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A history of π
David Singmaster
This began as extracts from my various chronologies but has since been
extended to cover the topic in greater depth.

Notes

π = 3.14159 26535 89793 23846 26433 83279 50288 41971 69399
37510 58209 74944 59230 78164 06286 20899 86280 34825 34211
70679 82148 08651 32823 06647 09384 46095 50582 23172 53594
08128 48111 74502 84102 70193 85211 05559 64462 29489 54930
38196

25/8 = 3.125
16/5 = 3.2
22/7 = 3.14285 71428 57143
223/71 = 3.14084 50704 22535
256/81 = 3.16049 38271 60494
355/113 = 3.14159 29203 53982√

10 = 3.16227 76601 68379

The continued fraction for π is: [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14,
2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, 4, 2, 6, . . . ]. The first 11
convergents are:

3/1 = 3.00000 00000 00000
22/7 = 3.14285 71428 57143
333/106 = 3.14150 94339 62264
355/113 = 3.14159 29203 53982
103993/33102 = 3.14159 26530 11903
104348/33215 = 3.14159 26539 21421
208341/66317 = 3.14159 26534 67437
312689/99532 = 3.14159 26536 18937
833719/265381 = 3.14159 26535 81078
1146408/364913 = 3.14159 26535 91404
4272943/1360120 = 3.14159 26535 89389

The value 3927/1250 = 3.1416 has continued fraction [3; 7, 16, 11],
which has the notable convergents: 3; 22/7; 355/113; 3927/1250.

In sexagesimals, the value obtained by al-Kashi is: [3; 8, 29, 44, 0, 47,
25, 53, 7, 25]. The correct value is: [3; 8, 29, 44, 0, 47, 25, 53, 7, 24, 57, 36,
17, 43, 4, 29, 7, 10, 3, 41].

eπ
√
163 = 262 53741 26407 68743.99999 99999 992. . . .
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Tony Forbes gives 55 expressions which approximate π and gives the
number of correct places.

I use the following symbols: C = circumference, A = area of a circle of
radius r; V = volume of a sphere of radius r, φ = (1 +

√
5)/2. Earlier au-

thors did not always know that the constant values C/2r, A/r2 and 3V/4r3

were the same, which sometimes confuses things.

The number of digits and the number of decimal places may differ by
1 since authors are not always clear whether they include the initial 3 or
whether they consider rounding of final figures. Roger Webster has given
me a sheet with details of computer calculations giving the number of digits
computed and the number correct. These differ a bit from what I have
recorded. I will give his values as: Webster: correct/computed if they differ
from what I have, though I won’t bother with the longer values where the
number of correct places is essentially equal to the number of computed
places except for a few places at the end.

A quadratrix is a curve which allows one to determine π. However,
these cannot be constructed with ruler and compass.

Following Wrench, I label the following identities which are used by
various calculators. Following Conway & Guy, I let tn = tan−1(1/n), so,
e.g. t1 = π/4. Conway and Guy call these Gregory numbers.

I.
π

4
= 5t7 + 2 tan−1

3

79
. Euler, 1755.

II.
π

4
= 4t5 − t70 + t99. Euler, 1764.

III.
π

4
= t2 + t5 + t8. Von Strassnitzky, 1844.

IV.
π

4
= t2 + t3. Hutton, 1776 (another source says Euler knew this).

V.
π

4
= 2t3 + t7. Hutton, 1776 (another source says Euler knew this).

VI.
π

4
= 3t4 + t20 + t1985. West, 1810?; Loney, 1893.

VII.
π

4
= 8t10 − t239 − 4t515. Klingstierna, 1730; West, 1810?

VIII.
π

4
= 12t18 + 8t57 − 5t239. Størmer, 1896.

IX.
π

4
= 4t5 − t239. Machin, 1706.

X.
π

4
= 5t7 + 2t18 − 2t57. Euler, c. 1750.
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Some References

Augustus De Morgan, A Budget of Paradoxes (1872); 2nd edition, edited
by D. E. Smith, (1915), Books for Libraries Press, Freeport, NY, 1967.

J. W. Wrench Jr., ‘The evolution of extended decimal approximations to
π’, Mathematics Teacher 53 (Dec 1960) 644–650. Good survey with 55
references, including original sources.

Petr Beckmann, A History of π. The Golem Press, Boulder, Colorado,
(1970), 2nd ed., 1971.

Lam Lay–Yong & Ang Tian-Se, ‘Circle measurements in ancient China’,
Historia Mathematica 13 (1986) 325–340. Good survey of the calculation
of π in China.

Dario Castellanos, ‘The ubiquitous π’, Mathematics Magazine 61 (1988)
67–98 & 148–163. Good survey of methods of computing π.

Jonathan & Peter Borwein, ‘Ramanujan, modular equations, and approx-
imations to π, or how to compute one billion digits of π’, Amer. Math.
Monthly 96 (1989) 201–219.

Joel Chan, ‘As easy as pi’, Math Horizons 1 (Winter 1993) 18–19. Outlines
some recent work on calculating π and gives several of the formulae used.

Tony Forbes, ‘An assortment of approximations to π’, M500 145 (July 1995)
10–13.

John H. Conway & Richard K. Guy, The Book of Numbers, Copernicus
(Springer-Verlag) 1996, pp. 241–248.

Eddie Kent, ‘Table of computations of π from 2000 B.C. to now’, M500 159
(Dec 1997) 2. (This gives a number of early Chinese and Indian dates that
I have not seen elsewhere and I will wait until I have more details before
entering them.)

Alex D. D. Craik, ‘Geometry, analysis, and the baptism of slaves: John West
in Scotland and Jamaica’, Hist. Math. 25:1 (1998) 29–74. West computed
π, so Craik discusses this in general on pp. 63–64.

