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A remark about limit cycles and French rivers

Michael Grinfeld

The Poincaré–Bendixson Theorem [3, Theorem 11.1] summarises all the pos-
sibilities for asymptotic behaviour in time of bounded orbits of autonomous
ordinary differential equations (ODEs) in the plane R2. As a consequence
of that theorem, for example, one can immediately conclude that chaos in
such equations can never occur. This theorem can also be used construc-
tively: if one manages to find a domain Ω, which does not contain any rest
points, such that orbits can only enter Ω and cannot leave (or only leave
and cannot enter), then the domain Ω will contain periodic orbits. See [3,
Section 11.1] for details of the technique used.

Consider the system of equations (primes stand for derivatives with
respect to time) {

x′ = − y − x(x2 + y2 − 2y − 3),

y′ = x− y(x2 + y2 − 2y − 3).
(1)

Then by the above technique, it is possible to show that there are peri-
odic orbits in the annulus (in polar coordinates) r0 < r < r1, where r0 < 1
and r1 > 3, which is our domain Ω in this case. In polar coordinates,
equations (1) become{

r′ = − r(r2 − 2r sin θ − 3),

θ′ = 1.
(2)

In this case, using, for example, the results of Gasull and Giacomini
[2, Section 4], one can prove that the periodic orbit is unique, thus a limit
cycle.

Last May, during the M500 revision weekend, I was asked by a student
whether the locus

r2 − 2r sin θ − 3 = 0

in the polar plane defines the limit cycle, that is, whether the equation of
the limit cycle in Cartesian coordinates is x2 + (y− 1)2 = 4. Of course the
answer to this question is negative, because if the limit cycle were defined
by r2 − 2r + 2 sin θ − 3 = 0, we would have r′ ≡ 0 but the locus is the
circle of radius 2 with centre at (0, 1), for which r is not constant.

On the other hand, numerically x2 + (y − 1)2 = 4 gives an excellent
approximation to the limit cycle as Figure 1 shows. Here the approximation
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is in a thick dashed line, and the ‘true’ limit cycle is the solid closed curve.
The match is not perfect, of course, as for example the limit cycle does not
pass though the point (−2, 1).

Figure 1: The limit cycle and its approximation.

The question is why a simple expression, immediately derivable from
the equations, gives such a good approximation.

In brief, the key is the concept of a river, or a fleuve in French, as
this area of asymptotics of ordinary differential equations has been largely
developed in francophone countries as well as being largely overlooked in
English-speaking ones; the most directly relevant paper is by Michel [4].

For a precise definition of a river, please see [1, Definitions 1 and 2].
Roughly speaking, rivers are orbits in systems of ODEs in the plane that
have very strong attraction or repulsion properties; please see Figures 2 and
3 (on which all the analysis below will be done for simplicity), where the
location of the rivers, both attracting and repelling, is obvious as is the
reason these orbits are called rivers.
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If we divide the r equation by the θ equation, we get

dr

dθ
= − r(r2 − 2r sin θ − 3).

and Michel’s theory of oscillating rivers applies to such equations.

Figure 2: The limit cycle unfolded as a river.

From the Michel theory, we immediately have that

Claim 1: The limit cycle r(θ) is a river.

Actually, the number of limit cycles is precisely the number of positive
rivers, which is nice. But more is true.

Claim 2: r0(θ) = sin θ +
√

sin2 θ + 3 is the leading term of the river
expansion

r(θ) ∼ r0(θ) + r1(θ) + . . . .

The algorithm for the expansion is explained in [4]. To find r1(θ) in our
case is possible but rather computationally involved. Let me show how it is
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done in a simpler case (in this case there are two rivers). I will compute two
terms of one of them, and will indicate the properties of the exact solution.

So let us consider the much simpler equation,

x′ = x2 − t2. (3)

Figure 3: Some more rivers.

To compute the asymptotics of the positive (repelling) river, put the
right-hand side of the equation equal to zero. Choose the positive root of
x2 = t2, call it R0(t). So R0(t) = t is the leading term of the (positive) river
expansion. Now let us compute the next term. Consider x−R0:

(x− t)′ = x′ − 1 = (x− t+ t)2 − t2 − 1 = (x− t)2 + 2t(x− t)− 1.

