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Solution 305.4 – Collisions
There is a wall on the left. To the right of the wall there is
a stationary mass, A, of 1 kg, as in the picture. Mass B of
m kg approaches from the right at non-zero speed and eventually
collides with A. Mass A now moves towards the wall, rebounds
from it and then heads towards B for another encounter. And
so on.

The experiment stops when B is travelling to the right with
sufficient speed to avoid a further collision with A. Assume all
this is taking place on level ground, there is no friction, and
collisions are perfectly elastic. Also you might want to ignore
mutual gravitational attraction between A, B and the wall.

A

B

Show that for large m, the total number of collisions is
√
mπ,

at least approximately.

Tommy Moorhouse

Notation
We will use a slightly modified notation to that used in the problem, denot-
ing the mass of the small mass by m, that of the large mass by M . We will
also denote the respective speeds after k mass-mass collisions by v(k) and
V(k). We take V(k) to be positive (moving rightward) rather than negative
here. We will also write x for m/M .

Strategy
First we will demonstrate that the changes in velocities of the masses at
each collision can be represented by the action of a constant matrixM on a
vector. Next we will find a recurrence relation for the elements of the matrix
powers. This will lead us to identifying a particular element ofMk as a well
known polynomial. Finally we will use the approximationM � m to deduce
the result that the number of collisions N ≈ π

√
M/m. The references for

properties of the polynomials are in Chapter 22 of [Abramowitz & Stegun].
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The collision matrix
The large mass has initial speed V(0), say. We will express all speeds in units
of V(0), effectively setting it to 1. Consider the situation after k collisions
between the masses (2k−1 collisions including those between the small mass
and the wall), when the speeds of the masses are v(k) and V(k). The small
mass collides with the wall and again hits the large mass. In the mass-mass
collision energy and momentum are conserved:

mv(k+1) +MV(k+1) = mv(k) +MV(k),

mv2(k+1) +MV 2
(k+1) = mv2(k) +MV 2

(k).

We can solve these two equations for the vector (v(k+1), V(k+1)):

v(k+1) =
2

1 + x
V(k) −

1− x
1 + x

v(k),

V(k+1) =
1− x
1 + x

V(k) +
2x

1 + x
v(k).

Now note that v(k) is reversed before the (k + 1)st collision. This means
that

~v(k+1) ≡ (v(k+1), V(k+1)) = Mk~v(0),

where

M =

(
α α+ 1

α− 1 α

)
and α = (1− x)/(1 + x). Observe that detM = 1, which is a consequence
of the conservation of (kinetic) energy. Momentum is not conserved overall.

Recurrence relations and generating function
We will write the powers of M as

Mn =

(
pn qn
rn sn

)
.

We will only need the recurrence relations for qn and sn. Multiplying out the
elements we arrive at the familiar relations (i.e. the same as those satisfied
by |v(k)| and V(k)):

qn+1 = αqn + (α+ 1)sn,

sn+1 = (α− 1)qn + αsn.
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Let

Q(t) =

∞∑
n=0

qnt
n, S(t) =

∞∑
n=0

snt
n.

We can write out S(t) and Q(t) and use the recurrence relations to eliminate
Q(t) and show that

S(t) =
1− tα

1− 2tα+ t2
.

This is proportional to the generating function for the Chebyshev polyno-
mials Tn(α). In detail we have (with initial values q0 = 0, s0 = 1)

Q(t) = q0 + q1t+ q2t
2 + · · ·+ qmt

m + · · ·
= t(α+ 1)s0 + t2(αq1 + (α+ 1)s1) + · · ·
= tαQ(t) + (α+ 1)tS(t),

Q(t)(1− αt) = (α+ 1)tS(t).

Similarly
S(t)(1− αt) = 1 + (α− 1)tQ(t).

Eliminating Q(t) gives the desired result. Now suppose that after the kth
mass-mass collision the large mass is at rest. Then we must have Tk(α) ≈ 0.

Now we use the approximation x� 1, so that (1− x)/(1 + x) ≈ 1− 2x
and the result that the zeros of Tn(α) are at

α = cos((2m− 1)π/2n).

We take m = 1 for the smallest zero. Thus, using arccos(1− 2ε) ≈ 2
√
ε for

small ε,
π

2k
≈ arccos(1− 2x) ≈ 2

√
x.