Boaz Tsaban & David Garber, ‘On the Rabbinical approximation of π’,
Hist. Math. 25:1 (1998) 75–84.
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The History

c. –1720 / c. –1570. Ahmes copies Rhind papyrus. Includes rule
making π = 256/81 = 3.16049. This approximation is still used in cooking,
where a 9′′ diameter circular pan is considered equal to an 8′′ side square
pan. In fact the Egyptian picture may imply that the area of a circle of
diameter 9 should be 63 which would give π = 31/9 = 3.11111.

c. –1700. An Old Babylonian tablet gives π = 25/8 = 3.125.

c. –550. The Old Testament (I Kings 7.23 and II Chronicles 4.2) indi-
cates π = 3. Tsaban & Garber say this was written after −965 and ‘not
much later’ than −561. However, the texts differ by one letter in the spelling
of the word ‘line-measure.’ Applying Hebrew gematria to the letters, one
spelling has number values 5, 6, 100 while the other has 6, 100. Taking the
totals gives us 111 and 106 and 111/106 ≈ π/3, indeed 333/106 = 3.14150
94340. (One source attributes this to Gaon of Vilna, but Tsaban & Garber
say the earliest they can find it is in 1962!)

c. –520. Bryson, possibly a pupil of Pythagoras, estimates π by use
of inscribed and circumscribed hexagons, obtaining π = 3.031. Apparently
the first person to try this, he could not go to larger polygons because of
the limited geometrical knowledge of his time.

c. –500. The Talmud gives π = 3.

c. –430. Hippocrates of Chios shows that areas of circles are propor-
tional to the squares of their diameters, i.e. that A = cr2 for some constant
c, i.e. that π exists. He is also the first to find an area bounded by curves,
leading to the hope that the circle could be squared.

–428. Death of Anaxagoras, first man accused of trying to square the
circle.

c. –420. Trisectrix (and Quadratrix) of Hippias. See c. –350.

−414. Aristophanes’ The Birds refers to circle squarers.

c. –350. The Sulvasutras include constructions which can be interpreted
as implying 15 values of π, ranging from 2.56 to 3.31, including π = 54 −
36
√

2 = 3.08831, 25/8, 256/81 = 3.16049, 625/196 = 3.18878 and 16/5. [R. C.
Gupta, ‘New Indian values of π from the Manava Sulba Sutra’, Centaurus
31 (1988) 114–126.] Kaye [‘The Trisatika of Sridharacarya’, Bibliotheca
Math. (3) 13 (1913) 203–217 & plate] says they had values of 3.0044 and
3.097.

c. –350. Dinostratus, brother of Menaechmus, shows that the Trisectrix
of Hippias is also a Quadratrix.

c. –335. Eudemus: History of Geometry. (c.−350?) Though the orig-
inal is lost, many excerpts have been preserved in other works. He says
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Antiphon and Hippocrates (presumably of Chios) thought they had squared
the circle. Actually Antiphon describes constructing 2n-gons and carrying
on indefinitely.

c. –300. Euclid’s Elements only gives 3 < π < 4.

–250. Archimedes shows A = rC/2 and uses a 96-gon to show 223/71 <
31137/8069 < π < 31335/9347 < 22/7, i.e. 3.140845 < 3.140910 < π <
3.142827 < 3.142857. I also have that he got 3.141495 < π < 3.141697 and
3.14103 < π < 3.14271 by use of a 96-gon, but I don’t know why there are
different values. He may have found 333/106 = 3.141509.

−2C. Apollonius may have known 333/106 = 3.141509 and Ptolemy’s
377/120 = 3.141666. . . .

−1C. Jiu Zhang Suan Shu generally uses π = 3, but says the volume
of a sphere is 9/16 the volume of the circumscribed cube, i.e. V = 9/2 r3, a
traditional ratio based on weighing, corresponding to π = 27/8.

c. –25. Vitruvius’s De architectura is often said to have given π = 25/8,
but this is due to editorial tampering with the text which gives π = 3. [John
Pottage, ‘The Vitruvian value of π’, Isis 59 (1968) 190–197.]

c. –20. Liu Xin (= Liu Hsin) gives an improved value of π perhaps
3.1547.

c. 0. The Mahabharata uses π = 3.

c. 120. Zhang Heng (78–139) gives π = 365/116 = 3.14655 (or 92/29 =

3.17241) and π =
√

10 = 3.16228. Another source says Chang Hing gives
π = 142/45 = 3.15556, cf. c. 250.

c. 85 / c. 165. Ptolemy: Almagest. He estimates π = [3; 8, 30] =
317/120 = 3.1416666. . . .

2C? The Mishnat Ha-Midot gives 31/7.

3C. Chinese have ‘Chih’s value’ of 31/8.

c. 250. Wang Fan gives π = 142/45 = 3.15556. Another source at-
tributes this value to Chang Hing in 120.

263. Liu Hui’s ‘method of circle division’ estimates 3.141024 < π <
3.142704 by use of a 192-gon, but he uses 157/50 = 3.14 for practical work.
Using a 3072-gon, he may have estimated π = 3.14160, but some historians
feel this was done by Zu (c. 480). Another source says Liu Hui misinterpreted

the Jiu Zhang Suan Shu as giving π = 3 and then suggested
√

10.

4C. Al-Biruni says the Pulisa Siddhanta gives π = 3 and 3177/1250 =
3.1416.

c. 480. Zu Chongzhi = Tsu Ch’ung-chih (430–501), also known as
Wenyuan, estimates π by 22/7 and by 355/113 (= 3.14159292) and says
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3.1415926 < π < 3.1415927 (see Liu, 263). He may have used a 24,576
sided polygon. He may have given π = 25/8.

499. Aryabhata I gives π = 3.1416 (by examining a polygon of 384

sides) and π =
√

10. (Al-Biruni, quoting Brahmagupta, says the first is
Ptolemy’s value 3393/1080 = 317/120 = 3.14166 66667, but that another
place has 3393/1050, which al-Biruni assumes to be a copying error. Shukla
says Aryabhata gives 62832/20000 and this is the first time it occurs.) Says
the volume of a sphere is (πr2)3/2, which is the volume of a circular cylinder
of radius r and height

√
πr. This effectively makes π = 16/9 = 1.555. . . !

628. Brahmagupta gives π = 31/7, noting that this is nearly
√

10, but
al-Biruni also says he gives 4800/1581 = 3.03605 31309.

629. Bhaskara I gives Aryabhata’s formula for the volume of a sphere
and also quotes another earlier formula: V = 9/2 r3, corresponding to π
= 27/8 = 3.375. He also gives the following estimate (converted to radian
measure): sinx = 16x(π− x)/(5π2− 4x(π− x)), which leads to π = 16/5 =
3.2. (Previously dated as 522.)

