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A number puzzle
Ken Greatrix

f(x) =

 3x+ 1 if x is odd,
x/2 if x is even,
undefined if x < 2.

I first encountered this puzzle in the M335 Logic option (which I studied
as M381 in 1992) and have not seen any other comments or documentation
until it appeared in M500 162 by Jane Kerr. Hence some of this account
may not be original and I may have ‘rediscovered the wheel.’

I believe that I have found a solution which could lead to a proof of the
conjecture that f(f(f(. . . f(x) . . . ))) = 1 for all x ≥ 2. Unfortunately, I do
not have the mathematical techniques to evaluate this solution, so here are
some of the ideas with which I have been trying in my attempts to solve
the puzzle. It is my hope that this does lead to a proof and that someone
may be able to properly evaluate it.

As this is not a formal proof, I have not fully justified some of my
statements, but I will be able to do so if required.

Using the notation fn(x0) = xn to denote the compositions (or itera-
tions) of the function, I have identified three sets of numbers:

(i) x ∈ X if fn(x) = 1,

(ii) y ∈ Y if fn(y)→∞ as n→∞,

(iii) z ∈ Z if fn(z) = z0.

I suppose that like everyone else who has investigated this function, I
too compiled a computer program. I started at x = 2 (incrementing the
tested number by 1), and iterated on x until fn(x0) = xn < x0 (see EK’s
footnote in M500 162).

The pattern of numbers generated by each these iterations has a ‘tree-
like’ structure and I realised that it is possible to ‘reverse’ the function, as
follows:

f−1(x) =

{
(x− 1)/3 if x = 6k + 4,
2x for all x.

This is not a true inverse because (for example) f−1(16) = 32 and also
f−1(16) = 5; but it is used to illustrate my next point, in which I would
like to place the function in N3.

f−1(x,w, v) =

{
((x− 1)/3, w + 1, 1) if x = 6k + 4,
(2x,w, v + 1) for all x.
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So, starting from (1, 1, 1) and ignoring f−1(4) = 1, all numbers in X are
represented only once on this graph. The reason for the w- and v-axes
is merely to separate the pathways from each value of x to 1; but having
introduced them I can show that they are unbounded. The values of v and
w are related to the iterations required to reduce x to 1. Also note that in
this reversed format the number 1 generates the whole set X.

In addition, the reversed function can be applied to any values of y or
z and again can generate an infinite set. So if only one exception to X
can be found then approximately only half of N can be reduced to 1 by the
function.

If we assume for the time being that Y and Z are empty sets, then I
can investigate some of the properties of the set X.

When the ‘tree’ of numbers revealed no further pattern, I looked at the
number of steps, n, required for 2xn > x0 > xn and also such that xi > x0
for i = 1 to n − 1. These step numbers, arranged in groups of 4, revealed
an interesting pattern.

1 6 1 3 1 11 1 3 1 8 1 3 1 11 1 3
1 6 1 3 1 8 1 3 1 96 1 3 1 91 1 3 . . .

Every other number in this list is a 1, so even numbers require only one
step to reduce (what a great surprise!). Every fourth number is a 3, so
f3(4k+1) = 3k+1, where 3k+1 < 4k+1 when k > 0. But what about the
other numbers in the list, which are associated with numbers of the form
4k + 3?

I next modified the program to start at 3 and increment by 4 to inves-
tigate these numbers. I have arranged the output in columns of 8 to show
a further pattern.

6 11 8 11 6 8 96 91
6 13 8 88 6 8 11 88
6 88 8 13 6 8 73 13
6 68 8 50 6 8 13 24
6 11 8 11 6 8 65 34
6 47 8 13 6 8 11 21
6 13 8 21 6 8 13 50 . . .

The number 6 appears in the 1st and 5th columns and shows that f6(16k+3)
= 9k + 2, with 9k + 2 < 16k + 3. The 8s reveal f8(32k + 11) = 27k + 10
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and f8(32k + 23) = 27k + 20. There is a repeating pattern of three 11s, so
x0 ∈ {7, 15, 59} are associated with f11(128k + x0) = 81k + x11.

Similarly, the set x0 ∈ {39, 79, 95, 123, 175, 199, 219} is associated with
256k + x0 and 243k + x13, showing the repeated 13s, and the set

x0 ∈ {287, 347, 367, 423, 507, 575, 583, 735, 815, 923, 975, 999}

give a repeated pattern of 16s, and are associated with 1024k + x0 and
729k + x16.

It would be nice to think that this pattern continues and could be fully
predictable, but at the moment it seems to be chaotic. To date I have seen
every step-value up to 481 (at least once) with the highest so far at 649 (but
bear in mind that I have only yet compiled lists of sets of x up to step-values
of 26).

It is this supposedly repeating pattern of numbers that led me to for-
mulate my ‘pre-tested’ theory: If you are testing all numbers in N (in as-
cending order) with the conjecture, you can save time by skipping numbers
from these sets. If all numbers could be given pre-tested status then the
problem is solved. The only drawback to this is that, as we have seen from
the reversed function, any number from the incomplete list of pre-tested
sets could equally well be from X, Y , or Z.

However, I am currently assuming that the sets Y and Z are non-existent
and hence I will now demonstrate that all numbers can be given pre-tested
status. I will also explain why only certain step-values exist and why others
(e.g. 5, 9, 12, . . . ) do not. I cannot explain the chaotic order of step-values.

At this point it is convenient to introduce a partial composition of the
function; also to count p when the even part of the function is used and q
when the odd part is used. Hence n = p+ q.

Let

f∗(xk) =
3xk + 1

2ak
= xk+1,

where xk, xk+1 are odd. But note that f∗q (x0) = xn, because xn may be
even. If we now fully compose this function in stages:

f∗(x0) =
3x0 + 1

2a0
= x1, (I)

f∗(x1) =
3x1 + 1

2a1
= x2. (II)
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Substituting (I) into (II) (missing the intermediate stages) we get

f∗2 (x0) = f∗(x1) =
32x0 + 3 + 2a0

2a02a1
= x2.