Now rename x− t to x:

x′ = x2 + 2tx− 1.

Solve the rhs for x and call the positive solution R1(t), i.e.

R1(t) =
√
t2 + 1− t.
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So our more sophisticated approximation to the positive river is:

R(t) = R0(t) +R1(t) = t+
√
t2 + 1− t =

√
t2 + 1. (4)

I hope it is clear how to find the next term (renaming is the key).

Note that in this way we get an asymptotic expansion as t → ∞. In
fact, (4) gives

R(t) ∼ t+
1

2t
+O

(
1

t3

)
as t→∞.

To work out the O(1/t3) term one needs to compute R2(t).

In this case, one can use computer algebra software to find the exact
solution for the river; this is left as an excellent exercise. The general
solution of (3) can be found in terms of Bessel functions, and a judicious
choice of the constant allows one to pick the (unique) solution that grows
like t as t→∞. Its asymptotic behaviour turns out to be

R(t) ∼ t+
1

2t
− 8

t3
+O

(
1

t5

)
and, gratifyingly,

R(0) =
[Γ(3/4)]2

√
2

π
≈ 0.67597824.
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The point in the concept of geometric shapes
Mako Sawin

1 Introduction

In geometry, the point, line and the curve are essential for measuring plane
shapes and volumes of solid figures. The current definition for the point is
that it has only a position. It has no length, width or dimension and it has
no size in a geometric figure.

The shortest line between two points is called a straight line. A line only
has one dimension, it has length but no thickness or width or size. The point
and the line have no size because they are not considered as objects, but
only show the positions or directions of objects. From the definitions of the
point and the line, we conclude that they have no area and no shape such
as a circle or a square. However, mathematics deals with fact and logic.
Therefore, the point somehow gives a geometric shape area. It might be
associated with a nano of length and width.

We can give an example. Splitting a large area into two parts or more,
we might give the point size 1 cm, while for splitting a small area, the Planck
length would be appropriate. Also, we can conclude that somehow a point
gives shape. Here, the question arises, what is the shape of a point in our
real life? Mathematicians do not know the shape of points. If a point has a
square shape, that means it has two dimensions. But if the point is a circle,
it has only one dimension, which contradicts the current definition of the
point.

However, in real life any object has a shape, and its position is deter-
mined by a point; that means the point should have a shape. But what kind
of geometric shape is suitable for the point? If we choose a circular shape,
it might look temporarily perfect; but if we join two points, there will be a
tiny gap between them and they will not give us a perfect line. However,
if we join two points with a square shape, we get a perfectly straight line.
For drawing a perfect shape like a square, the points might take a square
shape rather than a circle shape, whereas for drawing the circle shape, we
can choose the circle as the shape of the points.

The concept of the point in geometry is not only the position of the
object but it is the reflection too. For example, if the plane bends, then
the points will give the exact position of the bending. Therefore the shape
of the point either becomes smaller or its shape is changed. To give an
example, if the line consists of at least three points, then if it bends, the
number of its points either decreases, or the shape of the points changes.
Therefore we can conclude that the point has a shape and it depends on
the shape of the objects.
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2 Point in the concept of the Area

One of the most important subjects in mathematics is measuring the areas
of plane shapes and the volumes of solid figures. The geometric shape can
be defined as the space occupied by a flat shape, with the points lying on its
surface. A plane shape only has two dimensions and we can only measure
the area of its surface, like a sheet of paper. For some examples of plane
figure shapes, there are squares, rectangles, etc. The area of the shape is
the measure of the set of the points that cover the figure. To prove that
the area of the square is x2 we illustrate in Figure 1a that each side of the
square is composed of a set of points. Let X1 be made from x1,1, x1,2, . . . ,

Figure 1

x1,n, and X2 from x2,1, x2,2, . . . , x2,n. In each point of X1 we can draw
a straight line to a point in X3 such as x1,2 to x3,2. All vertical lines are
equal to X1 and all horizontal lines are equal to X2. To calculate the sum
of all points,

A = X2 ×
n∑

i=1

X1,i and x1,1 + x1,2 + · · ·+ x1,n =

n∑
i=1

x1,i = X1.