635. The Sui Shu of Tsu Ch’ung-chih gives π = 3.1415927. (?)

c. 780. Al-Biruni gives 164909/52500 = 3.14112 38095 as a value due
to ibn Tariq.

c. 820. Al-Khowarizmi mentions
√

10 as a value used by geometers.

850. Mahavira gives the volume of a sphere as 9/2 9/10 r3, corresponding
to π = 243/80 = 3.0375.

c. 900. Sridhara uses
√

10. He gives the volume of a sphere as 419/18 r3,
corresponding to π = 19/6 = 3.16666. . . , and this is repeated by Aryabhata
II (c. 950) and Sripati (1039).

904. Vatesvara notes that Aryabhata’s value of 3927/1250 = 3.1416 is

better than
√

10.

973/1048. Al-Biruni determines π as 3.1417482.

c. 1000. Madhavacandra estimates π as
√

10.

1030. Al-Biruni cites various Indian values for π, states it is irrational,
says it is nearly 4800/1527 = 373/509 = 3.14341 84676 and also gives a value
due to ibn Tariq, c. 780.

c. 1100. Omar Khayyam (Abul-Fath Umar ibn Ibrahim al-Khayyami)

asserts that values like
√

2 and π are actually numbers, rather than just
ratios of magnitudes as in Greek thought.

1150. Bhaskara II gives 3927/1250 = 3.1416, 22/7,
√

10 and 754/240
(= 377/120) = 3.141666. . . . He correctly gives the volume of a sphere as
(surface×D)/6 and the correct formula when π = 22/7.
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c. 1190. Maimonides (1135–1204) asserts that π cannot be known pre-
cisely (apparently meaning it is irrational) and gives 31/7 as an approximate
value.

1202. Fibonacci: Liber Abaci. He estimates 3.1410 < π < 3.1427 or
π = 864/275 = 3.141818 by use of a 96-gon.

1247. Qin Jiushao gives π =
√

10.

c. 1320. Dante’s Paradiso, XXXIII, 133–136, mentions circle squaring
or measuring (‘misurar lo cerchio’).

14C. Zhao Youqin uses the ideas of Liu (263) and Zu (c. 480), reaching
a 16384-gon, obtaining π = 3.1415926.

1424. Al-Kashi gives 2π as 6.28318 53071 79586 5, so π = 3.14159 26535
89793 3 by using a polygon of 3 × 228 = 805,306,368 sides, making careful
allowance for rounding errors. He actually does his work in sexagesimals,
obtaining [6; 16, 59, 28, 34, 51, 46, 15, 50].

c. 1500. Nilakantha gives the series usually called Leibniz’s. In his
commentary on Aryabhata I, he asserts that no rational value can be found
for π.

1551. Rhaeticus (1514–1576) publishes tables of the six trigonometric
functions for 10′ intervals, to 7 figures. He then starts on tables with 10′′

intervals, completed and printed by his student Otho in 1596, q.v. The value
of sin 10′′ implies π = 3.14159 26523.

1573. L. Valentin(e) Otho gives π = 355/113, as done by Zu Chongzhi
(c. 480). Peurbach (1423–1469) also gives this value.

c. 1580. Tycho Brahe estimates π = 88/
√

785 = 3.14085.

1585. Adrien Anthoniszoon (= Metius?) estimates π = 355/113, as
given by Zu Chongzhi (c. 480). He apparently added numerators and de-
nominators of the approximants 333/106 and 377/120.

1593. François Viète (= Franciscus Vieta) (1540–1603). Uses a polygon
of 6 × 216 = 393,216 sides to determine π to 9 places—in his Variorum
de rebus mathematicis responsorum liber VIII. (1597?) Finds his infinite

product:
2

π
=
√

1/2

√
1/2 + 1/2

√
1/2

√
1/2 + 1/2

√
1/2 + 1/2

√
1/2 . . . . Indeed

this is the first usage of an infinite product. (F. Rudio first proved that this
converged in 1891.) He also gives π = (12 + 6/φ)/5 = 3.141640786.

1593. Adriaen van Rooman (Adrianus Romanus) extends Vieta’s work
to 17 places: π = 3.14159 26535 89793 23. (Or 15 places, using a polygon
of 230 sides.)

1551/1596. The trigonometric tables of Rhaeticus and Otho have a
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value of sin 10′′ which implies π = 3.14159 26523.

1610. Ludolph van Ceulen computes π to 35 places using a polygon of
262 sides. His tombstone says that π > 3.14159 26535 89793 23846 26433
83279 50288, but is less than the number with the last digit increased to 9.
(Kent says he got 20 places in 1596.)

1621. Willebrord Snel(l) (van Roijen) improves the methods, so he can
obtain van Ceulen’s results (or gets 36 places) with a polygon of 230 sides.
Huygens proves Snell’s method is correct in 1654.

1627. In Japan, Yoshida Koyu gives π = 3.16, probably derived from√
10.

1630. Grienberger, using Snell’s method, gets 39 places.

1632. In Japan, Imamura Chisho uses π = 3.162, probably derived
from

√
10, but gives the volume of a sphere as 0.51D3, corresponding to π

= 3.06.

1655. Wallis gives his product:

π

2
=

2

1
× 2

3
× 4

3
× 4

5
× 6

5
× 6

7
× . . . =

∏ 4m2

4m2 − 1
.

c. 1658. Brouncker gives a continued fraction for 4/π based on Wallis’s
product. 4/π = 1 + 12/(2 + 32/(2 + 52/(2 + 72/ . . . ))).

c. 1660? Thomas Hobbes asserts π = 16/5.

1663. In Japan, Muramatsu Kudayu Mosei considers a polygon of 215

= 32768 sides inscribed in a circle of diameter 1 and finds the perimeter is
3.14159 26487 77698 86924 8 and then cautiously says one should take π =
3.14. In discussing the volume of the sphere, he arbitrarily takes π = 3.144.

1667. James Gregory’s Vera Circuli et Hyperbolae Quadratura gives
first series expansions for trigonometric functions and proves π is irrational.

1670. In Japan, Sawaguchi Kazuyuki arbitrarily gives π = 3.142.

c. 1670? Huygens gives π = 3 +
√

2/10 = 3.1414213562.