Continuing this process but missing out the induction step,

f∗q (x0) =

3qx0 + 3q−1 + 3q−2A0 + 3q−3A1 + · · ·+ 3q−2−kAk + · · ·+ 3Aq−3 +Aq−2
Aq−12bq

,

where f∗q (x0) = xn < x0, Ak = 2a02a1 . . . 2ak (for k = 0 to q − 1), and 2bq

is a ‘stopping’ term which will be explained later. Since

p =

(
q−1∑
i=0

ai

)
+ bq,

we can write the above expression as a Diophantine equation in x0 and xn;

2pxn − 3qx0 = 3q−1 + 3q−2A0 + · · ·+ 3q−2−kAk + · · ·+Aq−2

in which the RHS is a constant, and since gcd(2p, 3q) = 1, the solutions
to this equation are 2pk + x0 and 3qk + xn. Different values of x0 and xn
can be generated from all the different combinations of the ais and hence
the sets of numbers and their associated step-values can be seen to follow.
Also note that because x0 > xn, 2p > 3q. This relationship is completed by
2p > 3q > 2p−1. So far, it is also demonstrated by my computer program
up to q = 186 (n = 481). I use the expression p > φq where 2φ = 3, which
gives φ = (log 3)/(log 2) ≈ 1.5849625 . . . , to demonstrate the relationship
between p and q. So p = 1 + [φq]. (Hence step values 5, 9, 12, . . . do not
occur.)

Following on from the Diophantine equations, there is a set of such
equations (and hence sets of x0) for each value of q which I call Xq ⊆ X.
Since each Xq is contained in an associated modulo set 2p, each value, q,
contributes a proportion of N to the pre-tested list (i.e. q = 0, even numbers,
50%; q = 1, 4k + 1, 25%; q = 2, 16k + 3, 6.25%; . . . ).

Now comes the basis of my proof: If the sets Y and Z do not exist then
all numbers can be placed in a subset Xq and hence the proportion of N
placed in the pre-tested list is an increasing function on q—limited above
by 100%.



M500 166 Page 5

Rather than attempt to solve these sets of Diophantine equations I
have an easier manipulation. I use binary-coded string sequences (as in the
computer sense of a string of characters). They are compiled thus: each
time the odd part of the function is used, write a ‘1’, and each time the even
part is used, write a ‘0’ (thus p and q count 0s and 1s respectively). Hence

for f1(2k) = k write 0,

for f3(4k + 1) = 3k + 1 write 100,

for f6(16k + 3) = 9k + 2 write 101000,

for f8(32k + 11) = 27k + 10 write 10100100,

for f8(32k + 23) = 27k + 20 write 10101000, etc.

These strings can be classified as follows.

(i) Complete (or valid): If fn(x0) = xn so that 2xn > x0 > xn and
xi > x0 for i = 1 to n− 1.

(ii) Incomplete: As in (i) but xi > x0 for i = 1 to n, and can be made
valid by appending sufficient 0s (until p > φq).

(iii) Extended: As in (i) but xi < x0 for some i ∈ {1 to n− 1}.
(iv) Invalid: A string which does not represent a sequence of composi-

tions of the function. An example of this is given when we consider any odd
number, 2k + 1; f(2k + 1) = 6k + 4 which is always an even number. So
each 1 must be followed by a 0 (which I call an essential 0) and hence an
example of an invalid string is one that contains two or more consecutive
1s.

(To EK: Does this correspond with Peter Weir’s binary notation?)

Since these strings represent numbers, it should be possible to ‘back-
calculate’ from any non-invalid string to find the associated number; this is
done as follows.

Take for example 101000 associated with f6(16k + 3) = 9k + 2. This
string starts with a 1, so x0 must be odd. i.e. x0 = 2k0+1. Then f(2k0+1) =
6k0 + 4, which is an even number, demonstrating the use of an essential 0:
f(6k0 + 4) = 3k0 + 2. The next character in the string is a 1, so 3k0 + 2
is an odd number, which is the case if k0 is odd. Hence k0 = 2k1 + 1. We
now have f2(4k1 + 3) = 6k1 + 5, giving f(6k1 + 5) = 18k1 + 16. This is now
followed by another essential 0: f(18k1 + 16) = 9k1 + 8. Continuing, let
k1 = 2k2, so x0 = 8k2 + 3 and x4 = 18k2 + 8. There now follows two 0s in
the remainder of the string, so f(18k2 + 8) = 9k2 + 4; substitute k2 = 2k3
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and apply f one last time to arrive at f6(16k3 + 3 = 9k3 + 2.

Having done this process, I can now demonstrate another useful ma-
nipulation of strings. You will have noticed that at various stages in the
above a decision was made for parity, this being solely dependent on the
value of k. So, after the last essential 0 of a string, there follow a number
of non-essential, replaceable 0s, any of which can be substituted for by a 1
and further 0s appended to give another longer valid string. Let θ represent
these non-essential 0s (e.g. 1010θθ ends with two non-essential, replaceable
0s). We can replace them in turn to give:

(a) 101010θθ which represents 32k + 23;

(b) 1010010θ which represents 32k+11 (in which I have shown the next
replaceable 0s).

And yet another area of string manipulation brings us full-circle to the
Diophantine equations. The number of 0s after each 1 in a valid string
is represented by the a-values in the Diophantine equation; hence in the
following we have:

e.g. 1 0 1 00 1 00 . . . 1 0000 1 000 θθθθ
ai a0 a1 a2 . . . aq−2 aq−1 bq

Where bq represents the non-essential 0s at the end of a string and shows
how the Diophantine equation and the binary-coded string can be stopped,
or continued into the next q-value.

Strings are easier to manipulate, but they can only be used to prove
the function if the sets Y and Z do not exist. This is because if values of
y or z exist they too will have a string representation and an associated
Diophantine equation.