Thus
A = X1 ×X2 and X1 = X2 = X3 = X4.

Therefore the area is
A = X2. (1)
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The area of a square is a collection of all straight lines either vertically or
horizontally; see Figure 1b. Therefore,

A =

n∑
i=1

x1,i +

n∑
i=1

x2,i + · · ·+
n∑

i=1

xn,i =

n∑
i=1

n∑
k=1

xk,i. (2)

The same principle will apply to rectangles and triangles and other shapes.
Points can change their size according to the shape of the geometric

plane. To give an example, when the line bends the points on the line will
change their size. Also, if two lines or more are partially overlapped, then
their points are changed too. By partially overlapping two or more points
the sizes of the points change and they share a tiny area.

Figure 2 Figure 3

To illustrate, draw two equal lines R1 and R2 at the point A to the line
BC, as shown in Figure 2. Then make the straight line BC shorter. We
can see the points of both R1 and R2 overlapping partially. The area is
divided into three equal parts. Thus k and v represent half of the points of
R1 and R2. Let n be the number of points in the intersection between two
lines with half of the points overlapping. If we find the area by considering
these points, then

A =
1

2
AB +

1

2
AC +

1

2
(AB ∩AC)

In fact n = AB∩AC, which has half the points of both R1 and R2. Thus n
makes half of the points of each line, and we can see that half of the points
have vanished. Therefore, the size of the points has changed and a number
of the points vanished, even when the points are infinitely tiny. We can
conclude that the points changed the shape and the size of each of lines R1

and R2.
We can give another example to prove that some points vanish if the

lines are partially overlapping. The circle is a geometric shape which is a
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set of points enclosed by a curved line. The area of the circle is

A =
1

2
rc. (3)

To find the area of the circle as a collection of points, we draw from the
centre the line, which is the radius ri, to the circumference. The number of
radii is

N =

K∑
i=1

i, where K →∞.

Then the area is the sum of the points,

A = c×
K∑
i=1

ri ⇒ A = rc,

where K → ∞ and ri is a set of points, and we see that half of the radial
points have vanished from the area of the circle, rc/2.

Thus, however tiny the points are, by partial overlapping of the radii
always some points vanish. The points will reduce the size which it had
with the original straight line. We can conclude for a circle shape that half
of the points vanish.

To conclude this section, if two lines are drawn from one point and there
is a partial overlapping, then each line has a portion of the area. The shape
and the size of the points are changed accordingly, contrary to the axiom
which says a point has no size. Also we see that the size and the shape of
the points are changed; otherwise, adding all together would make the area
of the circle rc.

3 Point in the concept of the Volume of a Solid Figure

The solid figure is three-dimensional, having length, width and height, and
its volume is measured by a cube. The volume of a cube is a collection
of all layers of squares, where each layer is a set of points. This kind of
measurement is applied to all kinds of prisms, such as polygons, rhombuses,
parallelograms, triangles and stars.

Here we examine the point based on some solid figures and how its shape
and size will change.

3.1 The Volume of the Cylinder

The usual way to find the volume of the cylinder is to multiply its height
by the area of the circle, since it consists of layers of circles,

V =
1

2
r × c× h. (4)
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However, if we consider the shape of a cylinder, we can see that it consists of
a set of either rectangles or squares, depending on the height. See Figure 3
on page 8. The area of any rectangle is

Area = hiri.

Thus, summing all the rectangles,

Sr =

n∑
i=1

hiri.

Also, the number of rectangles is the same as the circumference of the circle.
Therefore the volume is

V = hrc,

which contradicts equation (4). We can see half the points of the volume of
a cylinder vanish in the same way as half the points vanish from the area
of the circles. If we have a cylinder and we make it flat, it would have a
rectangular or square shape, depending on the height, and the area of the
surface is not equal to c× h; again, half of the points vanish.