Thus the number, N , of collisions, including collisions between the small
mass and the wall, when the interaction is over, is approximately given,
when M � m, by

N = 4k ≈ π

√
M

m
.

Reference
Abramowitz and Stegun, Handbook of Mathematical Functions, Dover, 1964
(reprinted 1970).
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Alternative Solution

Notation
We denote the mass of the small mass bym, that of the large mass byM . We
consider the evolution of a one-dimensional analogue of a frictionless piston
of massM forming one wall of a cylinder in which a gas molecule of massm is
moving. The large mass has speed V (t), the small mass has speed v(t). This
method does not involve recurrence relations and orthogonal polynomials,
relying rather on elementary calculus. We will work out the momentum
transfer from the particle in the ‘container’ and hence the acceleration of
the large mass. We will then use conservation of kinetic energy to find a
differential equation for the distance moved by the mass, and finally use
integration to find the number of collisions. A dot over a variable indicates
differentiation w.r.t. time.

Momentum transfer
The large mass is initially at rest at a distance x0 along the x-axis from the
wall. The small mass is moving back and forth colliding alternately with
the wall and the large mass. During each collision the momentum of the
small mass changes by approximately 2mv. If there are δn collisions with
the large mass in a time δt then

MδV = 2mvδn.

By thinking of the x-axis with marks at intervals of length x(t) at the instant
t we can see that the number of collisions in time δt is

δn =
vδt

x(t)
.

We must remember that only half of these collisions transfer momentum to
the large mass (the other half are with the wall). Consequently

MV̇ =
mv(t)2

x(t)
.

Note that V = ẋ.

Energy conservation and an equation for x(t)
The only energy involved is kinetic. Suppose the initial speed of the small
mass is v0. Then

mv(t)2 = mv20 −MV (t)2.
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Combining this with the momentum equation we find

Mxẍ = mv2

= mv20 −Mẋ2, so that

xẍ+ ẋ2 =
m

M
v20 .

This can be rewritten using

d2(x2)

dt2
= 2(xẍ+ ẋ2),

and some elementary integrations give

x2 =
m

M
v20t

2 + 2Kt+ L.

The initial conditions x(0) = x0 and V (0) = 0 lead to

x(t) =

√
m

M
v20t

2 + x20.

This in turn determines

V =
m
M v20t√

m
M v20t

2 + x20

and v =

√
Mv0x0√

mv20t
2 +Mx20

.

Final step
The expression used above for δn can be integrated. We use the limits t = 0
and t → ∞ since there will be no further collisions once the speeds of the
masses match. We have

ṅ =
v

x
so that

n = v0x0M

∫ ∞
0

dt

mv20t
2 +Mx20

=
x0M

v0m

∫ ∞
0

dt

t2 +Mx20/(mv
2
0)

=
x0M

v0m

(
v0
√
m

x0
√
M

)[
arctan

(
tv0
√
m

x0
√
M

)]∞
t=0

=
π

2

√
M

m
.

The final result is just twice this.
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Remembering Professor Uwe Grimm

Martin Hansen

It was Uwe who introduced me to that most fascinating of mathematical
toys, the infinite Fibonacci word. It’s a deceptively simple substitution, θ,
on an alphabet of only two letters, A(a, b), defined by a → ab and b → a.
It gives us the finite Fibonacci words, Fn = θn(a). The first few are

F0 = a, F1 = ab, F2 = aba, F3 = abaab

and so on. Throw away the last couple of letters on any given word and
what’s left is a palindrome. As example, F4 = abaababa which, without its
rightmost two letters, is abaaba. This palindromic nature, along with the
remarkable concatenation property that

Fn = Fn−1Fn−2 for n ≥ 3,

guarantees that the Fibonacci words abound with symmetries. As n → ∞
the infinite Fibonacci word emerges as a fixed point of the iteration.

Uwe took pleasure in finding geometric visualisations to complement his
algebraic researches. These were often stunningly beautiful creations that
non-mathematicians could marvel over. When he died, I had just begun
studying the Open University’s M840 graduate course, Aperiodic Tilings
and Symbolic Dynamics. In the course topic guide (co-authored with Reem
Yassawi), he showed how, via the Fibonacci word’s substitution incidence
matrix, the left eigenvector gave rise to an aperiodic tiling of R+.