However, I can use strings to demonstrate that the set Y does not exist;
by considering what would happen if it did. If there is a value, y, then it will
have an associated string possibly of the form 10101010. . . . In terms of the
above, this is case (ii)—an incomplete string—and it can be made complete
by appending sufficient 0s. But we can also back-calculate to find y (using
two stages, 10, each time). Start with an odd number f2(2k0 +1) = 3k0 +2.
This is an odd number also, so k0 = 2k1 + 1. Also f4(4k1 + 3) = 9k1 + 8;
again, an odd number so k1 = 2k2 + 1. Thus f6(8k2 + 7) = 27k2 + 26, etc.

By the use of induction, we can see that if this process were to continue,
we would arrive at the numbers y0 = 2pk+ (2p−1) and yq = 3qk+ (3q−1),
and we can see from this that if y ∈ Y exists then not only does fn(y0)→∞
as n → ∞, but also y0 → ∞ as n → ∞; hence Y is empty. In addition,
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y0 =∞ does not have a Diophantine equation. Also note: in this particular
case p = q; the maximum value y0 (and also x0, z0) is 2p− 1 (hence the use
of the modulo set 2p and not 3q).

So now we come to the set Z. My idea is based on probability and is
(loosely) analogous to the following situation. Take a bucket (with say, 10
units of volume), and put into it a handful each of black and white marbles.
Mix them up and remove, by random selection, about a third of the marbles.
Double the amount of marbles in the bucket by adding only black ones, mix,
and remove about a third of the marbles. Keep repeating this process of
mixing, removing and replenishing until the bucket is full of marbles. What
is the probability that any white marbles remain in the bucket?

Second step. Take a bucket with 100 units of volume and place therein
two handfuls each of black and white marbles. Repeat the above process,
and what is now the probability that any white marbles remain when the
bucket is full?

Step n. Take a bucket with 10n units of volume and put therein n
handfuls each of black and white marbles . . . .

This is a very loose analogy, and if you rely on it too much, it fails at
the first few steps. Not to be put off by this or by the knowledge that I
could have chosen a better analogy, I will press on regardless.

The analogy demonstrates that if a white marble remains in the bucket,
this is equivalent to finding a counter-example to the conjecture that X = N.
As you can see, it is a decreasing probability function on n.

In order to demonstrate that Z does not exist, I turn to the partially
composed function, but give it a slightly different treatment. Let

f∗(z0) =
3z0 + 1

2a0
= z1, or z1 =

z0 (3 + 1/z0)

2a0
; (III)

similarly,

f∗(z1) =
z1 (3 + 1/z1)

2a1
= z2. (IV)

Substituting (III) into (IV) and applying a full composition,

f∗2 (z0) = z0
3 + 1/z0

2a0
3 + 1/z1

2a1
= z2.

This process continues by induction until f∗q (z0) = zq = z0, which when
expanded becomes

z0 (3 + 1/z0)

2a0
3 + 1/z1

2a1
. . .

3 + 1/zq−1
2aq−1

= z0.
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Now since p =
∑q−1
i=0 ai and the z0s cancel, we arrive at(
3 +

1

z0

)(
3 +

1

z1

)
. . .

(
3 +

1

zq−1

)
= 2p.

I shall not attempt to solve this polynomial, but instead I would like to
introduce a sense of a geometric mean, zr, such that (3 + 1/zr)

q
= 2p, or

3 + 1/zr = 2p/q. So, given values of p and q it is possible to calculate zr,
zr = 1/(2p/q − 3), which shows 2p/q > 3, or again 2p > 3q.

So, with this in mind, take an example of p = 7 and q = 4, which gives
a value of zr ≈ 2.75; with p = 8 and q = 5: zr ≈ 31.81; with p = 10 and q
= 6: zr ≈ 5.72 . . . . Note that it is the lower values of p/q which give the
highest values of zr and not necessarily the values of p and q alone (and in
this case, 3q > 2p−1 follows automatically).

This suggested the use of the Continued Fraction Algorithm on φ, where
2φ = 3, or φ = 1.5849625 . . . .

k 0 1 2 3 4 5 6 7 8 9
pk 1 2 3 8 19 65 84 485 1054 24727
ak 1 1 1 2 2 3 1 5 2 23
qk 1 1 2 5 12 41 53 306 665 15601
zrk −1 1 −5.8 31.8 −295 1192 −8461 99783 −5× 106 3× 108

(negative values of zr are included for completeness).

(To ADF: Your values 301994 and 190537 appear later in this table,
with a z-value of 9.84×1011. Did you use the CFA to arrive at these values,
or do you have another method?)

This tells me that if my computer program runs to about 1200, I know
that I shall not find a value of z0 with less than 791 steps (p = 485, q =
306), since only the odd values of k in the above table give a positive value
of zr. Similarly, by testing numbers up to about 100,000, then I eliminate
the 791 step-value, the next step-value being over 40,000.

Now we come to the interpretation of the ‘bucket and marbles’ analogy.
The bucket is the modulo set 2pk , the white marbles are all the numbers in
this modulo set less than zrk and the black marbles are the numbers which
fall in the subsets Xi, for i = 0 to q − 1. Hence, as these subsets are filled
up, some of the white marbles are replaced by black ones. The process can
also be likened to the ‘Sieve of Eratosthenes’.

I start my analogy with zr = 1192. Since it can be shown from the
Diophantine equations that the maximum value of z0 ≈ 0.75zr then I can
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use the modulo set 1024 (i.e. 210) as a convenient starting point. There are
64 white marbles in a bucket which has space for 265 marbles. There are
also 960 black marbles in the bucket (hardly equals a handful each, but . . . ).
From the above, you will see that these black marbles are the numbers less
than 1024 which are pre-tested and are arranged in the sets Xq, as in the
following table.

members available remaining
q p n in Xq space in 2p space
0 1 1 1 2 1
1 2 3 1 2 1
2 4 6 1 4 3
3 5 8 2 6 4
4 7 11 3 16 13
5 8 13 7 26 19
6 10 16 12 76 64

This table indicates that if you remove all the numbers in the modulo set
1024 with step-values up to and including 16 (the black marbles) there are 64
numbers with greater step-values (the white marbles). The table continues.