The same method will apply to the volume of pyramids. If the some
of the points have not vanished by overlapping, then the volume of the
pyramid is V = h/2× base, which contradicts the actual formula.

3.2 Bending Points in the Sphere

If the point cannot be bent or changed in its size, we arrive at another new
formula for finding the volume of a sphere and its surface area. The surface
area of the sphere is

A = 4πr2. (5)

The volume of the sphere is

V =
4

3
πr3. (6)

Suppose we have a sphere as shown in Figure 4. Then if we take any quarter
of the circle in the sphere, it is equal to the others. Then the quarter of the
circumference of the circle is

a = b = . . . = n =
1

4
c.

Therefore, in half of a sphere, the base is a circle and c/4 goes round the
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Figure 4

circumference as shown in Figure 4. This means that the surface area of
the half sphere is

A =
1

4
c× c = r2π2

and the surface area of the sphere is

A = 2r2π2, (7)

which contradicts the actual formula, (5).
In the same way we see that a quarter of the area of the circle is

A =
1

4

(
1

2
rc

)
.

Then the volume of the half-sphere is

V =

(
1

8
rc

)
× c =

1

4
π2r3.

Thus the volume of the sphere is

V =
1

2
π2r3, (8)

which is not equal to the formula (6). We can see a contradiction in the
formula for the volume of a sphere and its surface area if the points cannot
bend or change from their size. We see that inside the sphere the points
are massively intersecting. The points of the line cannot be the same points
on the same lines if the line is changed to a curve. The points will bend
and their shapes will transform. If the point is a location of the object,
then, however tiny the points are, their shapes will change according to the
transformations of the objects.



Page 12 M500 311

4 Conclusion

We conclude with the observation that however small the point is, it has a
size that can be changed according to the size of the area. When two points
are partially overlapping the size also changes and a measurable area as a
portion of the point vanishes. If the point has no size, shape, length and
width as defined, therefore, we come to conclude the following.

The area of the circle is r × c,
the volume of the cylinder is r × c× h,
the volume of the cone is hrc/2,
the volume of the pyramid is h× base/2,
the area of the surface of the sphere is 2r2π2,
and the volume of the sphere is π2r3/2.

Problem 311.1 – Binary binomial coefficients
Tony Forbes
Let R(n) be the number obtained by writing the elements of row n of
Pascal’s triangle in binary one after the other with no spacing in between.
Thus for n = 0, 1, . . . , we have

R(n) = 1, 3, 13, 63, 1641, 55979, 1963261, 1051838303, 427823653777,

899765549835411, 962612860717614517, . . . .

For example, when n = 4 we have

(1, 4, 6, 4, 1)→ (1, 100, 110, 100, 1)→ 110011010012 = 1641 = R(4).

One is tempted to conjecture that

R(n) < 2n
2/(log 4) for all sufficiently large n.

Either prove that this is true, or find infinitely many n for which R(n) ≥
2n

2/(log 4).

Problem 311.2 – Triangle-free regular graphs
Tony Forbes
Prove that there exists a k-regular graph with 2k + 1 vertices and girth at
least 4 only when k is 0 or 2. Or find a counter-example.
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Problem 311.3 – Circle construction

Tommy Moorhouse

Take a circle of radius 1 centred on the origin in R2, and a vertical line L
parallel to the y-axis, passing through the point (1, 0). Given a point P on
the right hand half of the circle we define the height t to be given by the

intersection of the production of
−−→
OP with L. Let ρ be the distance between

the origin and the intersection of the line
−−→
NP with the x-axis.

O

N

P

Ρ

t

Figure 1: Construction of t and ρ.

Show that
ρ2 − 2tρ− 1 = 0.
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Solution 308.3 – Arithmetic progression
Show that

x+ y = − cos(π/9)

if x + y < 0 and
1

1 + x
,

1

1− y
,

1

x
,

1

y
are in arithmetic progres-

sion.