F1

F2

F3

F4

F5

For my dissertation I ended up running with this idea, under the watch-
ful eye of Dan Rust, who kindly stepped in to supervise Uwe’s orphaned
students and keep the course going. I took Uwe’s tiled path and twisted it
back and forth, often with it tiling over itself, and looked at the properties
of the resulting figures. The twisting was via a drawing rule that took each
letter of the Fibonacci word in turn and used it as an instruction to say how
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the next tile should be placed. Some attractive images resulted. To give a
flavour of what can occur the adjacent image is for F22 under the following
drawing rule.

Symbol Action
a forward φ (The golden ratio, about 1.618)
b forward 0.5, turn 108◦, forward 0.5.

I like to think that my visualisation of F22 is in the spirit of the math-
ematics that inspired it; Uwe’s mathematics. And that he would approve.
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Solution 301.5 – Matrix powers
For integer n ≥ 3, let A be an n × n matrix whose r-th row
is [0 1 0 0 · · · 0 1] rotated right by r − 1 places. Show that for
h = 1, 2, . . . , n− 1 and i = 1, 2, . . . , n, we have

[
Ah
]
i,i

=

0, if h is odd,(
h

h/2

)
, if h is even,

Can you extend this formula to n ≤ h ≤ 2n− 1?

J. M. Selig
Let P be the n× n permutation matrix corresponding to the n-cycle,

P =



0 0 · · · 0 0 1
1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


; thusPn−1 = P−1 =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1
1 0 0 · · · 0 0


.

This can also be written:

[P ]i,j =

{
1 if i− j ≡ 1 (mod n),

0 otherwise.

We also have [
Ph
]
i,j

=

{
1 if i− j ≡ h (mod n),

0 otherwise,

The point of this is that clearly A = P + P−1; so the powers of A can be
computed as

Ah =
(
P + P−1

)h
.

By the binomial theorem we have

Ah =

h∑
k=0

(
h

k

)
Ph−kP−k =

h∑
k=0

(
h

k

)
Ph−2k.

For h = 1, 2, . . . , n−1, the only term that has non-zero diagonal elements
is the term where the exponent of P is zero. This can only happen if k = h/2



M500 309 Page 9

is an integer. If h is odd P 0 = I does not appear in the expansion above
and hence the diagonal elements of Ah are 0. If h is even, the coefficient of

P 0 = I in the expansion is

(
h

k

)
=

(
h

h/2

)
. This answers the first part of

the question but also gives a result for the other elements of Ah. It is not
too difficult to see that[

Ah
]
i,j

=
∑
k

(
h

k

)
, where the index satisfies h− 2k ≡ i− j (mod n).

For example, when n = 6 we have

A =


0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

 .

For h = 5, we get

A5 = P 5 + 5P 3 + 10P + 10P−1 + 5P−3 + P−5

= P 5 + 5P 3 + 10P + 10P 5 + 5P 3 + P

= 11P 5 + 10P 3 + 11P.

That is,

A5 =


0 11 0 10 0 11
11 0 11 0 10 0
0 11 0 11 0 10
10 0 11 0 11 0
0 10 0 11 0 11
11 0 10 0 11 0

 .

The second part of the question concerns the range n ≤ h ≤ 2n − 1.
The general result above applies in this range, but if we are only interested
in the diagonal elements and only this range we can see that the only ways
to get h − 2k ≡ 0 (mod n) are when k = h/2 or k = (h ± n)/2. There are
four cases to consider here, depending on whether h and n are odd or even.
Alternatively, we could just assume that the binomial coefficient is zero if
one of the arguments is not an integer. Then we get[

Ah
]
i,i

=

(
h

h/2

)
+ 2

(
h

(h− n)/2

)
, n ≤ h ≤ 2n− 1.
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Time travel and the theory of everything
The world of mathematics is an integral part in establishing that goal

Colin P. George

According to Stephen Hawking there is one area where it’s unlikely you’re
going to get a research grant, and that is the subject of time travel. For
mathematicians and theoretical physicists who have brilliant ideas this is
quite daunting. However, there is nothing to stop one from performing
a theoretical thought experiment just to see how things might play out.
Mathematicians and scientists are very fond of thought experiments because
they don’t cost any money. After all, Einstein’s General Relativity (1915)
began as a thought experiment and much of its contents over the years have
been proven to be correct.