1671. James Gregory finds the series:

tan−1 x = x− x3

3
+
x5

5
− x7

7
+ . . . ,

though he didn’t try x = 1 in this as done by Leibniz.

1672. π = 355/113 is first given in Japan by Ikeda Shoi.

1674. Leibniz finds π/4 = 1/1−1/3 + 1/5−1/7 + . . . , generally known
as Leibniz’s series, though it is a special case of Gregory’s series, and is
equivalent to Brouncker’s expression—as shown by Euler.
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1676. Newton finds the series

sin−1 x = x+
1

2

x3

3
+

1

2

3

4

x5

5
+ . . . .

He used x = 1/2 and obtained 14 places of π.

1699. Abraham Sharp computes 72 decimal places of π using the series
of Gregory/Leibniz with x = 1/

√
3. Another source says he computed 75

places and checked it to 72 places by another method, but doesn’t spec-
ify either method. (Craik dates this as 1741, but this may be a date of
publication?)

1706. John Machin gives his identity IX for π and uses it with Gregory’s
series to compute π to 100 places.

1706. William Jones’s Synopsis palmariorum mathesos, or A New In-
troduction to the Mathematics introduces symbol Π for what we now denote
by π and first publishes Machin’s 100 decimals; Π had previously been used
for ‘periphery’ by Oughtred and David Gregory.

1712. In Japan, a book giving some of Seki Kowa’s results gives a
rather arbitrary interpolation to obtain π = 3.14159 26535 9.

1719. Fautet De Lagny extends Sharp’s calculation to compute 127
decimals of π, with a unit error in the 113th place.

1722. In Japan, Takebe Kenko says he used Seki’s ideas and a 1024-gon
to obtain 42 places of π, though it seems it must have used a larger n-gon to
do this. Takebe also describes using the square of the perimeter of the 512-
gon to obtain 32 places of π2 and gives continued fraction approximations
and a series for the square of the arc length of an arc of height h in a circle
of radius r. Taking h = r or 2r gives values for π2.

1730. S. Klingstierna discovers VII. See 1832, 1926, 1957.

c. 1730. In Japan, Kurushima Yoshita gives π2 = 98548/9985, correct
to 9 places. Takuma Genzayemon obtains π correct to 25 places.

1733. Buffon devises his famous needle-dropping experiment to mea-
sure π, but he doesn’t publish a full description until 1777.

1736. Euler finds
∑ 1

n2
=
π2

6
.

1739. In Japan, Matsunaga Ryohitsu uses Newton’s series to get 50
places of π, but this was not published until 1769, q.v.

1745. J. E. Montucla’s Histoire des recherches sur la quadrature du
cercle appears anonymously.

1748. Euler’s Introductio in Analysin Infinitorum makes the Greek
letter for π the standard notation. (He had used it in various ways from
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1736.) He seems to be the first to observe that t1 = t2 + t3 and he used this
to find a series for π. He also extends his 1736 result to the general formula
for
∑

1/n2k. He gives π to 126 places.

c. 1750. Euler gives

π

2
=

3

2

5

6

7

6

11

10

13

14

17

18

19

18
. . . ,

where the numerators are the odd primes and the denominator correspond-
ing to p is p+ 1 or p− 1, whichever is not divisible by 4.

c. 1750. Euler gives e to 15 places. Conway & Guy say he knew IV, V
and X.

1755. Euler finds another series

tan−1 x =
x

1 + x2

(
1 +

2

3

x2

1 + x2
+

2

3

4

5

(
x2

1 + x2

)2

+ . . .

)
.

He gives I and uses it to compute 20 places of π in one hour. Conway and
Guy give a different form, using m = n2 + 1:

tan−1
1

n
=

1√
m

(
1 +

1

2

1

3m
+

1

2

3

4

1

5m2
+

1

2

3

4

5

6

1

7m3
+ . . .

)
.

Euler pointed out that since the values of m are 10 and 50 in using V and
50, 325, 3250 in using X, so that calculations are quite easy.

1755. French Academy of Sciences refuses to examine any more solu-
tions of the quadrature problem. The Royal Society follows suit a few years
later.

1761. (But not printed until 1768 and 1770.) Lambert shows π and
em, for rational m, are irrational, though the proof requires some later
amendments by Legendre. His method was to show that if x is rational and
non-zero, then tanx is irrational. He also computes the continued fraction
of π as: [3; 7, 15, 1, 292, 1, 1, 1, 2, . . . ]. and conjectures π is transcendental,
as followed by Euler (1775) and Legendre (1794).

1764. Euler publishes II. Used in 1841.

1769. In Japan, Arima Raido publishes π to 50 places, as obtained
but not published in 1739. He also gives the fraction 42822 45933 49304
/ 13630 81215 70117 which gives π correct to 29 places. Another source
says that the fraction 5419351/1725033, which is correct to 12 places, was
known about this time.

1776. Hutton gives IV (used in 1853 & 1877) & V (used in 1789) and
a series for π/4.
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1777. Buffon fully describes his experiment.

1789. Georg von Vega uses Gregory’s series and V to compute 143
decimals of π, 126 being correct. See 1794.

1794. Vega redoes his 1789 work, using I, to obtain 140 places, with
136 correct.

1794. Legendre’s Élements de Géométrie amends Lambert’s work and
shows π2 is irrational.

c. 1800. Chu Hung uses Newton’s series to get 40 places of π, but only
25 are correct.

1808. Specht finds
√

146× 13/50 = 3.141591953.

1810? (Published 1838.) John West states that the easily proven result
that tn = tn+c + tn+d if cd = n2 + 1. Cf. 1880s, Carroll. He finds or states
VI, VII, IX and π/4 = 3t7 + 2 tan−1(2/11).

1818. Gauss develops his arithmetic-geometric mean for elliptic
integrals— see 1976. At some time, he also studies the general form of
arctangent relations and gives VIII, used in 1957–58.

1822. Thibaut finds 156 decimals of π.

1832. K. H. Schellbach rediscovers VII.

1841. William Rutherford computes 208 digits of π, using II, but the
last 56 are wrong. (Kent dates this as 1824.)

1844. L. K. Schulz von Strassnitzky gives III. Johann Zacharias Dase
uses this to compute π to 205 places, 200 being correct. This was done
(largely or entirely?) in his head, taking two months, and was published in
Crelle’s Journal 27 (1844) 198.