J. M. Selig

Since we are trying to find x + y let’s change variables so that z = x + y
and w = x− y. The inverses of these relations are

x =
1

2
(z + w),

y =
1

2
(z − w).

Using these relations to substitute into the arithmetic progression gives

2

2 + w + z
,

2

2 + w − z
,

2

w + z
,

2

z − w
.

As these expressions form an arithmetic progressions their second differences
must vanish, that is

∇2ai = ai − 2ai+1 + ai+2 = 0.

This will give us two equations,

2

2 + w + z
− 4

2 + w − z
+

2

w + z
= 0

and
2

2 + w − z
− 4

w + z
+

2

z − w
= 0.

Next, we can put everything over a common denominator and simplify. In
particular, we set the numerator of each to zero. This results in a pair of
equations,

(2z − 1)w + (2z2 + z − 2) = 0

and
w2 + (3− 2z)w + (z2 − z) = 0.
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Now, we can use the first of these equations to eliminate w from the second
equation. Again, we can just set the numerator of the resulting expression
to zero. The result is a quartic in z, which factorises as

(8z3 − 6z + 1)(z − 1) = 0.

The question tells us that z = x+y < 0, so z = 1 is not the solution sought.
We need to solve the cubic factor in the above. There is an intriguing
method to solve cubic equations using trigonometry. We can compare the
cubic to the cosine triple angle formula, this is

cos(3θ) = 4 cos3 θ − 3 cos θ.

Rearranging the cubic gives

−1

2
= 4z3 − 3z;

so, if we set cos(3θ) = −1/2, then 3θ = 2π/3. Actually we get an infinite
number of solutions,

3θ =
2π

3
+ 2nπ,

where n is any integer. Now, z = x + y = cos θ; this gives three different
real solutions,

x+ y = cos

(
2π

9

)
, cos

(
2π

9
+

2π

3

)
, cos

(
2π

9
+

4π

3

)
.

(The other values of n just repeat these three solutions.) The first solution
is positive, as is the third,

cos

(
2π

9
+

4π

3

)
= cos

(
14π

9

)
= sin

( π
18

)
.

The only negative solutions is

cos

(
2π

9
+

2π

3

)
= cos

(
8π

9

)
= − cos

(π
9

)
.

TF writes: A similar problem appears as LXXXVIII.7 in Mathematical
Problem Papers by E. M. Radford (CUP, 1923). I was so intrigued by the
process by which one goes from a simple 4-term arithmetic progression to an
even simpler trigonometric equality that I thought it deserved the attention
of M500 readers.
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Problem 311.4 – Absolute differences

Let n be a power of 2.

(1) Write down n positive integers in a column.

(2) Form a new column thus: for k = 1, 2, . . . , n, next to the k-th integer
write the absolute difference between it and the ((k mod n) + 1)-th
integer.

(3) If the result is n zeros, STOP; otherwise go to (2).

Must the process stop? If that’s too difficult, we would be interested in
examples for small powers of 2 that take a long time to finish. Here is a
sequence for n = 4.

82 77 401 183 84 40 198 88 36 12 104 48 8 16 16 16 0
5 478 218 99 44 238 110 52 24 116 56 40 24 32 0 16 0

483 260 119 55 282 128 58 28 140 60 16 16 56 32 16 16 0
223 141 64 337 154 70 30 168 80 44 32 72 24 16 0 16 0

Numbers n that are not powers of 2 behave in a different manner. For
example, starting with (6, 40, 15, 7, 26) the algorithm soon goes into a 15-
cycle beginning with (1, 1, 0, 1, 1).

Problem 311.5 – Colours and shapes

There are 9 objects. They could be a child’s bricks, but their exact nature
need not concern us. Each has one of 3 colours, {red, blue, green} say, and
one of 3 shapes, {triangle, square, pentagon}. All 9 distinct combinations
are represented.

They are to be arranged in a circle such that two adjacent objects differ
in colour or in shape but not both and not neither. For example,

(R3, R4, R5, B5, B3, B4, G4, G5, G3),

where to save printing space the circle is a straight line and we have em-
ployed some hopefully obvious abbreviations.

How many ways?