In the past, mathematicians, physicists, philosophers, authors and
artists have come up with some novel ideas. Although displaying different
approaches many appear to be based on special relativity, general relativity,
quantum theory, string, M or some other theory. However, this is hardly
surprising as many appear to have elements about them that indicates that
this subject can be treated scientifically

Fig 1: Mathematics plays an integral role in many articles and papers about
time travel.

We know that time is part of Einstein’s four dimensional universe. Mul-
tiplying t with c gives it parity with the other three. We call this the space–
time continuum (x, y, z and ct), but there is the question we keep asking.
Is time travel possible? The world of mathematics is an integral part of es-
tablishing that goal. Those studying advanced mathematics will be familiar
with the equation

t =
t0√

(1− v2/c2)
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in Fig 1(a). It is a means of calculating time dilation effects of elementary
particles, such as muons, which travel at incredible speeds. The muons’
clocks run slow, meaning that their half-lives appear to an Earth based
observer to be longer than in their rest frame. The consequence is that
more muons survive to reach the ground than their rest frame half-lives
would suggest. After many weeks of flight, passenger airliners experience
the same phenomenon but less profound. It appears to be in line with
Special Relativity (1905), which says moving clocks run slow.

Time is affected by heavy mass objects too. This was described in
Einstein’s field equations (Fig 2 (a)). However, it is easier to imagine space
as a flat surface that becomes deformed by heavy objects that form cup-like
depressions (see Fig 2 (a)). The Sun, the Earth and other planets are heavy
enough to cause measurable distortions in the geometry of space. Since time
is an integral part of that geometry it too will be affected. A clock placed
on Earth will be telling a different time from a clock placed far away from
Earth. This is in line with general relativity.

Fig 2: (a) Einstein’s equation used to describe gravity and the shape of
space-time. (b) It offers solutions to many other theoretical ideas regarding
our universe, wormholes etc.

So it seems that by altering space geometry in the right way we can do
something with time. It requires a certain amount of mass or the energy
equivalent (E = mc2). There is no known technology that can compress
something so small that it creates even a modest distortion. Physicists sub-
scribe to what they call a ‘negative energy density’ (−ρE = −ρc2), a theo-
retical tool used to bend and manipulate space–time geometry. One is talk-
ing of a hypothetical ‘exotic’ substance that displays negative mass/energy.
Alternatively, maybe it is something that emulates the equivalent (e.g. a neg-
ative pressure density, like the Casimir effect between two parallel plates).
There are other proposals on how it could be done but many are theoret-
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ical. We still have a long way to go. On the subject of wormholes (Fig
2 (b)): if they exist, we may have to consider the possibility of additional
dimensions especially if one wishes to entertain the idea of connecting to
a remote region far away (e.g. if a sheet of paper is curved through the
third dimension then an ant who tunnels through can get from A to B a
lot quicker). Mathematicians and physicists believe wormholes may offer an
opportunity for time travel.

Other time travel schemes include the Tipler cylinder (Kornel Lanczos,
1924; Willem Jacob van Stockum, 1936; Frank Tipler, 1974), a theoretical
time machine based on the notion of a cylinder that spins so incredibly fast
that it warps space–time. Kurt Gödel (mathematician and logician) came
up with his famous Gödel metric (1949) based on the idea of a rotating
universe which lacks Hubble expansion.

Fig 3: (a) An ‘exotic’ form of matter may one day be discovered giving rise
to negative energy density conditions; (b) thus altering space-time geometry.

According to Stephen Hawking the possibility of time travel cannot be
ruled out. The wormhole is a topic that is covered in general relativity, but
is yet to be proven. Our universe does not quite emulate Gödel’s universe.
The Tipler cylinder has mixed opinions. We still do not know much about
this ‘exotic’ material required to create a negative energy density. Yet it
is recognised in quantum mechanics. There are things that are possible in
relativity that do not agree with quantum mechanics. This is where many
papers fall flat on their face (violations included) and lose credibility. Could
it be possible before we build a time machine we need some kind of unifying
theory that encompasses all of them in order to iron out all those holes and
kinks. The theory of everything?

Whether or not you want to discover the theory of everything or discover
the secrets of time travel, one thing we can be sure of: mathematics will be
an integral part in establishing that goal.
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Solution 306.7 – Quintic roots
Let a and b be positive numbers. Show that the quintic

2x5 − 5a3x2 + 3b5 = 0

has 2 + sign(a− b) real roots.