7 12 19 30 256 226
8 13 21 85 452 367
9 15 24 173 1468 1295 . . .

The white marbles are those values which are available for values of z0 in
the associated modulo set 265, but each set Xi (i = 0 to 40) must form a
subset of this modulo set and hence some of the white marbles are replaced
by black ones.

This step of the analogy fails because two of the white marbles remain
in the bucket when it is full; these are 703 and 1055 which take 132 and
130 steps respectively to reduce. Hence my admission that I have chosen a
poor analogy! However, it is the following table which indicates to me that
I have a solution based on probability

pk 8 65 485 24727
qk 5 41 306 15601
zrk 32 1192 99783 2.9× 108

steps 96 132 220 644

(The last row indicates the highest step-value observed while testing for the
associated z-values.)
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Having observed that the associated step-values increase at a much lower
rate than the size of the modulo set (bucket), I attempted an evaluation
using the estimation from the Continued Fraction Algorithm, as follows.

Let
ε = p/q − φ;

then 2ε = 2p/q−φ but since 2φ = 3, we have 2ε = 2p/q/3. Also zr =
1/(2p/q − 3), so 2p/q = 3 + 1/zr. Hence 2ε = 1 + zr/3. Taking logs to base
e,

ε log 2 = log

(
1 +

1

3
zr

)
≈ 1

3
zr

(since log(1 + x) → x as x → 0). Using this approximation gives ε ≈
1/(2.079zr), which can then substituted into the CFA estimation:

1

qnqn+1
> |ε| > 1

2qnqn+1
, or qnqn+1 < |2.079zrn | < 2qnqn+1.

Similarly,
qn+1qn+2 < |2.079zrn+1 | < 2qn+1qn+2

and by a very open interpretation of these expressions I arrive at zrn+1
≈

zrnan+1an+2. You will note that this relationship contains the term ak+2,
but a similar treatment to find pk+1 only contains the term ak+1.

Since

|zrn | < 2.079zrn < 2qnqn+1 < 2q2n+1 < 3qn+1

and 2q2n+1/3
qn+1 is a null sequence (See M203, Analysis A) it follows that

zrn/3
qn+1 is also null (squeeze rule). If we now choose aM so that

aM > max{a1a2, a2a3, . . . , an+1an+2}

then zrn+1
< zrnaM for all n, giving zrn+1

/3qn+1 is null (multiple rule).

I apologise for my sloppy presentation—if you have got this far perhaps
you should be an OU tutor (perhaps you already are!). It’s amazing how
quickly I’ve lost the habit of writing TMAs since I finished studying. Al-
ternatively, the Editorial Board have done a wonderful job in making some
sense of my ramblings.

On balance of probability I believe I have solved the problem, but prob-
ability has an annoying habit of working two ways. I would like to hear from
anyone who may be able to properly evaluate this solution, either through
the M500 magazine or by direct contact (see MOUTHS directory).
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Problem 166.1 – A geometric theorem
David L. Brown
If, from any point on one side of a given triangle, a line be drawn parallel to
a second side to meet the third side and then, from the same point on the
first side, another line be drawn parallel to the third side to meet the second
side, the parallelogram so formed is equal in area to the parallelogram whose
adjacent sides are respectively equal to the remaining segments of the second
and third sides of the given triangle.

[ADF—It is a tradition that non-trivial problems in Euclidean geom-
etry are almost totally incomprehensible without the benefit of a diagram.
Fortunately for me, David supplied one. The given triangle is ABC and D
is any point on one side of it. Lines that look as though they are parallel to
each other really are parallel to each other, and FG = AE.

You are required to prove that the two parallelograms DECF and BHGF
have equal areas.]
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Problem 166.2 – Words
ADF
A word is a string of letters, where each letter belongs to a given alphabet
of symbols.

Problem i: How many n-letter words in an alphabet of b symbols are
there? Hint: The answer is bn.

Problem ii: Find an expression for K2(n, b), the number of n-letter
words, in an alphabet of b symbols, that do not contain any double letters.

Problem iii: Find an expression for K3(n, b), the number of n-letter
words, in an alphabet of b symbols, that use every symbol at least once.

Problem iv: Find an expression for K4(n, b), the number of n-letter
words, in an alphabet of b symbols, that do not contain any double letters
and use every symbol at least once.

Define two words to be equivalent if you can transform one into the other
by a permutation of the symbols of the alphabet. Thus aaabbcd ≡ bbbccad
as can be seen by changing a→ b, b→ c and c→ a.

Problem v: Find an expression for K5(n, b), the number of equivalence
classes of n-letter words in an alphabet of b symbols that do not contain
any double letters and use every symbol at least once.

This is getting complicated; so let’s look at a non-trivial example before
going any further. There are 81 four-letter words in the alphabet {a, b, c}.
The full set is S1 = {aaaa, aaab, aaac, aaba, aabb, aabc, aaca, aacb, aacc,
abaa, abab, abac, abba, abbb, abbc, abca, abcb, abcc, acaa, acab, acac, acba,
acbb, acbc, acca, accb, accc, baaa, baab, baac, baba, babb, babc, baca, bacb,
bacc, bbaa, bbab, bbac, bbba, bbbb, bbbc, bbca, bbcb, bbcc, bcaa, bcab, bcac,
bcba, bcbb, bcbc, bcca, bccb, bccc, caaa, caab, caac, caba, cabb, cabc, caca,
cacb, cacc, cbaa, cbab, cbac, cbba, cbbb, cbbc, cbca, cbcb, cbcc, ccaa, ccab,
ccac, ccba, ccbb, ccbc, ccca, cccb, cccc}.

Removing words from S1 that have a double letter leaves S2 = {abab,
abac, abca, abcb, acab, acac, acba, acbc, baba, babc, baca, bacb, bcab, bcac,
bcba, bcbc, caba, cabc, caca, cacb, cbab, cbac, cbca, cbcb}; so K2(4, 3) = 24.