What about c colours and s shapes?
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Snub cube and snub dodecahedron
Tony Forbes
A snub cube consists of 6 squares and 32 equilateral triangles. It is
known (see, for example, https://mathworld.wolfram.com/SnubCube.

html) that the triangle–triangle dihedral angle is given by

π − arccos
2t− 1

3
= 2.67445 = 153.235◦,

where t = 1.83929 is the real root of the cubic x3 − x2 − x− 1. The picture
shows a clockwise snub cube—in the sense that the squares are rotated
arccos

√
t/2 clockwise from their original orientations. View it in a mirror

for the anticlockwise version. The triangles are divided into two classes.

(i) Octahedral triangles (green in the picture): those where the vertices
are coincident with the vertices of three distinct squares. There are 8,
and one can see that if you discard the other faces and contract, they
might form the eight faces of a regular octahedron.

(ii) Snub triangles (blue): the other 24. They each share a common edge
with a square.

Moreover, John Smith
asks in M500 200:
Why is the dihedral
angle between two
snub triangles the
same as the dihedral
angle between a snub
triangle and an octahe-
dral triangle? We still
don’t really know. As
far as we can see (and
admittedly this might
not be exceedingly
far), there is nothing
about the structure
of the snub cube
that obviously implies
equality. Is there a
simple explanation?

https://mathworld.wolfram.com/SnubCube.html
https://mathworld.wolfram.com/SnubCube.html
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One can also ask the same question about the snub dodecahedron. This
fascinating Archimedean solid has 12 pentagons and a lot of triangles which,
as with the snub cube, are of two types.

(i) Twenty icosahedral triangles, coloured green in the picture on the
front cover, which clearly shows that the vertices are coincident with
the vertices of three pentagons. One can check that the angle between
nearest pairs is the same as the dihedral angle of a regular icosahedron,
2 arctan((3 +

√
5)/2) = 138.190◦.

(ii) Sixty snub triangles, blue, each sharing an edge with a pentagon.

Here is something interesting. Start with a rhombicosidodecahedron
with edge length 1, top-left in the sequence illustrated on page 20. There
are 12 red pentagons, 20 green icosahedral triangles and 30 blue squares,
each of which one can consider as being split into two (1, 1,

√
2) blue snub

triangles. Angles between various pairs of faces are tabulated below.

face colours symbol dihedral angle degrees

blue–blue s33 π 180◦

blue-green i33 arccos

(
−
√

3 +
√

15

6

)
159.095◦

red–blue s35 arccos

(
−
√

5 +
√

5

10

)
148.283◦

red–green i35 arccos

(
−
√

5 + 2
√

5

15

)
142.623◦

Now rotate all the pentagons about their centres of 5-fold symmetry by θ
anticlockwise (when looking at them from outside). At the same time adjust
their distances from the centre so that the icosahedral triangles retain the
same edge length, 1. Observe what happens to s33, i33, s35, i35 and the
shapes of the blue triangles.

As θ increases from 0 to 36◦, s33 decreases while i33 and s35 increase,
but i35 remains constant throughout—it is the icosidodecahedron triangle–
pentagon dihedral angle. The green triangles remain equilateral with side
1. Three more examples are illustrated on page 20.

At θ = 8◦ the snub triangles are still short and fat, with sides (1, 1, c)
where c > 1, and i33 is still less than s33. However, at θ = 20◦ the snub
triangles have become tall and thin, with c < 1, and i33 is greater than s33.
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By continuity, therefore, two things happen somewhere between θ = 8◦

and θ = 20◦.

(A) At some point θ = θA ∈ (8◦, 20◦) the snub triangles become equilat-
eral, and

(B) at some point θ = θB ∈ (8◦, 20◦) dihedral angles i33 and s33 are equal.

Unless I have missed something, I can see no obvious reason why (A) and
(B) should occur at the same value of θ. But the amazing truth is that they
do. Let σ = 0.142850164945 be the smallest positive root of

64x6 + 64x5 + 800x4 + 240x3 − 800x2 − 306x+ 59 (1)

and let

α =
3π

10
− arccos(σ)

2
= 13.1064033769◦. (2)

Then θA = θB = α, and when θ = α the solid is a snub dodecahedron—an
anticlockwise one since α is positive. This is illustrated on the front cover.
To get the clockwise version, rotate by θ = −α.