1847. Thomas Clausen publishes 248 decimals of π, using V.

1853. W. Lehmann uses IX to compute 261 places of π and then
independently checks this by use of V.

1853. Richter gives 330 places of π, going to 440 in 1854 and 500 in
1855, confirming Shanks’s 1854 work (presumably corrected), but he doesn’t
say how he did it.

1854. William Rutherford continues computing π, using IX, getting
441 places. Shanks soon exceeds him and Shanks’s 530 places are published
in a paper of Rutherford.

1854. Rutherford’s pupil William Shanks uses IX and computes π to
318, then 530, then 607 places, which he publishes later this year. However,
it is wrong from the 528th place. This is not detected until 1945, q.v.
Further, he made an error in correcting proofs which produced errors in
places 460–462 and 513–515, and these were not corrected until his second
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paper of 1873.

1872. Edgar Frisby uses Euler’s series and V to get 30 places of π.

1872. Augustus De Morgan notes a deficiency in the number of 7s in
Shanks 607 places.

1873. Shanks continues his 1853 calculation of π to 707 places with-
out noticing the error. He publishes this with the 1854 proof errors and
then publishes a second paper with these corrected, but there is a new
typographical error in the 326th place.

1877. Tseng Chi–hung uses IV to compute 100 places of π in a little
over a month.

1880s? Conway and Guy say Lewis Carroll noted that tn = tn+c+tn+d
if and only if cd = n2 + 1. Cf. West, 1810?

1882. Lindemann shows π is transcendental by showing that if Ai
and ci are algebraic, then

∑
Ai exp(ci) 6= 0, except in obvious cases. But

eiπ+e0 = 0. This appeared as: ‘Über die Zahl π’, Math. Annalen 20 (1882)
213–225.

1885. Weierstrass simplifies Lindemann’s proof.

1890. Gerard Daniel [Knowledge 13 (1 Nov 1890) 257] suggests

C = 3D+ (side of inscribed square)/5 = 3.1414213562373 . . . and 3
√

5/5 +

2
√

2/3 + 6/7 = 3.14159 26852 2. . . .

1893. S. L. Loney publishes VI. Størmer also finds it in 1896. Used in
1944–1945.

1896. Størmer relates Gaussian integers to Gregory numbers tn =
tan−1(1/n) and shows how to obtain a Gregory number as a sum of other
Gregory numbers. From this it follows that the only two-term expressions
for π/4 are IV, V, IX and 2t2− t7. This is described in Conway & Guy, but
there is a misprint for VIII at the bottom of p. 246.

c. 1900. The number e is known to 346 places.

1900. H. S. Uhler uses IX to get 282 places of π.

1901. Lazzerini uses Buffon’s method with 3408 throws to get π =
3.1415929, a result which is several orders of magnitude more accurate than
can reasonably be expected—see 1959.

1902. F. J. Duarte uses IX to compute 200 places of π. Published in
1908.

1909. ‘If we take the world of geometrical relations, the thousandth
decimal of pi sleeps there, though no one may ever try to compute it.’
William James, The Meaning of Truth.

c. 1910. Ramanujan discovers 355/113 (1 − 0.0003/3533) = 3.14159
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26535 89794 3286, which is accurate to 15 places.

1914. Ramanujan discovers (2143/22)1/4 = 3.14159 26525 82646 1252.

1926. C. C. Camp uses VII to obtain π/4 to 56 places.

1929. Gelfond’s work shows eπ is irrational.

1933. Uhler finds 333 places of π as a by-product of other work.

1938. D. H. Lehmer studies arc-cotangent relations and recommends
use of VII and VIII and J. P. Ballantine substantiates this in 1939.

1944–45. D. F. Ferguson uses VI to compute π to 530 places by hand
and discovers the error in Shanks’s 1853 and 1873 results. (Craik says
Ferguson records using a new series due to R. W. Morris in May 1944,
which turns out to be VI, but another source says he used IX—perhaps he
used both?)

1945–47. Ferguson uses a desk calculator to obtain 710 places in Jan-
uary 1947 and finds that Shanks apparently omitted a term from the 569th
place onward. [Math. Gaz. 30 (1946) 89–90.] He extends to 808 places in
September 1947.

1947. John W. Wrench Jr. and Levi B. Smith use IX to compute 818
places of π, agreeing with Ferguson’s 710 places. (The same other source
says they used VI (?).) In April 1947, 808 places were published. Ferguson
continued his calculations and showed an error in Wrench’s calculations
from the 723rd place. These were corrected and a checked 808 place value
was published in January 1948. Subsequently, Wrench and Smith obtained
1120 places by June 1949, but the following work superseded their work
before they had checked it. They later extended to 1160 places in January
1956, 1157 agreeing with ENIAC.

1949. Labor Day weekend: von Neumann, George Reitwiesner, and N.
C. Metropolis use IX and ENIAC at Aberdeen Proving Ground to compute
2037 digits (or places) of π in 70 hours (Webster: 2037/2038). They also
compute 2016 digits of e in 36 hours and study the distribution of the digits
in both π and e.

1954. November: S. C. Nicholson and J. Jeenel use IX and NORC to
compute 3089 places of π in 13 minutes, as a test prior to delivery (Webster:
3092/3093; Kent: 3092).

1957. 31 March: G. E. Felton uses Pegasus at the Ferranti Computer
centre, London, to compute 10,021 places of π in 33 hours, using VII. How-
ever, a check using VIII showed only 7480 places were correct, due to a
machine error.

1958. 1 March: Felton corrects error and gets two independent values
of π to 10,021 places, disagreeing only by 3 units in the last place. (Kent
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dates this as May.)

1958. January: François Genuys uses Gregory’s series, IX and an IBM
704 at Paris Data Processing Center to compute 10K digits of π in 100
minutes.

1959. Norman T. Gridgeman analyses results reported by various
needle-droppers and finds many of them too good to be true—especially
Lazzerini’s 1901 work.