The set of words that use all three symbols is S3 = {aabc, aacb, abac,
abbc, abca, abcb, abcc, acab, acba, acbb, acbc, accb, baac, babc, baca, bacb,
bacc, bbac, bbca, bcaa, bcab, bcac, bcba, bcca, caab, caba, cabb, cabc, cacb,
cbaa, cbab, cbac, cbba, cbca, ccab, ccba}, giving K3(4, 3) = 36.

After eliminating words with double letters from S3, or alternatively
words that do not use all three symbols from S2, these 18 remain: S4 =
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{abac, abca, abcb, acab, acba, acbc, babc, baca, bacb, bcab, bcac, bcba, caba,
cabc, cacb, cbab, cbac, cbca} and under the equivalence relation they are
grouped into just three classes of six words each, represented by abac, abca
and abcb. Hence K4(4, 3) = 18 and K5(4, 3) = 3.

Now we go back to Problem iv and remove all palindromes (words that
read the same forwards or backwards) from the set. They can only occur
when n is odd (otherwise the centre of the palindrome has a repeated letter)
and when n ≥ 2b− 1 (because all b symbols have to be used).

Problem vi: Find an expression for K6(n, b), the number of n-letter
words (in an alphabet of b symbols) that do not contain any double letters,
that use every symbol at least once, and that are not palindromes.

Finally, we extend the equivalence relation in Problem v to words that
are the reverse of each other. Two words are henceforth considered to be
equivalent if there is a permutation of the alphabet that changes the first
word to the second word or its reversal. Hence aaabbcd ≡ daccbbb under
the new definition, for one can apply the permutation a→ b, b→ c, c→ a
to get bbbccad and then reverse the order of the symbols.

Problem vii: Find an expression for K7(n, b), the number of equiva-
lence classes, under the new definition of equivalence, of n-letter words (in
an alphabet of b symbols) that do not contain any double letters, use every
symbol at least once and are not palindromes.

At time of writing there was a burst of activity on the Internet concern-
ing this last problem. Ronald Bruck of the University of Southern California
posted it on to the news groupsci.math.research. I am told it has some con-
nection with products of orthogonal projections in Hilbert space.

I think (i) is quite easy, even without the hint. So is (ii) and it is not
difficult to see how to get from (iv) to (v). However, as far as I am aware,
(vii) remains unsolved. The bit about palindromes and reversals seems to
be the stumbling-block.

In our little example, K6(4, 3) = K4(4, 3) = 18 since there are no palin-
dromes in S4 and K7(4, 3) = 2, for abac is equivalent to abcb (abac→ bcba
by the permutation a→ b→ c→ a and then bcba→ abcb by reversal) but
neither is equivalent to abca.

‘[Monica was] very very angry with the President, called him lots of four-
letter words, the mildest of which was the Big Creep.’

—Lucianne Goldberg. (Spotted by EK.)
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Problem 166.3 – Boat
Dick Boardman
A small boat which travels at constant
speed in any direction is racing up a chan-
nel (which runs north - south) against the
tide. The direction of the tide is always due
south but its speed varies across the chan-
nel. At the western edge its speed is zero,
but at a distance x metres from the west-
ern edge, its speed is x/15 metres per sec-
ond. The boat starts on the western edge
and must reach a buoy which is 500 me-
tres north and 30 metres east. Obviously,
to reach the buoy, the boat must travel up
the western edge until nearly at the buoy
and then head out and past, eventually al-
lowing the tide to carry it back to the buoy.
The speed of the boat is 2 metres per sec-
ond.

The question is: How far should it
travel up the edge, and what path should it
follow when heading out in order to min-
imise the time taken to reach the mark?

I would like an analytic solution, using
techniques from the Calculus of Variations.
However, so far, all I have is computer so-
lution which breaks the path into short sec-
tions and ‘hill climbs’ towards the mini-
mum. My best solution gets there in 266.13
seconds, leaving the edge after 484.33 me-
tres.

Can anyone find an analytic solution?

EK writes—The Australian Jose Lopez was given a new heart and lungs
from a young road crash victim. It was then found that his own heart
was sound so that was transplanted into a Tasmanian farmer named Keith
Webb. When Lopez agreed to take part in the Australian 5000 metre Trans-
plant Walk later this year he found he was competing against Webb. “If he
beats me,” he said, “I want my heart back.”
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Solution 163.2 – The Tower of Saigon
The Tower of Saigon has n disks of different sizes and four pegs.
Initially the disks are threaded in decreasing order of size on one
of the pegs to form a conical tower. The object is to transfer
the entire tower to one of the other three pegs by moving disks
one at a time from peg to peg. The rules are: (a) Only a disk
at the top of a pile may be moved; (b) no disk may be placed
above a smaller disk. We showed how to do the transfer in

S(n) = min
{
k = 0, 1, . . . , n− 1 : 2S(k) + 2n−k − 1

}
moves (S(0) = 0) and we asked for (i) a proof that ∆S(n) = 1,
2, 2, 4, 4, 4, 8, 8, 8, 8, . . . , and (ii) an explicit formula for S(n).

Peter Fletcher
Extending the table [M500 163 19] for S(n) and ∆S(n) shows that the
pattern for ∆S(n) is 1, 2, 2, 4, 4, 4, 8, 8, 8, 8, . . . , 2p, 2p, . . . , 2p (p + 1
terms), . . . . (This was to have been proved in part (i).)

After a little playing about with sums and products of powers of 2,

S(1) = 1 · 20 (n = 1)
S(2) = 1 · 20 + 1 · 21 (n = 1 + 1)
S(3) = 1 · 20 + 2 · 21 (n = 1 + 2)
S(4) = 1 · 20 + 2 · 21 + 1 · 22 (n = 1 + 2 + 1)

. . . . . .
S(12) = 1 · 20 + 2 · 21 + 3 · 22 + 4 · 23 + 2 · 24 (n = 1 + 2 + 3 + 4 + 2)

. . . . . .

S(n) = 1 · 20 + 2 · 21 + 3 · 22 + · · ·+ t2t−1 + (n−
∑t
i=1 i)2

t,

where
∑t
i=1 i ≤ n. A standard result is

m∑
j=1

j =
m(m+ 1)

2
.