When θ = 36◦ the snub triangles are extremely thin and the solid has
become an icosidodecahedron. Angle s33 is exactly 144◦, which is sensible
because two adjacent snub triangles have degenerated into lines that form
two sides of a regular decagon that bisects the icosidodecahedron. But
you will also note that i33 and s35 attain limiting values of 169.188◦ and
153.435◦ respectively. Unfortunately I do not know what significance this
has other than that i33 + s35 ≡ i35 (mod 180◦).

I am not entirely happy with the polynomial (1), which I got from Wol-
fram Mathworld. As you can verify from Wikipedia, the two dihedral angles,
the pentagon in-radius, the triangle in-radius, the mid-radius, the circum-
radius, the surface area and the volume can be expressed as elementary
functions of the Golden Ratio, φ = (

√
5 + 1)/2, and

ξ = 0.943151259244, the real root of x3 + 2x2 − φ2.

So what about σ and α? It turns out that (1) factorizes over the field Q(φ),
and σ is the root of one of its factors,

8x3 + 4x2 + (50φ+ 24)x− (5φ+ 7),

which can be solved to get

σ =
∆

12
− 5(7 + 15φ)

3∆
− 1

6
, ∆ =

(
20
(
95+36

√
5+3

√
15(1315 + 2128φ)

))1/3
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from which we can obtain an exact expression for α via (2). Admittedly
this formula is a bit of a mess—and it doesn’t involve the number ξ in a
nice way if at all—but it will have to do for now.

Θ=0
s33=180. i33=159.095
s35=148.283 i35=142.623

Θ=8
s33=169.63 i33=162.551
s35=151.582 i35=142.623

Θ=20
s33=157.679 i33=165.918
s35=154.03 i35=142.623

Θ=36
s33=144. i33=169.188
s35=153.435 i35=142.623
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The sphericity of an object is defined as

36π
(volume)2

(surface area)3
.

For example, it’s about 0.32973 for an 8× 4× 2 brick. The 36π is obviously
there to make the expression 1 for a sphere. For a snub dodecahedron, we
have from Wikipedia:

surface area = 20
√

3 + 3
√

20φ+ 15 = 55.2867,

volume =
(3φ+ 1)ξ2 + (3φ+ 1)ξ − φ/6− 2√

3ξ2 − φ2
= 37.6166,

and a simple calculation gives a sphericity of 0.94700. Therefore it would
seem that a snub dodecahedron would make a significantly better football
than the Archimedean object that is currently employed for that purpose,
the truncated icosahedron, which has sphericity only 0.90317. However, the
choice of two chiral options and consideration of the difference in their aero-
dynamic behaviour on the football pitch would risk adding an undesirable
level of complexity to the game.

Problem 311.6 – Square and dodecagon
Tony Forbes
Show that the square and the dodecagon are the only regular polygons that
have rational areas when inscribed in a unit circle.

In fact the areas are integers, 2 and 3. Obviously this was the inspiration
for the introduction of the 12-sided 3d piece in 1937 to replace the minute
‘silver’ coin of the same denomination. However, we do not believe there
were any plans at the time for the minting of a square 2d coin.

Problem 311.7 – Grand slam
Tony Forbes
As any bridge player knows, it is possible to make all 13 tricks with a
combined holding of only 5 high-card points (A and J of trumps).

Devise a plausible situation where it is possible to make a grand slam
in a suit with no card higher than a 10.
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Problem 311.8 – Factorial ratio
Tony Forbes
For non-negative integers a and b, define

F (a, b) =
(2a)! (2b)!

4 a! b! (a+ b)!
.

Show that F (a, b) is an integer if and only if a + b is positive and not a
power of 2. For something similar, see Problem 295.3 – Integers.

Front cover Snub dodecahedron; see page 17.
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