ

(
2a+ 1

2a

)
 .

Did the chap in the lions’ den ever crack the question of doubling the cube?
No, ? ? ? ? ? ? failed to resolve the ? ? ? ? ? ? problem. (The missing words
are anagrams.) — Jeremy Humphries
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Things you can’t buy in shops – V
Tony Forbes
Following on from the lists that we printed in M500s 278, 289, 293 and 296,
here are some more useful items for you to enquire about if your browsing
in a shop gets interrupted by the words “Can I help you?”

1. A kettle that turns the gas off when the water starts to boil.

2. A pencil eraser that comes with a 20-year guarantee.

3. A compact nuclear reactor suitable for providing power to a portable
computer. It would save all that messing around with batteries and
the charging thereof. (This probably exists but the Authorities would
certainly frown upon using it without a licence.)

4. Software that makes one’s computer or mobile telephone unusable for
a period of 10 minutes in every hour.

5. A pesticide that actually kills pests but does not require military
chemical warfare clothing to use safely.

6. A whiteboard that automatically fails to respond to permanent felt-
tipped markers.

14 11 16 5 11 7

19 17

29 11 11 15

8

13

5

18

10 14 23

14

7 13 14 13

16 20 20 5 15

11

Puzzle
TF
Normal sudoku
rules apply. Each
row, column and
3 × 3 box must
contain each of the
digits 1, 2, 3, 4, 5,
6, 7, 8, 9 exactly
once (not counting
the little numbers
already printed).
In addition, the
cells in an area
enclosed by a thick
grey border must
sum to the total
indicated.
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