So
t(t+ 1)

2
≤ n, t2 + t ≤ 2n.

Completing the square, (t + 1/2)2 − 1/4 ≤ 2n; therefore 4(t + 1/2)2 −
8n + 1. Taking positive square roots, 2(t + 1/2) ≤

√
8n+ 1 and hence

t ≤ (
√

8n+ 1− 1)/2.
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The first t terms in the sum for S(n) can be expanded as
(1 + 2 + 4 + 8 + · · ·+ 2t−1)

+ ( 2 + 4 + 8 + · · ·+ 2t−1)
+ ( 4 + 8 + · · ·+ 2t−1)

. . .
+ ( 2t−1)

 =


2t − 1
2t − 2
2t − 4
. . .

2t − 2t−1


= t2t − (2t − 1) = (t− 1)2t + 1.

The first line for this expansion uses a standard result

m−1∑
j=0

rj =
rm − 1

r − 1
for r > 1,

with m = t and r = 2. The subsequent lines follow by inspection. But t
must be an integer, so using square brackets to indicate the integer part of
a number, an explicit formula for S(n) is therefore

S(n) =
(
(t− 1)2t + 1

)
+

(
n− t(t+ 1)

2

)
2t

=

(
n− 1− t(t− 1)

2

)
2t + 1,

where t =
[
(
√

8n+ 1− 1)/2
]
.

Solution 163.3 – Prime multiplication
Solve

P P P P P
P P P P

P P P P P P P
P P P P P P P
P P P P P P P P P

where each P has to be replaced with a prime number: 2, 3, 5
or 7.

Peter Fletcher
This was solved basically through trial and error, although some combina-
tions could be easily discounted: E.g., nothing can end in 2; 3× 3 = 9 and
7 × 7 = 49. So neither of the pairs of numbers being multiplied can both
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end in 3 or both end in 7. Several other excluded combinations reduced the
number of trials further. There are two answers to the first part and one to
the second:

7 5 7 5 7 7 5
× 7 7 × 3 7 × 3 3
5 2 5 5 2 5 2 3 2 5

5 2 5 2 2 5 2 3 2 5
5 7 7 5 2 7 7 5 2 5 5 7 5

Solution 164.2 – ABCD
Given that a, b, c, d are all between 0 and 1, prove that

(1− a)(1− b)(1− c)(1− d) > 1− a− b− c− d.

Martyn Lawrence
I believe the solution to this puzzle is dependent on how you interpret that
the values of a, b, c and d are ‘all between 0 and 1’. If this means that
the variables can take values in the interval [0, 1] then, should all variables
be equal to zero, the LHS is equal to the RHS, thus proving the conjecture
false by counter-example.

If, however, it means that the variables are all in the open interval (0,
1) then I offer the following proof.

Expansion of the LHS initially produces

(1− a− b+ ab)(1− c− d+ cd),

which expands further to

1− c− d+ cd− a+ ac+ ad− acd− b+ bc+ bd− bcd+ ab− abc− abd+ abcd

From the above we can rearrange the terms thus:

(1−a−b−c−d)+[(ac−acd)+(bc−bcd)+(ab−abc)+(ad−abd)+cd+bd+abcd]

Now, if a, b, c and d lie in the interval (0, 1), then (ac−acd) > 0, (bc−bcd) >
0, (ab− abc) > 0 and (ad− abd) > 0.

Thus, all the terms in the square bracket are positive, and their sum is
therefore also positive. As we are adding this positive sum to an expression
equal to the RHS, i.e. (1− a− b− c− d), we have proved that the LHS >
RHS as required.
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Grant Curry
We have

(1− a)(1− b)(1− c)(1− d) = (1− a− b+ ab)(1− c− d+ cd)

> (1− a− b)(1− c− d) (since 0 < a, b, c, d < 1)

= 1− c− d− a+ ac+ ad− b+ bc+ bd

> 1− a− b− c− d (since 0 < a, b, c, d < 1),

as required.

Also solved by Peter Fletcher with a proof similar to Martyn’s.

Solution 164.3 – 24 squares
What is the best packing of the 24 squares of side 1 to 24 onto
the square of side 70?

Barbara Lee
We have 702 = 4900, which is 12 + 22 + · · · + 232 + 242, and which is the
only instance when the sum of consecutive squares, starting with 1, is itself
a square.

Since the square pyramidal numbers are the partial sums of 12 + 22 +
· · ·+n2, we see that 4900 is the first (and only) solution to the old problem
of the cannon balls: What is the smallest number of balls that can first be
arranged on the ground as a square, then piled in a square pyramid?

In 1974 it was proved that the best solution to Chris’s tiling problem is
the one in the sketch on the cover, which omits only the 7 × 7 square.

JRH writes—The fact that 4900 is the only square pyramidal square was
proved in 1918. Martin Gardner says the proof is difficult. Here’s an easier
pyramid problem. Tetrahedral pyramids have tetrahedral numbers of balls,
the tetrahedral numbers being the partial sums of the triangular numbers 1,
3, 6, 10, 15, . . . . A cannon ball enthusiast makes two tetrahedral pyramids.
When he combines the balls in his two pyramids he finds he can exactly
make a third pyramid. What is the smallest number of balls he can have;
first, if his two pyramids are the same size, second, if they are not the same
size?
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Infinite product
John Bull

The ‘proof’ concerning the sum of the reciprocals of the squares of the
integers, as offered by Martin Hansen in M500 164, was first published
by Euler in 1734. Unfortunately it is not a proof. It is only conjecture
that sinx = 0 can be represented as a product of linear factors, that the
infinite product converges and can be manipulated, and that there are not
imaginary roots in addition to the real ones. Despite compelling evidence
from numerical experimentation, Euler himself realised that the intuitive
step to an infinite polynomial would need to be rigorously underpinned,
and he spent the next ten years trying to do this.