1959. 20 July: Jean Guilloud uses Genuys’s program on an IBM 704 at
the Commissariat à l’Énergie Atomique in Paris to compute 16,167 places
of π in 4.3 hours. Wrench found no significant deviation from randomness
in the numbers of digits.

1961. Daniel Shanks (no relation to William Shanks) and John W.
Wrench Jr. compute 100,265 places of π in 8.7 hours on an IBM 7090. The
computation is done in two ways to provide a check. The formulae used
were π/4 = 6t8 + 2t57 + t239 and VIII, both due to Størmer. Gardner dates
this as 1957.

c. 1964. Philip J. Davis asks a π calculator for an upper bound on the
number of decimals to which π could ever be computed. The answer was
one billion—but 1B was done in 1989.

1966. Jean Guilloud & J. Fillatoire use an IBM STRETCH at the
Commissariat à l’Énergie Atomique in Paris to compute 250K places of π.

1967. Guilloud & Michele Dichampt find 500K places of π on a CDC
6600 in 44.75 hours. (28h. 10m. for first method; 16h. 35m. for verification.)

1973. Guilloud and Martine Bouyer compute 1M digits of π in less
than a day on a CDC 7600. (Kent says it was 1,001,250 digits.) Gardner
erroneously says it was an IBM 7600. The French Atomic Energy Commis-
sion published this in 1974 as a book of 400 pages! Chan says an extension
of Machin’s IX was used. In 1981–1982, Guilloud gets to 2,000,050 places.

1976. Eugene Salamin publishes first quadratically convergent algo-
rithm for π, based on Gauss’s 1818 arithmetic–geometric mean applied to
elliptic integrals, which Salamin rediscovers.

1981. Kazunori Miyoshi & Kazuhika Nakayama compute 2,000,036
places of π on a FACOM M-200 in 137.3 hours.

1982/84. Yoshiaki Tamura (International Latitude Observatory) and
Yasumasa Kanada (Univ. of Tokyo) use Salamin’s method to compute π
to 221 (actually 2,097,144), 222 (4,194,288) and 223 (8,388,576) places on
a HITAC M-28OH, the last case taking 6.8 hours. In 1984, they compute
224 (16,777,206) places in under 30 hours. Multiplication is done via a Fast
Fourier Transform. Tamura works alone on a MELCOM 900II for the first
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case, then is joined by Kanada and they use a HITAC M-280H for the later
three cases.

1985/86. R. William Gosper, of Symbolics Inc., Palo Alto, uses an un-
verified formula of Ramanujan and a Symbolics 3670 to compute 17,526,200
digits of π. Its agreement with π completes the verification of Ramanujan’s
formula. Castellanos says Gosper found 17.5M terms of the continued frac-
tion for π and then verified Kanada’s results to 224 = 16.8M places.) The
formula was

1

π
=

∞∑
n=0

√
8(4n)!(1103 + 26390n)

9801(n!)43964n
.

1986. January: David H. Bailey, at NASA Ames Research Center, ap-
plies Jonathan M. & Peter B. Borwein’s extension of Salamin’s 1976 method
to compute 29,360,111 digits of π on a Cray-2 in 28 hours. The iteration
used may have been the following, due to the Borweins.

y0 =
√

2− 1; x0 = 6− 4
√

2;

yn+1 =
1− (1− y4n)1/4

1 + (1− y4n)1/4
;

xn+1 = (1 + yn+1)4xn − 22n+3yn+1(1 + yn+1 + y2n+1).

Fifteen iterations will guarantee to give two billion digits of π = limx−1n .

1986/88. Kanada and Tamura uses HITAC S-810/20, HITAC S-
810/20, NEC SX-2, then HITAC S-820/80 to extend Bailey’s 1986 cal-
culations to get 33M (33,554,414), then 67M (67,108,839), then 134M
(134,217,700), then 201M (201,326,551) digits of π. The last takes about 6
hours.

1987. Hideaki Tomoyori memorizes 40,000 digits of π in 17 hours.

1987. The Borweins extend Ramanujan’s formula (see 1985/86) to

1

π
= 12

∞∑
n=0

(−1)n(6n)!B(n)

(n!)3(3n)!
(
5280(236674 + 30303

√
61)
)3n+3/2

,

where B(n) = 212175710912
√

61+1657145277365 + n(13773980892672
√

61
+ 107578229802750). This adds about 25 digits of accuracy per term.

1989. Gregory V. & David V. Chudnovsky at Columbia Univ. compute
480M (May, on a CRAY-2 and an IBM 3090/VF), then 525M (525,229,270)
(June, on a IBM 3090), then 1.01B (1,011,196,691) (August, on an IBM
3090), then 1.13B digits of π. Unfortunately, they do not publish details



Page 16 M500 168

of time used, nor do they run any verifications. (Webster and Kent don’t
mention the 1.13B case.)

In July, Kanada & Tamura find 536M (536,870,898) digits in 67h. 13m.
on a HITAC S-820/80, then in November, 1.07B (1,073,741,799) digits in
74.5 hours on a HITAC S-820/80E.

1990? Afterward, the Chudnovskys assemble a supercomputer at home
and compute 2.26B digits in late summer 1991. They use a Ramanujan-like
series they developed in 1985:

1

π
=

12A

B3/2

∞∑
n=0

(
13591409

A
+ n

)
(−1)n(6n)!

(3n)!(n!)3B3n
,

where A = 545140134 = 2 × 9 × 7 × 11 × 19 × 127 × 163 and B = 640320
= 64× 3× 5× 23× 29. This is supposed to be the fastest converging series
with only integer terms.

c. 1990. An English school teacher decides to experiment with comput-
ing π from Gregory’s series: tan−1 x = x− x3/3 + x5/5− x7/7 + . . . , which
clearly converges very slowly when x = 1. E.g., if we let Sn be the partial
sum of 4 tan−1 1 to n terms, then S100 is 3.131593 and has an error of one
in the second place after the decimal point. However, he observed that the
next four digits are correct! And S1000 has an error of one in the third place
and the next seven places are correct. As n gets larger, one finds that the
errors only occur in a few, widely spaced, places. Study has revealed that
these are related to the Euler numbers which appear in the Maclaurin series
for the secant. (Information from Roger Webster.)