Reinhardt Messerschmidt
Let

f(x) = 2x5 − 5a3x2 + 3b5;

therefore

f ′(x) = 10x4 − 10a3x = 10x(x3 − a3) = 10x(x− a)(x2 + ax+ a2).

The discriminant of x2 + ax + a2 is a2 − 4a2 = −3a2 < 0; therefore x2 +
ax+ a2 > 0 for every real x. It follows that

x ∈ (−∞, 0) =⇒ f ′(x) > 0,

x ∈ (0, a) =⇒ f ′(x) < 0,

x ∈ (a,∞) =⇒ f ′(x) > 0;

therefore f is strictly increasing on (−∞, 0)∪ (a,∞) and strictly decreasing
on (0, a). Let

u = − (3/2)1/5b, v = (5/2)1/3a;

therefore u < 0, v > a, and

f(u) = 2u5 − 5a3u2 + 3b5 < 2u5 + 3b5 = 0,

f(0) = 3b5 > 0,

f(a) = 3b5 − 3a5 = 3(b− a)(b4 + b3a+ b2a2 + ba3 + a4),

f(v) = v2(2v3 − 5a3) + 3b5 = 3b5 > 0.

It follows that

(i) f has no roots in (−∞, u] ∪ {0} ∪ [v,∞);

(ii) f has exactly one root in (u, 0);

(iii) if b− a < 0, then f has exactly one root in (0, a) and exactly one root
in (a, v);

(iv) if b− a > 0, then f has no roots in (0, v);

(v) if b− a = 0, then f has a root at a, and it is of multiplicity 2, because
f ′ has a root at a of multiplicity 1.
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Solution 306.2 – Approximate roots
Let n be an integer greater than 1, let x be positive number and
let

r = b n
√
xc.

Show that if x is not too small, then

(n+ 1)x+ (n− 1)rn

(n− 1)x+ (n+ 1)rn
r ≈ n

√
x.

Clearly, any x in the interval (0, 1) is too small, but when x is
sufficiently large this approximation can be quite effective. For
example, with n = 3 and x = 1100, so that r = 10, it gives
10.3226 whereas 3

√
1100 = 10.3228.

Ted Gore
Let p = n

√
x so that

x = pn = (r + ε)n,

where ε is an element of [0, 1). Then x = rn +α, where α is a function of r
and ε. (Alternatively, α = pn − rn.) We can therefore say that

q = r
(n+ 1)(rn + α) + (n− 1)rn

(n− 1)(rn + α) + (n+ 1)rn

= r
2nrn + (n+ 1)α

2nrn + (n− 1)α
= r +

2rα

2nrn + (n− 1)α
.

Now
(r + ε)n = rn + nrn−1ε+ . . . ;

so that we can take nrn−1ε as an approximation to α.

Dividing both top and bottom of the second term by this approximation
and rearranging gives us

q∗ = r +
2r

2r/ε+ (n− 1)
= r +

ε

1 + (n− 1)ε/2r
.

Now
ε

1 + (n− 1)ε/2r

is zero if ε is zero and is less than ε if n > 1 and ε > 0 so that q∗ is an
approximation to n

√
x.
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Using the example in the question, q∗ = 10.3127, which is the cube root
of 1096.774.

The term (n− 1)ε/2r generates the error in taking q∗ as an approxima-
tion to n

√
x. The value of this error is

ε2(n− 1)

2r + (n− 1)ε
,

and for the example we get 0.0101, as we would expect.

We can retrieve q by introducing a factor β, where α = nrn−1εβ so that

q = r +
ε

1/β + (n− 1)ε/2r
= r +

ε

1 + (1− β)/β + (n− 1)ε/2r
.

The error in q is now

ε [2r(1− β) + β(n− 1)ε]

2r + β(n− 1)ε
.

For the example, this is 0.0002.

For n >1 and ε > 0, β is greater than 1 so that (1 − β)/β is negative,
which makes q a more accurate approximation than q∗.

Problem 309.1 – Three squares suffice
Dave Wild
Most positive numbers can be expressed as the sum of three squares. The
exceptions are numbers of the form 4m(8n+7). If we look at a few numbers
of this form such as 7, 368, and 999 then they can also be expressed using
three squares. 7 = 22+22−12, 368 = 92+242−172 and 999 = 142+422−312.

If a, b and c are integers, which integers can be expressed in the form
a2 + b2 ± c2.