A discussion of the problem, together with quotes by Polya and John
Bernoulli, and lots of references, can be found in: Excursions in Calculus,
by Robert M Young, MAA 1992, ISBN 0-88385-317-5. I highly recommend
this book as a ‘must have’ for anyone interested in popular mathematics of
the style of M500.

Brain dead
JRH

Allegedly, it says in the recent issue of The Lawyer that this is a real extract
from a court case.

Lawyer: Doctor, before you performed the post-mortem, did you check
for a pulse, blood pressure, or breathing?

Witness: No.

Lawyer: So it is possible that the patient was alive when you performed
the autopsy?

Witness: No.

Lawyer: How can you be so sure?

Witness: Because his brain was sitting on my desk in a jar.

Lawyer: But could the patient have still been alive nevertheless?

Witness: Possibly. Maybe he was practising law somewhere.

Special Issue 1999
We are about to compile the 1999 Special Issue. Please send your reports
of courses which are still current to Eddie Kent as soon as possible.
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Power of ten
In M500 164 we meant to ask you to explain why

lim
n→∞

(1010
−n

− 1)10n = log 10.

Unfortunately we omitted a vital minus sign. Also we should
have said that the problem appeared in IEE News, not IEEE
News. Apologies.

Edward Stansfield
The fact that this limit is true can be shown as follows:

Let f(n) = (1010
−n−1)10n. Rearrange the expression for f(n) to obtain

1010
−n

= 1 + 10−nf(n)

and then take natural logarithms of both sides to get

10−n log 10 = log(1 + 10−nf(n)) = log(1 + x(n))

= x(n)− x(n)2

2
+
x(n)3

3
− . . . ,

where the Taylor series expansion on the right hand side is valid if |x(n)| < 1.
Since the left hand side is asymptotic to zero for large n, the term x(n) =
10−nf(n) must also be asymptotic to zero, which validates the Taylor series
expansion. Moreover, when we take the limit to infinity we get

lim
n→∞

10−n log 10 = lim
n→∞

x(n) = lim
n→∞

10−nf(n).

Multiplying through by 10n then gives limn→∞ f(n) = log 10 as was to be
shown. This completes the proof.

Alternatively one can use the Taylor series for exp(x):

1010
−n

− 1 = exp(10−n log 10)− 1

= 10−n log 10 +
1

2!
(10−n log 10)2 + . . . .

Now multiply by 10n and let n→∞. —Eds.
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Balls
JRH
Colin Davies sent me the ‘Dipole Micromatters’ column from IEE News,
3 September 1998. It has Lewis Carroll’s joke ‘problem’ of the balls in the
bag, which goes as follows.

A bag contains two balls, each either black or white. Ascertain
their colours without looking. Carroll states that one is black,
the other white, and his ‘reasoning’ goes like this.

If a bag contains BBW, then the chance of drawing B is 2/3, and no other
state gives this chance. Now the bag with two balls has BB with probability
1/4, BW with probability 1/2, and WW with probability 1/4. Now add a
black ball to the bag. The probability of drawing a black ball is now easily

seen to be
2

3
= 1 × 1

4
+

2

3
× 1

2
+

1

3
× 1

4
. So, by the original premise, the

bag contains BBW.

The puzzle is to spot the flaw in the reasoning. It states that if you
have a bag with two black balls and one white ball and you draw a ball, the
chance is 2/3 that it’s black. That’s true.

It goes on to say that any other state of things would not give this
chance. That’s false. Indeed, it immediately offers a different state of
things which also gives the 2/3 chance of drawing a black ball—namely a
bag which has BBB with probability 1/4, BBW with probability 1/2 and
BWW with probability 1/4.

In fact there are infinitely many of these states (three balls in a bag,
each either B or W ) which give a 2/3 chance of drawing a black ball. They
are the states where the probability of BBB is q, the probability of BWB is
p, and the probability of BWW is q, where p+ 2q = 1.

The two cases quoted are those where

1) p = 1, q = 0,

2) p = 1/2, q = 1/4.

You can construct these states at will; as follows, for example. Assemble
three bags containing BB, three bags containing WW and one bag contain-
ing BW. Get somebody to select a bag at random, add a black ball to it,
and draw a ball from it. The chance is 2/3 that the drawn ball is black;
and p = 1/7, q = 3/7.

But obviously you don’t know what’s left in the bag.
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Sums of odd integers
Sebastian Hayes
Clearly, 4 = 1 + 3. Also 57 = 17 + 19 + 21.

This led on to the following question.

What integers can be expressed as a sum of successive odd integers, and
in how many ways? (For my purposes 1 counts as an ‘odd’ integer, a single
odd number counts as a ‘sum’.)

Well, to start off with, since

1 + 3 + 5 + · · ·+ (2n− 1) = n2,

the question boils down to what numbers can be expressed as the difference
between two squares,

m2 − n2 = (m+ n)(m− n),

m, n ∈ Z+? If (m + n) is even, so is (m − n) and vice versa. This means
we may not have N = 2p where p is odd if we want to have N as difference
of two (perfect) squares. So the doubles of odd numbers have no expression
in terms of successive odd integers.

More usefully, if r and q are factors of N ,

N = rq =

(
r + q

2

)2

−
(
r − q

2

)2

,

r, q ∈ Z+, r, q of same parity, r ≥ q, which in terms of Galileo’s series is

(1 + 3 + 5 + · · ·+ (r + q − 1))− (1 + 3 + 5 + · · ·+ (r − q − 1))

i.e.,
(r − q + 1) + (r − q + 3) + · · ·+ (r + q − 1).

Thus, if N = 45 = 9× 5 we take r = 9, q = 5. Then

N =

(
9 + 5

2

)2

−
(

9− 5

2

)2

= 72 − 22

= (1 + 3 + · · ·+ 13)− (1 + 3)

= (5 + 7 + 9 + 11 + 13).