1994. May: Chudnovskys obtain 4.044B digits.

1995. June: Takahashi & Kanada obtain 3.2B (3,221,225,466) digits.

1995. August: Takahashi & Kanada obtain 4.3B (4,294,967,286) digits.

1995. October: Takahashi & Kanada obtain 6.4B (6,442,450,938) dig-
its.

1995. Hiroyuki Goto, a 24-year-old of Tokyo, memorizes 42,195 digits
of π.

1996. Kanada finds 6.44B digits of π, using 5 days on a HITAC-S-
3800/480. (But Kent dates this as October 1995, see above.) A TV pro-
gramme in November 1996 mentions that the Chudnovskys have got to 8B
digits, but this has not been announced yet and they have only done one cal-
culation so far, whereas Kanada checked his calculation by a second method
on a different machine.

1997. July: Takahashi & Kanada obtain 51.5B (51,539,600,000) digits.
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Solution 166.1 - A geometric theorem
If, from any point on one side of a given triangle, a line be drawn
parallel to a second side to meet the third side and then, from
the same point on the first side, another line be drawn parallel
to the third side to meet the second side, the parallelogram so
formed is equal in area to the parallelogram whose adjacent sides
are respectively equal to the remaining segments of the second
and third sides of the given triangle.

Ralph Hancock
I stopped doing geometry at
O-level and have to do it by
the seat of my pants now.

The triangles were a bit
confusingly drawn, so that it
look as if DKG was the same
as ADE and BKH. I have re-
drawn the diagram, changing
the proportions a bit.

Having drawn the first parallelogram CDEF, you then construct your
second parallelogram inside the main triangle by marking a point J on AB
so that AJ = DB, drawing a line parallel to BC to intersect AC at K, and
drawing a line from J parallel to AC to intersect BC at L. You also draw
a line EL parallel to AB; so your second parallelogram is JKCL. I don’t
think it needs proving here that EL and AB actually are parallel and that
triangles AJK, DBF, and ELC are all identical.

Both parallelograms share ELC, so removing it from both of them re-
duces the area of the trapezia JKEL and DBLE by an equal amount. Add
AJK to the first of these trapezia, DBF to the second. These two triangles
are equal in area, so the area of the new parallelograms AJEL and DBEL
is increased by an equal amount.

Then turn the whole diagram anticlockwise till AB is horizontal. You
now have two parallelograms on equal bases, AJ and DB, and of equal
height because they share the same top line EL. So their area is the same,
and therefore the area of the two parallelograms CDEF and JKCL is the
same.

I bet there’s a much nicer way of doing this.
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David Brown
There are three cases to be considered, for which the proof is the same.

Given: Triangle ABC, with D any point on the side AB.

Construction: Draw DE parallel to BC to meet AC at E and DF parallel
to AC to meet BC at F . Let FC = DE = p, BF = q. Let h be the
height of ADE and l be the height of parallelogram DECF. On FD (or FD
extended) cut off FG = AE. From B draw BH equal and parallel to FG.
Join HG to cut AB at K. Then BFGH is a parallelogram with adjacent
sides respectively equal to the remaining segments of the sides AC and BC
of ABC, not contained in the parallelogram DHCF.

Proof: HB is equal and parallel to AE; HK is equal and parallel to DE;
therefore triangles HKB and AED are congruent; therefore the height of
4HKB is equal to the corresponding height of4ADE; therefore the height
of parallelogram HGFB (base BF) is equal to the height of 4AED = h.

Considering areas we have 4BDF +4ADE+ parallelogram DECF =
4ABC; therefore

ql

2
+
ph

2
+ pl =

1

2
(h+ l)(q + p),

i.e.
ql + ph+ 2pl = hq + lq + hp+ lp.

Hence pl = qh; i.e. parallelogram DECF = parallelogram HGFB in area.
QED.

Case 1: AD < DB is illustrated above.
Case 2: AD = DB.
Case 3: AD > DB; see previous page.
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This theorem can be usefully applied in the geometric construction:

Given any parallelogram and a line of unspecified length, we can
construct another parallelogram with a side equal to the given
line such that it is equal in area to the first parallelogram, using
straight edge and compasses only.

For simplicity and convenience, I will use corresponding letters to name
corresponding points in my example construction exercise.

Given a parallelogram DECF and a line RS. With compass and straight
edge only, we are required to construct a parallelogram equal in area to
DECF, with a side equal to RS.

Construction: With centre E and radius equal to RS, find A on CE
extended. Join AD and extend it to meet CF, extended, at B. With centre
F and radius equal to RS, find G on FD (or FD extended). Join DG. With
centre B and radius equal to FG, construct an arc so that it meets the arc
of centre G and radius equal to FB at H.

Then HGFB is the required parallelogram.

Proof: GF = AE and BF = BF (same line segment). But AE and BF
are the remaining segments on the sides AC and BC of the triangle ABC,
not contained in the parallelogram DECF which has a vertex on the side
AB of ABC. Hence, by my proposed theorem, the parm HGFB is equal in
area to parallelogram DECF, with side GF equal to the given line RS.
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John Bull
To save lots of writing, label the angles and lines as shown. Angles shown
as equal are all corresponding angles on a line crossing two parallel straight
lines.

4AED is similar to 4DFB by way of two equal angles.

Therefore
b

x
=
y

a
, or ab = xy.

Therefore Area DECF = xy sinα =Area BHGF = ab sinα.

Dick Boardman, Jonathan Griffiths and Ken Greatrix sent similar
solutions.

Problem 168.1 – Clock
Grant Curry
The hour hand of a clock is three inches long.
The minute hand is four inches. Determine
the point at which the outermost points of the
hands of the clock are travelling apart at the
fastest speed.
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Problem 168.2 – 345 square

Martyn Lawrence

PQRS is a square.

PO = 3 units, QO = 4 units and
RO = 5 units.

What is the length of side of the
square?

Problem 168.3 – Fraction
John Halsall
We have

19

95
=

1

5
.

Having dutifully reduced the answer to its lowest terms, I observed that
instead of dividing numerator and denominator by 19 I might simply have
struck out the two nines. My attention does tend to wander, but I’d found
something more amusing than this damned maths course.

(a)
3544

7531
=

344

731
. Just delete the fives.

(b)
2666

6665
=

266

665
=

26

65
=

2

5
. Delete 6 thrice!