Problem 309.2 – A marginal problem
Dave Wild
Let x, y, z and N be positive integers. If n = 2N + 1 and x+ y = pq, where
p and q are different primes, then show that the equation xn + yn = zn has
no solutions.



Page 16 M500 309

Problem 309.3 – Rubik’s cube colourings
Tony Forbes
The picture on the right shows a
familiar object. The cube has 6
faces each divided into 9 squares,
54 squares in all. How many of the
654 ways to colour the little squares
(from a palette of 6 colours) are re-
alizable by Rubik cube movements
from a cube in its identity state,
where each face has all of its squares
coloured according to the scheme:
(front, green), (back, blue), (left,
orange), (right, red), (up, white),
(down, yellow)?

Problem 309.4 – Primes
Tony Forbes
Let P be a set of integers such that

n ∈ P iff n > 1 and gcd((
√
n)#, n) = 1,

where x# is the product of all the elements of P that lie in the interval
[2, x], i.e.

x# =
∏

2≤n≤x, n∈P

n.

What is P?

Problem 309.5 – Regular graphs
A look at Markus Meringer’s website

http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html#CRG

will reveal that of those (unlabelled) graphs which have 14 vertices, 21609300
are connected and 6-regular whereas 21609301 are 7-regular. Show that this
is not a coincidence.

The same site indicates that there are 1470293675 connected 15-vertex
6-regular graphs. How many 15-vertex graphs are 8-regular?

http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html#CRG
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Problem 309.6 – Square and reverse
We are interested in examples of integers m,n ≥ 1, n not divisible by 10,
such that m2 is obtained from n2 by reversing the order of its decimal digits.
Thus for n ≤ 1000, we have the following (n,m) pairs:

(1, 1), (2, 2), (3, 3), (11, 11), (12, 21), (13, 31), (21, 12), (22, 22),

(26, 26), (31, 13), (33, 99), (99, 33), (101, 101), (102, 201), (103, 301),

(111, 111), (112, 211), (113, 311), (121, 121), (122, 221), (201, 102),

(202, 202), (211, 112), (212, 212), (221, 122), (264, 264), (301, 103),

(307, 307), (311, 113), (836, 836).

You can check, for instance, that 3112 = 96721, the reverse of 1132 = 12769.
As you can see, in most cases either m = n, in which case n2 happens to be
palindromic, or m is the reverse of n. In fact, the only exceptions in this
list are (33, 99) and of course (99, 33). Further exceptions do occur, but
they are rare. Here is a complete list with n < m and n ≤ 10000000:

(33, 99), (3168, 6501), (20508, 21468), (110922, 219111),

(303577, 304877), (1100922, 2191011), (1109211, 1119111),

(1110922, 2191111), (3080367, 3140793).

Now for the problem. Characterize these exceptional pairs.

Problem 309.7 – Limit
Show that

x sin y − y sinx

x cos y − y cosx
→ tan(x− arctanx) as y → x.

M500 308 Puzzle solution
Some people complained that the puzzle has no
solution. Possibly they failed to read the small
print, or rather the lack of small print. Unlike
all published ‘Killer Sudoku’ puzzles I (TF) have
seen, there was no rule saying that the numbers
in the grey-bordered areas must be distinct. In
my opinion, that rule is artificial and detracts
from the otherwise simplicity of the instructions.

14 11 16 5 11 7

19 17

29 11 11 15

8

13

5

18

10 14 23

14

7 13 14 13

16 20 20 5 15

11

8 1 5 9 7 3 2 4 6

6 3 2 4 8 5 9 7 1

9 4 7 6 2 1 8 5 3

1 7 9 5 3 6 4 8 2

3 2 4 8 1 9 7 6 5

5 8 6 2 4 7 3 1 9

2 5 3 7 6 8 1 9 4

7 9 1 3 5 4 6 2 8

4 6 8 1 9 2 5 3 7

Moreover, in the vast majority of published examples it is not actually
required! Indeed, one can get quite excited on those rare occasions where the
distinct-numbers rule must be invoked in order to obtain a unique solution.
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Problem 309.8 – Pythagorean triples
Find all positive integers n such that there exist positive integers a and b
such that

n2 = (n− 1)2 + a2 = (n− 2)2 + b2.

Is it possible to find positive integers a, b and c such that

n2 = (n− 1)2 + a2 = (n− 2)2 + b2 = (n− 3)2 + c2?

Front cover Fibonacci word F12; see page 6.