In the above there are five terms, and q = 5. We may conjecture that there
will always be q terms, which is easily proved since

(r − q + 1) + (r − q + 3) + · · ·+ (r + q − 1)

= (r − q + 1) + (r − q + 3) + · · ·+ (r − q + (2q − 1))

= q(r − q) + (1 + 3 + · · ·+ (2q.− 1)) = q(r − q) + q2 = rq.
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If N is a perfect square, N = r2 and so r = q = (2r/2)2−02 (allowing zero).
The formula actually still works since (r − q + 1) = 1 if r = q. Moreover,
if we allow negative odd integers, we do not need to stipulate that r ≥ q.
Thus if r = 5 and q = 9, we obtain

N = (−3) + (−1) + (1) + · · ·+ (13) (9 terms).

In how many ways can an integer be expressed in this fashion?

I found it necessary to tackle this in piecemeal fashion.

Suppose N is pm where m is an odd number. If we keep to positive
integers for the time being, we find that NG, or the number of ways an
integer can be expressed as a sum of consecutive odd integers is (m+ 1)/2
for m odd and (m+ 2)/2 for m even.

If p = 2, we lose a pair of factors and the number of ways for 2m reduces
to (m− 1)/2 for m odd and m/2 for m even.

If N is not a power, it has a (unique) expression as prime numbers raised
to powers i.e. N = paqbrc . . . , where p, q, r, . . . are primes.

If N is odd, NG, as far as I can make out, is

a+ 1

2

b+ 1

2

c+ 1

2
. . .

if a, b, c, . . . are odd, and we make the corresponding changes to a/2, b/2,
c/2, . . . if a, b, c, . . . are even. If we have N = 2aqbrc . . . , we lose one set
of solutions, so NG = (a − 1)/2 or a/2 . . . . I have no doubt that someone
versed in combinations and permutations will provide a more elegant general
formula without too much effort.

This question leads on to other, much tougher questions in Number The-
ory, notably whether Goldbach’s Conjecture is right—Goldbach suggested
that every even number greater than 4 is the sum of two odd primes.

Note: I refer to the series

1 + 3 + 5 + · · ·+ (2n− 1)

as Galileo’s series because of his epoch-making observation that ‘the dis-
tances traversed during equal intervals of time, by a body falling from rest,
stand to one another in the same ratio as the odd numbers beginning with
unity.’

‘Religion affects us all; it shapes our world and those around us . . . ’

—R4 trailer (spotted by JRH).
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Euler relation
David L. Brown

How’s this for an ‘Euler Boiler’? Look what happens if we find

∫ 1

0

dx

1 + x2

by two methods, then equate the results. If i =
√
−1 then 1 + x2 = (1 −

ix)(1 + ix). Put

1

1 + x2
=

A

1− ix
+

B

1 + ix

=
A(1 + ix) +B(1− ix)

(1− ix)(1 + ix)

→ A(1 + ix) +B(1− ix) = 1.

Therefore A+B = 1 and A−B = 0 → A = B = 1/2. Hence∫ 1

0

dx

1 + x2
=

1

2

∫ 1

0

{
1

1− ix
+

1

1 + ix

}
dx

=
1

2i

[
− log(1− ix) + log(1 + ix)

]1
0

=
1

2i

[
log

1 + ix

1− ix

]1
0

=
1

2i
log

1 + i

1− i

=
1

2i
log

(1 + i)2

(1− i)(1 + i)
=

1

2i
log

1 + 2i+ i2

1− i2
=

1

2i
log i.

But we know that ∫ 1

0

dx

1 + x2
=
[

arctanx
]1
0

=
π

4
.

Therefore
1

2i
log i =

π

4
→ log i =

πi

2
;

i.e. eπi/2 = i. Squaring both sides we get eπi = −1; i.e. eπi + 1 = 0. Has
this strange Euler relationship been previously obtained via the Calculus?
The relationship can be expanded:

Since eπi = −1, squaring both sides gives e2πi = 1. But 1n = 1, where
n is any real integer (positive or negative). Therefore e2πni = 1n = 1, i.e.
e2πni = 1 for all n. Hence the relationship is even stranger! Does this mean
it is cyclic? Does anybody understand what it means?
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Prime numbers and groups
Grant Curry
If the set of all prime numbers is a group then there must exist a closed
binary operation between all pairs of primes. If simple operations such as +,
−, ×, / are considered then it is apparent these are not the binary operation
needed.

Let P be the set of prime numbers: 7, 13 ∈ P ; however, 13− 7 = 6 /∈ P
and 13 + 7 = 20 /∈ P . But by definition, 13× 7 /∈ P and 13/7 /∈ P .

The set P is not a group under modulo multiplication because the Iden-
tity, 1 /∈ P . Similarly for modulo addition, 0 /∈ P .

A natural question to ask is there any binary operation for P to be a
group? What we are looking for is a function of three variables. It can be
shown that a polynomial of two variables cannot represent prime numbers
and this can be extended to a polynomial of three variables as follows.

Let p, q, r ∈ P and let

p = anq
n+an−1q

n−1+ · · ·+aq+a0+bmr
m+bm−1r

m−1+ · · ·+br+b0. (1)

As there are infinitely many primes, when q and r run through the primes
they will simultaneously reach a0 and b0 and hence the right hand side of
(1) can be factorized in which case p is not prime. (If a0 or b0 are composite
then the RHS can still be factorized because of the fundamental theorem
of arithmetic). Hence there does not exist a polynomial of three variables
which generates primes. This could be extended to a function of n variables.

Now Taylor’s Theorem states that if a function f is (n + 1)-times dif-
ferentiable on an open interval containing the points a and x then f(x) can
be expressed as a polynomial with f(a) as a constant. Hence it follows that
if a function has at least a first derivative then it can be represented by
a polynomial and from the above argument cannot represent only primes.
It also follows that any number of combinations of differentiable functions
cannot represent primes and therefore no differentiable function can be a
binary operation for P to be a group.

Apology
We wish to apologize to Ralph Hancock for our treatment of his Latin poem
De pharo eddystoniensi [M500 164 14–15]. We wish to make it clear that
the idiotic English translation and facetious comments at the end were in
fact due to one of us (EK) and indeed should have been omitted, for Ralph
was aware of EK’s ‘contribution’ and had specifically asked ADF not to
include it.
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