(c)
143185

17018560
=

1435

170560
. Strike out 18.

Now here’s one for you to do.

4251935345

xxx1935xxxx
=

425345

xxxxxxx
. Delete 1935.

What is the denominator represented by xxx1935xxxx ?

Have you noticed that when they give you an assignment it’s always far
more difficult than anything you did in the course?
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Solution 166.3 – Boat
Dick Boardman

A small boat which travels at constant speed of 2 metres per
second through the water is racing up a channel (which runs
north - south) against the tide. At a distance x metres from
the western edge of the channel, the speed of the tide is x/15
metres per second due south. The boat starts on the western
edge and must reach a buoy which is 500 metres north and 30
metres east. To reach the buoy, the boat must travel up the
western edge until nearly at the buoy and then head out and
past, eventually allowing the tide to carry it back to the buoy.

How far should it travel up the edge, and what path should it
follow when heading out in order to minimize the time taken to
reach the buoy?

When I submitted this problem, I did not have a solution. However, seeing
it in print prompted me to try to solve it once more. This time I had an
inspiration.

Let the x axis run due east, let the y axis run due north; let the heading
of the boat be θ (measured clockwise from north); let the velocity of the
tide at point (x, y) be gx due south; let the velocity of the boat through the
water be V .

Let the boat start at the origin and move towards the point (X,Y ).
Then

dy

dt
= V cos θ − gx, (1)

dx

dt
= V sin θ. (2)

Dividing these two equations gives

dy

dx
= cot θ − gx

V sin θ
.

Assuming that θ is a function of x we get that the change in y over the
curved section of the boat’s path is

y =

∫ (
cot θ − gx

V sin θ

)
dx.

Furthermore, by (2),

t =

∫
dx

V sin θ
.
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Hence the total time is

t+
B − y
V

=

∫
dx

V sin θ
+

1

V

(
B −

∫ (
cot θ − gx

V sin θ

)
dx

)

=
B

V
+

1

V

∫ 1 +
gx

V
sin θ

− cot θ

 dx.

The integral may be minimized using the Euler–Lagrange formula from
the calculus of variations. This specifies that we partially differentiate the
contents of the integral with respect to θ and equate the result to zero. This
gives (

1 +
gx

V

)
cosec θ cot θ − cosec 2θ = 0,

which simplifies to

cos θ =
1

1 +
gx

V

.

The integrations involved in the solution are very messy but can be carried
out using the symbolic mathematics package Mathematica.

Putting V = 2 and g = 1/15, so that cos θ = 1/(1 + x/30), and using
the well-known formula sin θ =

√
1− (cos θ)2, we obtain from (2)

t =

∫ X

0

dx

V sin θ
=

1

2

√
X
√

60 +X. (3)

Now divide (1) by (2), substitute for sin θ and cos θ and integrate:

Y =

∫ X

0

V cos θ − gx
V sin θ

dx =
(30−X)

√
X
√
X + 60

60
+ 30 cosech−1

2
√

15√
X

.

With B = 500 the distance to the turning point is 500 − Y evaluated at
X = 30, which works out at 480.246. Hence the total time is

500− Y
V

+ t =
480.246

2
+

1

2

√
30
√

90 = 266.104

on substituting X = 30 in (3).

The values for minimum total time and for the turning point match
closely the values obtained by my ‘hill climbing’ program.
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5 10 15 20 25 30

5

10

15

20

The path of the boat from the point at which
it leaves the western edge of the channel

Book review
Barbara Lee

e: The Story of a Number by Eli Maor (Princeton University
Press, ISBN 0-691-05854, paperback 1998, £12)

Being less than 500 years old, e is one of our youngest numbers. This book
describes the mathematical developments that lead to the establishment of
e, and to functions and expressions involving e. It covers a period of time
from the Pythagoreans and their discovery that

√
2 is irrational to Hilbert

and transcendental numbers.

Among the fifteen chapters we find Napier and his development of loga-
rithms, Newton and Leibniz, the Bernoulli family, Euler, complex numbers
and complex analysis, hyperbolic functions, and infinite series; in fact, al-
most everything related to e is included. Twelve short items on various
topics are interspersed between chapters. They include logarithmic spirals,
equations of motion, and Euler’s formula. These short items, together with
the eight appendixes, contain most of the mathematics in the book, all of
which is clearly explained.

The book is well written, and holds your interest even if you are already
familiar with the mathematical concepts.
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Euler relation
Colin Davies
It occurred to me long ago that e2πni = 1, for all n ∈ Z+. The interesting
question is what happens for the more general n ∈ R. For values of n
between integers, e2πni presumably takes on a range of values like solutions
to a polynomial, but drops back to the single value 1 when n is a positive
integer. It is therefore rather like quadratics with the appropriate constant
values that ensure that b2 = 4ac, which have only one solution; for example,
ax2 + 2x+ 1 = 0.

Now 1k = 1 for all k ∈ Z+. If k = 3/2, 1k has values of 1 or −1. If
k = 5/4, 1k has values 1, −1, i, −i.

What happens if k is some other rational number that has a denominator
that creates a root when used as an exponent? This is presumably explained
in the previous articles on the ‘Roots of Unity’, but I failed to follow those
articles after the first one or two.

But suppose k is real but not rational, and therefore does not contain a
denominator and presumably does not form a root when used as an expo-

nent. What values do 1
√
2 or 1π have?

Correction. In David Brown’s article, ‘Euler relation’ [M500 166 24], the
equation near the bottom of the page should read

1

2i
log i =

π

4
→ log i =

πi

2
.

M500 Mathematics Revision Week-end 1999
JRH
The 25th M500 Society Mathematics Revision Week-end will be held at
ASTON UNIVERSITY, BIRMINGHAM over 17 – 19 SEPTEMBER 1999.

We plan to present most OU maths courses. Tutorial sessions start at
19.30 on the Friday and finish at 17.00 on the Sunday. On the Saturday
night there is a mathematical guest lecture, a disco, and folk singing. The
Week-end is designed to help with revision and exam preparation, and is
open to all OU students.

The latest date we can accept bookings, even if places are still available,
is 3 September 1999. For full details and an application form, send an SAE
to Jeremy Humphries.
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